# A CHARACTERIZATION OF ABSOLUTE SUMMABILITY FACTORS 

## B. E. Rhoades and Ekrem Savaş


#### Abstract

Let $A$ and $B$ be two summability methods. We shall use the notation $\lambda \in(A, B)$ to denote the set of all sequences $\lambda$ such that $\sum a_{n} \lambda_{n}$ is summable $B$, whenever $\sum a_{n}$ is summable $A$. In the present paper we characterize the sets $\lambda \in\left(\left|\bar{N}, p_{n}\right|,|T|_{k}\right)$ and $\lambda \in\left(\left|\bar{N}, p_{n}\right|_{k},|T|\right)$, where $T$ is a lower triangular matrix with positive entries and row sums 1. As special cases we obtain summability factor theorems and inclusion theorems for pairs of weighted mean matrices.


## 1. Introduction

In a recent paper, Sarigöl and Bor [9] obtained necessary and sufficient conditions for $\left(\left|\bar{N}, p_{n}\right|,\left|\bar{N}, q_{n}\right|_{k}\right)$ and $\left(\left|\bar{N}, p_{n}\right|_{k},\left|\bar{N}, q_{n}\right|\right)$. The concept of absolute summability of order $k$ was coined by Flett [3] as follows. A series $\sum a_{n}$ is summable $|C, \delta|_{k}, k \geq 1, \delta>-1$ if

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{k-1}\left|\Delta \sigma_{n-1}^{\delta}\right|^{k}<\infty \tag{1.1}
\end{equation*}
$$

where $\sigma_{n}^{\delta}$ denotes the nth term of the $(C, \delta)$ transform of the partial sums, $s_{n}$, of the series $\sum a_{n}$.

In extending (1.1) to weighted mean methods, for example, Bor [1], Sarigol [8], and others, have used the definition

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|\Delta u_{n-1}\right|^{k}<\infty \tag{1.2}
\end{equation*}
$$

Received August 30, 2002; Accepted January 21, 2003.
Communicated by H. M. Srivastava.
2000 Mathematics Subject Classification: Primary 40F05, 40D25, 40G99.
Key words and phrases: Absolute summability, Weighted mean matrices, Summability factors.
This research was supported by the Scientific and Technical Research Council of Turkey.
where $u_{n}$ is the nth term of the weighted mean transform of $\left\{s_{n}\right\}$.
Let $T$ denote a lower triangular matrix with positive entries and row sums 1 . Define

$$
\bar{t}_{n \nu}=\sum_{i=\nu}^{n} a_{n i}, \quad n, \nu=0,1, \cdots
$$

and $\quad \hat{t}_{n \nu}=\bar{t}_{n \nu}-\bar{t}_{n-1, \nu}, n=1,2, \cdots$.
Before stating our main results we shall note the following lemma.
Lemma 1.1. [5] Let $1 \leq k<\infty$. Then an infinite matrix $T: \ell \rightarrow \ell^{k}$ if and only if

$$
\sup _{\nu} \sum_{n=1}^{\infty}\left|t_{n \nu}\right|^{k}<\infty .
$$

## 2. The Main Results

We shall prove the following.
Theorem 2.1. Let $1 \leq k<\infty$. Then $\lambda \in\left(\left|\bar{N}, p_{n}\right|,|T|_{k}\right)$, i.e., $\sum a_{n}$ is summable $\left|\bar{N}, p_{n}\right|$, then $\sum a_{n} \lambda_{n}$ is summable $|T|_{k}$, if and only if
(i) $\left|t_{\nu \nu} \lambda_{\nu}\right| \frac{P_{\nu}}{p_{\nu}}=O\left(\nu^{1 / k-1}\right)$
(ii) $\left(\sum_{n=\nu+1}^{\infty} n^{k-1} \left\lvert\, \Delta\left(\left.\hat{t}_{n \nu} \lambda_{\nu}\right|^{k}\right)^{1 / k}=O\left(\frac{p_{\nu}}{P_{\nu}}\right)\right.\right.$
(iii) $\left(\sum_{n=\nu+1}^{\infty} n^{k-1}\left|\hat{t}_{n, \nu+1} \lambda_{\nu+1}\right|^{k}\right)^{1 / k}=O(1)$.

