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MULTIDIMENSIONAL EXTENSIONS OF THE BERNOULLI
AND APPELL POLYNOMIALS

Gabriella Bretti and Paolo E. Ricci

Abstract. Multidimensional extensions of the Bernoulli and Appell polynomi-
als are defined generalizing the corresponding generating functions, and using
the Hermite-Kampé de Fériet (or Gould-Hopper) polynomials. Furthermore
the differential equations satisfied by the corresponding 2D polynomials are
derived exploiting the factorization method, introduced in [15].

1. INTRODUCTION

The Hermite-Kampé de Fériet (or Gould-Hopper) polynomials [2, 11, 18], have
been recently used in order to construct addition formulas for different classes of
generalized Gegenbauer polynomials [6].

They are defined by the generating function:

ext+ytj =
∞∑

n=0

H (j)
n (x, y)

tn

n!
(1.1)

or by the explicit form

H (j)
n (x, y) = n!

[ n
j
]∑

s=0

xn−jsys

(n − js)!s!
,(1.2)

where j ≥ 2 is an integer. The case when j = 1 is not considered, since the corre-
sponding 2D polynomials are simply expressed by the Newton binomial formula.

It is worth recalling that the polynomials H
(j)
n (x, y) are a natural solution of

the generalized heat equation:
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∂

∂y
F (x, y) =

∂j

∂xj
F (x, y),

F (x, 0) = xn.

The case when j = 2 is then particularly important (see [20]), and it was recently
used in order to define 2D extensions of the Bernoulli and Euler polynomials [8].

Further generalizations including the H
(j)
n (x, y) polynomials as a particular

case, are given by

ex1t+x2t2+···+xrtr =
∞∑

n=0

Hn(x1, x2, . . . , xr)
tn

n!
.(1.3)

Note that the generating function of eq. (1.3) can be written in the form:

ex1t+x2t2+···+xrtr =
∞∑

k=0

(x1t + x2t
2 + · · ·+ xrt

r)k

k!

=
∞∑

k=0

1
k!

∑
k1+k2+···+kr=k

k!
k1!k2! · · ·kr!

xk1
1 xk2

2 · · ·xkr
r tk1+2k2+···+rkr

=
∞∑

n=0


 ∑

πk(n|r)
n!

xk1
1 xk2

2 · · ·xkr
r

k1!k2! · · ·kr!


 tn

n!
,

(1.4)

where k := k1 + k2 + · · · + kr, n := k1 + 2k2 + · · · + rkr, and the sum
runs over all the restricted partitions πk(n|r) (containing at most r sizes) of the
integer n, k denoting the number of parts of the partition and ki the number of
parts of size i. Note that, using the ordinary notation for the partitions of n, i.e.
n = k1 + 2k2 + · · ·+ nkn, we have to assume kr+1 = kr+2 = · · · = kn = 0.

From eq. (1.4) the following explicit form of the multidimensional Hermite-
Kampé de Fériet polynomials follows

Hn(x1, x2, . . . , xr) =
∑

πk(n|r)
n!

xk1
1 xk