Remark 1. The theorem of [6] is a corollary of Theorem 2.1.
Theorem 2.2. Let $1<k<\infty$. Suppose that $T$ also satisfies

$$
\begin{equation*}
\sum_{n=\nu+1}^{\infty}\left|\hat{t}_{n \nu}\right| \quad \text { converges for each } \quad \nu=1,2, \ldots \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=\nu+1}^{\infty}\left|\hat{t}_{n, \nu+1}\right| \quad \text { converges for each } \quad \nu=1,2, \ldots \tag{2.2}
\end{equation*}
$$

Then $\left(\left|\bar{N}, p_{n}\right|_{k},|T|\right)$, i.e., $\sum a_{n}$ summable $\left|\bar{N}, p_{n}\right|_{k}$ implies that $\sum a_{n} \lambda_{n}$ is summable $|T|$, if and only if
(i) $\sum_{\nu=1}^{\infty} \frac{1}{\nu}\left|\sum_{n=\nu+1}^{\infty} \frac{P_{\nu}}{p_{\nu}}\left(\Delta \hat{t}_{n \nu} \lambda_{\nu}\right)+\hat{t}_{n, \nu+1} \lambda_{\nu+1}\right|^{k^{\prime}}<\infty$
(ii) $\sum_{\nu=1}^{\infty} \frac{1}{\nu}\left|\frac{t_{\nu \nu} P_{\nu} \lambda_{\nu}}{p_{\nu}}\right|^{k^{\prime}}<\infty$,
where $k^{\prime}$ is the conjugate index of $k$.
Proof of Theorem 2.1. Let $\left\{x_{n}\right\}$ denote the sequence of $\left(\bar{N}, p_{n}\right)$ means of the series $\sum a_{n}$. By definition,

$$
x_{n}=\frac{1}{P_{n}} \sum_{\nu=0}^{n} p_{\nu} s_{\nu}=\frac{1}{P_{n}} \sum_{\nu=0}^{n}\left(P_{n}-P_{\nu-1}\right) a_{\nu} .
$$

Thus

$$
X_{n}:=x_{n}-x_{n-1}=\frac{p_{n}}{P_{n} P_{n-1}} \sum_{\nu=1}^{n} P_{\nu-1} a_{\nu}, \quad n \geq 1 .
$$

Define

$$
\begin{equation*}
y_{n}=\sum_{\nu=0}^{n} \sum_{i=\nu}^{n} t_{n \nu} \lambda_{\nu} a_{\nu}=\sum_{\nu=0}^{n} \bar{t}_{n \nu} \lambda_{\nu} a_{\nu} \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
Y_{n}:=y_{n}-y_{n-1}=\sum_{\nu=0}^{n}\left(\bar{t}_{n \nu}-\bar{t}_{n-1, \nu}\right) \lambda_{\nu} a_{\nu}=\sum_{\nu=0}^{n} \hat{t}_{n \nu} \lambda_{\nu} a_{\nu} . \tag{3.2}
\end{equation*}
$$

By the hypothesis of the theorem, and applying (1.1) with $\sigma_{n-1}^{\delta}$ replaced by $Y_{n}$,

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{k-1}\left|Y_{n}\right|^{k}<\infty \tag{3.3}
\end{equation*}
$$

whenever

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left|X_{n}\right|<\infty \tag{3.4}
\end{equation*}
$$

For $k \geq 1$ we define

$$
\begin{aligned}
B & =\left\{\left\{a_{i}\right\}: \sum a_{i} \text { is summable }\left|\bar{N}, p_{n}\right|\right\} \\
C & =\left\{\left\{a_{i}\right\}: \sum a_{i} \lambda_{i} \text { is summable }|T|_{k}\right\} .
\end{aligned}
$$

These are Banach spaces, if normed by

$$
\begin{equation*}
\|X\|=\sum\left|X_{n}\right|,\|Y\|=\left(\left|Y_{0}\right|^{k}+\sum n^{k-1}\left|Y_{n}\right|^{k}\right)^{1 / k} \tag{3.5}
\end{equation*}
$$

respectively.
Since $\sum a_{n}$ is summable by $\left|\bar{N}, p_{n}\right|$ implies that $\sum a_{n} \lambda_{n}$ is summable by $|T|_{k}$,by the Banach-Steinhaus theorem, there exists a constant $M>0$ such that

$$
\begin{equation*}
\|Y\| \leq M\|X\| \tag{3.6}
\end{equation*}
$$

for all sequences satisfying (3.4).
Applying (3.1) and (3.2) to the sequence $a_{\nu}=e_{\nu}, a_{\nu+1}=-e_{\nu+1}, a_{n}=0$, otherwise, where $e_{\nu}$ is the $\nu$-th coordinate sequence, we obtain

$$
\begin{aligned}
& X_{n}= \begin{cases}0, & n<\nu, \\
\frac{p_{\nu}}{P_{\nu}}, & n=\nu, \\
-\frac{p_{\nu} p_{n}}{P_{n} P_{n-1}}, & n>\nu,\end{cases} \\
& Y_{n}= \begin{cases}0, & n<\nu, \\
\hat{t}_{\nu \nu} \lambda_{\nu}, & n=\nu, \\
\Delta\left(\hat{t}_{n \nu} \lambda_{\nu}\right), & n>\nu\end{cases}
\end{aligned}
$$

From (3.5),

$$
\|X\|=\frac{2 p_{\nu}}{P_{\nu}}
$$

and

$$
\|Y\|=\left(\nu^{k-1}\left|\hat{t}_{\nu \nu} \lambda_{\nu}\right|^{k}+\sum_{n=\nu+1}^{\infty} n^{k-1} \mid \Delta\left(\left.\hat{t}_{n \nu} \lambda_{\nu}\right|^{k}\right)^{1 / k}\right.
$$

Hence it follows from (3.6) that

$$
\nu^{k-1}\left|\hat{t}_{\nu \nu} \lambda_{\nu}\right|^{k}+\sum_{n=\nu+1}^{\infty} n^{k-1}\left|\Delta\left(\hat{t}_{n \nu} \lambda_{\nu}\right)\right|^{k} \leq(2 M)^{k}\left(\frac{p_{\nu}}{P_{\nu}}\right)^{k}
$$

Since this inequality holds for every $\nu \geq 1$, we obtain

$$
\nu^{k-1}\left|\hat{t}_{\nu \nu} \lambda_{\nu}\right|^{k}+\sum_{n=\nu+1}^{\infty} n^{k-1}\left|\Delta\left(\hat{t}_{n \nu} \lambda_{\nu}\right)\right|^{k}=O\left(\left(\frac{p_{\nu}}{P_{\nu}}\right)^{k}\right)
$$

The above equality is true if and only if each term on the left side is $O\left(\left(p_{\nu} / P_{\nu}\right)^{k}\right)$. Taking the first term gives

$$
\frac{P_{\nu}}{p_{\nu}}\left|\hat{t}_{\nu \nu} \lambda_{\nu}\right|=O\left(\nu^{1 / k-1}\right)
$$

i.e., (i) is necessary. Taking the second term, we obtain

$$
\left(\sum_{n=\nu+1}^{\infty} n^{k-1}\left|\Delta\left(\hat{t}_{n \nu} \lambda_{\nu}\right)\right|^{k}\right)^{1 / k}=O\left(\frac{p_{\nu}}{P_{\nu}}\right),
$$

which is condition (ii).
To prove the necessity of (iii) we again apply (3.1) and (3.2), this time to the sequence with $a_{\nu}=e_{\nu+1}$. We then obtain

$$
X_{n}= \begin{cases}0, & \text { if } n<\nu+1, \\ \frac{P_{\nu} p_{n}}{P_{n} P_{n-1}}, & \text { if } n \geq \nu+1,\end{cases}
$$

and

$$
Y_{n}= \begin{cases}0, & \text { if } n<\nu+1 \\ t_{n, \nu+1} \lambda_{\nu+1}, & \text { if } n \geq \nu+1\end{cases}
$$

Using (3.5) we obtain

$$
\|X\|=1
$$

and

$$
\|Y\|=\left(\sum_{n=\nu+1}^{\infty} n^{k-1}\left|t_{n, \nu+1} \lambda_{\nu+1}\right|^{k}\right)^{1 / k}
$$

From (3.6) it follows that

$$
\left(\sum_{n=\nu+1}^{\infty} n^{k-1}\left|t_{n, \nu+1} \lambda_{\nu+1}\right|^{k}\right)^{1 / k}=O(1)
$$

which gives the necessity of (iii).
To prove the conditions sufficient, from (3.1) we have

$$
X_{n}=\frac{p_{n}}{P_{n} P_{n-1}} \sum_{\nu=1}^{n} P_{\nu-1} a_{\nu} .
$$

so,

$$
\frac{P_{n} P_{n-1} X_{n}}{p_{n}}=\sum_{\nu=1}^{n} P_{\nu-1} a_{\nu}
$$

$$
\begin{gathered}
\frac{P_{n-1} P_{n-2} X_{n-1}}{p_{n}}=\sum_{\nu=1}^{n-1} P_{\nu-1} a_{\nu} \\
\frac{P_{n} P_{n-1} X_{n}}{p_{n}}-\frac{P_{n-1} P_{n-2} X_{n-1}}{p_{n}}=P_{n-1} a_{n} .
\end{gathered}
$$

Thus

$$
\begin{equation*}
a_{n}=\frac{P_{n} X_{n}}{p_{n}}-\frac{P_{n-2} X_{n-1}}{p_{n-1}} . \tag{3.7}
\end{equation*}
$$

Substituting (3.7) into (3.2) gives

$$
\begin{aligned}
Y_{n} & =\sum_{\nu=0}^{n} \hat{t}_{n \nu} \lambda_{\nu} a_{\nu}=\hat{t}_{n 0} \lambda_{0} X_{0}+\sum_{\nu=1}^{n} \hat{t}_{n \nu} \lambda_{\nu}\left(\frac{P_{\nu}}{p_{\nu}} X_{\nu}-\frac{P_{\nu-2}}{p_{\nu-1}} X_{\nu-1}\right) \\
& =\hat{t}_{n 0} X_{0} \lambda_{0}+\hat{t}_{n n} \lambda_{n} \frac{P_{n}}{p_{n}} X_{n}+\sum_{\nu=1}^{n-1}\left(\hat{t}_{n \nu} \lambda_{\nu} P_{\nu}-\hat{t}_{n, \nu+1} \lambda_{\nu+1} P_{\nu-1}\right) \frac{X_{\nu}}{p_{\nu}} \\
& =\sum_{\nu=1}^{n-1}\left(\hat{t}_{n \nu} \lambda_{\nu} P_{\nu}-\hat{t}_{n, \nu+1} \lambda_{\nu+1} P_{\nu-1}\right) \frac{X_{\nu}}{p_{\nu}}+t_{n n} \lambda_{n} \frac{P_{n}}{p_{n}} X_{n} \\
& =\sum_{\nu=1}^{n-1}\left(\frac{P_{\nu}}{p_{\nu}} \Delta\left(\hat{t}_{n \nu} \lambda_{\nu}\right)+\hat{t}_{n, \nu+1} \lambda_{\nu+1}\right) X_{\nu}+t_{n n} \frac{P_{n} \lambda_{n} X_{n}}{p_{n}} .
\end{aligned}
$$

Set $Y_{n}^{*}=n^{1-1 / k} Y_{n}$. Then

$$
Y_{n}^{*}=n^{1-1 / k} \sum_{\nu=1}^{n-1}\left[\frac{P_{\nu}}{p_{\nu}} \Delta\left(\hat{t}_{n \nu} \lambda_{\nu}\right)+\hat{t}_{n, \nu+1} \lambda_{\nu+1}\right] X_{\nu}+t_{n n} \frac{P_{n}}{p_{n}} \lambda_{n} X_{n}
$$

We may therefore write $Y_{n}^{*}=\sum_{\nu=1}^{n} a_{n \nu} X_{\nu}$, where

$$
a_{n \nu}= \begin{cases}n^{1-1 / k}\left(\frac{P_{\nu}}{p_{\nu}}\right) \Delta\left(\hat{t}_{n \nu} \lambda_{\nu}\right)+\hat{t}_{n, \nu+1} \lambda_{\nu+1}, & \text { if } 1 \leq \nu \leq n-1, \\ n^{1-1 / k} \frac{P_{n}}{p_{n}} t_{n n} \lambda_{n}, & \text { if } n=\nu, \\ 0 & \text { if } n>\nu\end{cases}
$$

Then the statement that $\sum a_{\nu} \lambda_{\nu}$ is summable $|T|_{k}, k \geq 1$ whenever $\sum a_{n}$ is summable $\left|\bar{N}, p_{n}\right|$, is equivalent to $\sum\left|Y_{n}^{*}\right|^{k}<\infty$ whenever $\sum\left|X_{n}\right|<\infty$, or, equivalently,

$$
\begin{equation*}
\sup _{\nu} \sum_{n}\left|a_{n \nu}\right|^{k}<\infty \tag{3.8}
\end{equation*}
$$

by Lemma 1.1. From the definition of T it follows that

$$
\begin{aligned}
\sum_{n=\nu}^{\infty}\left|a_{n \nu}\right|^{k} & =\nu^{k-1}\left(\frac{P_{n}}{p_{n}}\left|t_{n n} \lambda_{n}\right|\right)^{k} \\
& +\sum_{n=\nu+1}^{\infty} n^{k-1}\left|\frac{P_{\nu}}{p_{\nu}} \Delta\left(\hat{t}_{n \nu} \lambda_{\nu}\right)+\hat{t}_{n, \nu+1} \lambda_{\nu+1}\right|^{k}
\end{aligned}
$$

Therefore the conditions (i)-(iii), and Minkowski's inequality imply that

$$
\sum_{n=\nu}^{\infty}\left|a_{n \nu}\right|^{k}=O(1)
$$

as $\nu \rightarrow \infty$. This completes the proof.
Proof of Theorem 2.2. Solving (3.1) for $a_{n}$ and substituting into (3.2) gives

$$
Y_{n}=\sum_{\nu=1}^{n-1}\left[\frac{P_{\nu}}{p_{\nu}} \Delta\left(\hat{t}_{n \nu} \lambda_{\nu}\right)+\hat{t}_{n, \nu+1} \lambda_{\nu+1}\right] X_{\nu}+\frac{t_{n n} \lambda_{n} P_{n} X_{n}}{p_{n}} .
$$

With $X_{n}^{*}=n^{1-1 / k} X_{n}$,

$$
Y_{n}=\sum_{\nu=1}^{n} a_{n \nu} X_{\nu}^{*}
$$

where

$$
a_{n \nu}= \begin{cases}\left(\frac{P_{\nu}}{p_{\nu}} \Delta\left(\hat{t}_{n \nu} \lambda_{\nu}\right)+\hat{t}_{n, \nu+1} \lambda_{\nu+1}\right) \nu^{1 / k-1}, & \text { if } 1 \leq \nu \leq n-1, \\ t_{n n} \lambda_{n} \frac{P_{n}}{p_{n}} n^{1 / k-1}, & \text { if } \nu=n \\ 0, & \text { if } \nu>n\end{cases}
$$

The condition that $\sum a_{n} \lambda_{n}$ is summable $|T|$ whenever $\sum a_{n}$ is summable $\left|\bar{N}, p_{n}\right|_{k}$ is equivalent to $\sum\left|Y_{n}\right|<\infty$ whenever $\sum\left|X_{n}^{*}\right|^{k}<\infty$. Necessary and sufficient conditions for this are that

$$
\begin{equation*}
\sum_{n=\nu}^{\infty} a_{n \nu} z_{\nu}<\infty \text { for each bounded sequence } z, \nu=1,2, \ldots \tag{3.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{\nu=1}^{\infty}\left|\sum_{n=\nu}^{\infty} a_{n \nu} z_{\nu}\right|^{k^{\prime}}<\infty \quad \text { for each bounded sequence } z \tag{3.10}
\end{equation*}
$$

To verify (3.9),

$$
\begin{aligned}
& \sum_{n=\nu}^{\infty} a_{n \nu} z_{\nu}= t_{\nu \nu} \lambda_{\nu} \frac{P_{\nu}}{p_{\nu}} \nu^{1 / k-1} z_{\nu} \\
&+\sum_{n=\nu+1}^{\infty}\left[\frac{P_{\nu}}{p_{\nu}} \Delta\left(\hat{t}_{n \nu} \lambda_{\nu}\right)+\hat{t}_{n, \nu+1} \lambda_{\nu+1}\right] \nu^{1 / k-1} z_{n} \\
& \sum_{n=\nu+1}^{\infty}\left|\frac{P_{\nu}}{p_{\nu}} \Delta\left(\hat{t}_{n \nu} \lambda_{\nu}\right) \nu^{1 / k-1} z_{n}\right| \leq \frac{M P_{\nu} \nu^{1 / k-1}}{p_{\nu}} \sum_{n=\nu+1}^{\infty}\left|\hat{t}_{n \nu} \lambda_{\nu}-\hat{t}_{n, \nu+1} \lambda_{\nu+1}\right| \\
& \leq \frac{M P_{\nu} \nu^{1 / k-1}}{p_{\nu}}\left[\left|\lambda_{\nu}\right| \sum_{n=\nu+1}^{\infty}\left|\hat{t}_{n \nu}\right|\right. \\
&\left.+\left|\lambda_{\nu+1}\right| \sum_{n=\nu+1}^{\infty}\left|\hat{t}_{n, \nu+1}\right|\right] \\
&=O(1)
\end{aligned}
$$

by using (2.1) and (2.2), where $M$ is a bound for $z$. Therefore the series is convergent.

Also

$$
\begin{aligned}
\sum_{n=\nu+1}^{\infty}\left|\hat{t}_{n, \nu+1} \lambda_{\nu+1} \nu^{1 / k-1} z_{n}\right| & \leq M \lambda_{\nu+1} \nu^{1 / k-1} \sum_{n=\nu+1}^{\infty}\left|\hat{t}_{n, \nu+1}\right| \\
& =O(1),
\end{aligned}
$$

and (3.9) is satisfied.
Therefore, from (3.10), the necessary and sufficient condition for the conclusion of the theorem is

$$
\begin{align*}
& \sum_{\nu=1}^{\infty} \left\lvert\, t_{\nu \nu} \lambda_{\nu} \frac{P_{\nu}}{p_{\nu}} \nu^{1 / k-1} z_{\nu}\right. \\
& +\left.\sum_{n=\nu+1}^{\infty}\left[\frac{P_{\nu}}{p_{\nu}} \Delta\left(\hat{t}_{n \nu} \lambda_{\nu}\right)+\hat{t}_{n, \nu+1} \lambda_{\nu+1}\right] \nu^{1 / k-1} z_{\nu}\right|^{k^{\prime}}<\infty \tag{3.11}
\end{align*}
$$

for each bounded sequence $z$. It follows from (3.11), by choosing $z_{n}=1$ for each $n$, that

$$
\begin{equation*}
\sum_{\nu=1}^{\infty}\left|t_{\nu \nu} \lambda_{\nu} \frac{P_{\nu}}{p_{\nu}} \nu^{1 / k-1}\right|^{k^{\prime}}=O(1) \tag{3.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.\sum_{n=\nu+1}^{\infty} \left\lvert\, \frac{P_{\nu}}{p_{\nu}} \Delta\left(\hat{t}_{n \nu} \lambda_{\nu}\right)+\hat{t}_{n, \nu+1} \lambda_{\nu+1}\right.\right]\left.\nu^{1 / k-1}\right|^{k^{\prime}}=O(1) \tag{3.13}
\end{equation*}
$$

which are conditions (i) and (ii).
To show that (i) and (ii) are sufficient, one needs only to use the inequality

$$
(a+b)^{k^{\prime}} \leq 2^{k^{\prime}}\left(a^{k^{\prime}}+b^{k^{\prime}}\right), \quad a, b \geq 0
$$

along with (3.12) and (3.13), since (3.11) holds for every bounded sequence $z_{n}=$ $O(1)$.

## 4. Additional Results

For any sequences $\left\{a_{n}\right\},\left\{b_{n}\right\}$, the statement $a_{n} \asymp b_{n}$ means $a_{n}=O\left(b_{n}\right)$ and $b_{n}=O\left(a_{n}\right)$.

Theorem 4.1. Let $1 \leq k<\infty,\left\{q_{n}\right\}$ a positive sequence satisfying

$$
\begin{equation*}
\left(\sum_{n=\nu+1}^{\infty} n^{k-1}\left(\frac{q_{n}}{Q_{n} Q_{n-1}}\right)^{k}\right)^{1 / k} \asymp O\left(\frac{1}{Q_{\nu}}\right) \tag{4.1}
\end{equation*}
$$

Then $\lambda \in\left(\left|\bar{N}, p_{n}\right|,\left|\bar{N}, q_{n}\right|_{k}\right)$ if and only if
(i) $\lambda_{n}=O(1)$
(ii) $\Delta \lambda_{n}=O\left(\frac{p_{n}}{P_{n}}\right)$
(iii) $\lambda_{n}=O\left(\frac{p_{n} Q_{n}}{q_{n} P_{n}} \frac{1}{n^{1 / k^{\prime}}}\right)$.

Proof. With $t_{n k}=q_{k} / Q_{n}$, condition (i) of Theorem 2.1 becomes

$$
\left|\frac{q_{\nu} \lambda_{\nu}}{Q_{\nu}}\right| \frac{P_{\nu}}{p_{\nu}}=O\left(\nu^{1 / k-1}\right)
$$

which is equivalent to condition (iii) of Theorem 4.1.
Then

$$
\begin{align*}
\hat{t}_{n \nu} & =\bar{t}_{n \nu}-\bar{t}_{n-1, \nu}=\frac{1}{Q_{n}} \sum_{i=\nu}^{n} q_{i}-\frac{1}{Q_{n-1}} \sum_{i=\nu}^{n-1} q_{i} \\
& =\frac{1}{Q_{n}}\left(Q_{n}-Q_{\nu-1}\right)-\frac{1}{Q_{n-1}}\left(Q_{n-1}-Q_{\nu-1}\right)  \tag{4.2}\\
& =\frac{-Q_{\nu-1} q_{n}}{Q_{n} Q_{n-1}} .
\end{align*}
$$

Substituting into condition (iii) of Theorem 2.1 we have

$$
\left(\sum_{n=\nu+1}^{\infty} n^{k-1}\left|\frac{Q_{\nu} q_{n} \lambda_{\nu+1}}{Q_{n} Q_{n-1}}\right|^{k}\right)^{1 / k}=O(1)
$$

or

$$
\left|\lambda_{\nu+1}\right| Q_{\nu}\left(\sum_{n=\nu+1}^{\infty} n^{k-1}\left(\frac{q_{n}}{Q_{n} Q_{n-1}}\right)^{k}\right)^{1 / k}=O(1)
$$

which, using (4.1), implies condition (i) of Theorem 4.1.

$$
\begin{align*}
\Delta\left(\hat{t}_{n \nu} \lambda_{\nu}\right) & =-\frac{Q_{\nu-1} q_{n}}{Q_{n} Q_{n-1}} \lambda_{\nu}+\frac{Q_{\nu} q_{n}}{Q_{n} Q_{n-1}} \lambda_{\nu}+1  \tag{4.3}\\
& =-\frac{q_{n}}{Q_{n} Q_{n-1}} \Delta\left(Q_{\nu-1} \lambda_{\nu}\right) .
\end{align*}
$$

Substituting into condition (ii) of Theorem 2.1 yields

$$
\left(\sum_{n=\nu+1}^{\infty} n^{k-1}\left|\frac{q_{n}}{Q_{n} Q_{n-1}} \Delta\left(Q_{\nu-1} \lambda_{\nu}\right)\right|^{k}\right)^{1 / k}=O\left(\frac{p_{\nu}}{P_{\nu}}\right)
$$

or

$$
\left|\Delta\left(Q_{\nu-1} \lambda_{\nu}\right)\right|\left(\sum_{n=\nu+1}^{\infty} n^{k-1}\left(\frac{q_{n}}{Q_{n} Q_{n-1}}\right)^{k}\right)^{1 / k}=O\left(\frac{p_{\nu}}{P_{\nu}}\right),
$$

which, using (4.1) implies that

$$
\left|\Delta\left(Q_{\nu-1} \lambda_{\nu}\right)\right| \frac{1}{Q_{\nu}}=O\left(\frac{p_{\nu}}{P_{\nu}}\right) .
$$

Thus, since $\lambda_{\nu}$ is bounded,

$$
\begin{aligned}
\Delta\left(Q_{\nu-1} \lambda_{\nu}\right) & =Q_{\nu-1} \lambda_{\nu}-Q_{\nu} \lambda_{\nu+1} \\
& =Q_{\nu} \Delta \lambda_{\nu}-q_{\nu} \lambda_{\nu} \\
& =O\left(\frac{Q_{\nu} p_{\nu}}{P_{\nu}}\right)
\end{aligned}
$$

or

$$
\Delta \lambda_{\nu}=\frac{q_{\nu}}{Q_{\nu}} \lambda_{\nu}+O\left(\frac{p_{\nu}}{P_{\nu}}\right)=O\left(\frac{p_{\nu}}{P_{\nu}}\right)
$$

which is condition (ii) of Theorem 4.1.
Remark 2. The theorem of [7] is a special case of Theorem 4.1.
Theorem 4.2. Let $1<k<\infty$. Then $\lambda \in\left(\left|\bar{N}, p_{n}\right|_{k},\left|\bar{N}, q_{n}\right|\right)$ if and only if
(i) $\sum_{\nu=1}^{\infty} \frac{1}{\nu}\left|\frac{P_{\nu} q_{\nu}}{p_{\nu} Q_{\nu}} \lambda_{\nu}\right|^{k^{\prime}}<\infty$
(ii) $\sum_{\nu=1}^{\infty} \frac{1}{\nu}\left|\frac{P_{\nu} \Delta\left(Q_{\nu-1} \lambda_{\nu}\right)}{p_{\nu}}+Q_{\nu} \lambda_{\nu+1}\right|^{k^{\prime}}<\infty$.

Proof. Since again $t_{n k}=q_{k} / Q_{n}$, using (4.2),

$$
\begin{aligned}
\sum_{n=\nu+1}^{\infty}\left|\hat{t}_{n \nu}\right| & =\sum_{n=\nu+1}^{\infty} \frac{Q_{\nu-1} q_{n}}{Q_{n} Q_{n-1}} \\
& =Q_{\nu-1} \sum_{n=\nu+1}^{\infty} \frac{q_{n}}{Q_{n} Q_{n-1}} \\
& =Q_{\nu-1} \sum_{n=\nu+1}^{\infty}\left(\frac{1}{Q_{n-1}}-\frac{1}{Q_{n}}\right) \\
& =\frac{Q_{\nu-1}}{Q_{\nu}} \leq 1,
\end{aligned}
$$

and (2.1) is satisfied. So also is (2.2).
Substituting the value of $t_{\nu \nu}$ into condition (ii) of Theorem 2.2 yields condition (ii) of Theorem 4.2, and substituting (4.3) into condition (i) of Theorem 2.2 gives condition (i) of Theorem 4.2.

We now establish some summability factor theorems for the case $k=1$.
Corollary 4.1. $\lambda \in\left(\left|\bar{N}, p_{n}\right|,|T|\right)$ if and only if
(i) $\lambda_{\nu}=O\left(\frac{p_{\nu}}{P_{\nu} t_{\nu \nu}}\right)$
(ii) $\sum_{n=\nu+1}^{\infty} \left\lvert\, \Delta\left(\hat{t}_{n \nu} \lambda_{\nu} \left\lvert\,=O\left(\frac{p_{\nu}}{P_{\nu}}\right)\right.\right.\right.$
(iii) $\sum_{n=\nu+1}^{\infty}\left|\hat{t}_{n, \nu+1} \lambda_{\nu+1}\right|=O(1)$.

To prove the corollary, simply substitute $k=1$ in Theorem 2.1.
Corollary 4.2. $\lambda \in\left(\left|\bar{N}, p_{n}\right|, \bar{N}, q_{n} \mid\right)$ if and only if
(i) $\lambda_{n}=O(1)$,
(ii) $\Delta \lambda_{n}=O\left(\frac{p_{n}}{P_{n}}\right)$
(iii) $\lambda_{n}=O\left(\frac{p_{n} Q_{n}}{q_{n} P_{n}}\right)$.

To prove this corollary, use Theorem 4.1 with $k=1$, recognizing that $1 / k^{\prime}=0$.
Corollary 4.3. $\quad\left\{p_{n} Q_{n} / q_{n} P_{n}\right\} \in\left(\left|\bar{N}, p_{n}\right|,\left|\bar{N}, q_{n}\right|\right)$ if and only if

$$
\frac{p_{n} Q_{n}}{q_{n} P_{n}} \asymp O(1)
$$

Corollary 4.3 is proved by combining parts (i) and (iii) of Corollary 4.2.
Remark 3. Corollary 4.3 is an improvement of a result of Kishore and Hotta [4]. Summability factor theorems also lead to inclusion theorems.

Corollary 4.4. $\left|\bar{N}, p_{n}\right|$ and $\left|\bar{N}, q_{n}\right|$ are equivalent if and only if

$$
\frac{p_{n} Q_{n}}{q_{n} P_{n}} \asymp O(1)
$$

Proof. Suppose that $\sum a_{n}$ summable $\left|\bar{N}, p_{n}\right|$ implies that $\sum a_{n}$ is summable $\left|\bar{N}, q_{n}\right|$. Then, from Corollary 4.2 , with $\lambda=1$ we obtain $q_{n} P_{n} / p_{n} Q_{n}=O(1)$. Interchanging the roles of $\left\{p_{n}\right\}$ and $\left\{q_{n}\right\}$ gives $p_{n} Q_{n} / q_{n} P_{n}=O(1)$.

Remark 4. Corollary 4.4 was first proved by Sunouchi [8] and Bosanquet [2]
Remark 5. Corollaries 4.2-4.4 are identical to Corollaries 4.1-4.3, of [7] since (1.1) and (1.2) are the same for $k=1$.

## References

1. H. Bor, On two summability methods, Math. Proc. Cambrige Philos. Soc. 98 (1985), 147-149
2. L. S. Bosanquet, Math. Reviews 11 (1954), 654
3. T. M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. London Math. Soc. (Ser. 3) 7 (1957), 113-141.
4. N. Kishore and G. C. Hotta, On $\left|\bar{N}, p_{n}\right|$ summability factors, Acta Sci. Math. (Szeged) 31 (1970), 9-12.
5. I. J. Maddox, Elements of Functional Analysis, Cambridge Univ. Press, Cambridge, (1970).
6. C. Orhan and Ö. Cakar, Some inclusion theorems for absolute summability, Czech. Math. J. 46 (1996), 599-605.
7. C. Orhan and M. A. Sarigol, On absolute weighted mean summability, Rocky Mountain J. Math. 23 (1993), 1091-1098.
8. M. Ali Sarigöl, Necessary and sufficient conditions for the equivalence of the summability methods $\left|\bar{N}, p_{n}\right|_{k}$ and $|C, 1|_{k}$, Indian J. Pure Appl. Math. 22 (1991), 483-489.
9. M. Ali Sarigol and H. Bor, Characterization of absolute summability factors, J. Math. Anal. Appl. 195 (1995), 537-545.
10. G. Sunouchi, Notes on Fourier analysis (XVIII): Absolute summability of a series with constant terms, Tohoku Math. J. 1 (1949), 57-65.

B. E. Rhoades<br>Department of Mathematics<br>Indiana University<br>Bloomington, IN 47405-7106<br>U.S.A.<br>E-mail: rhoades@indiana.edu<br>Ekrem Savaş<br>Department of Mathematics<br>Yüzüncu Yil University<br>Van, Turkey<br>E-mail: ekremsavas@yahoo.com

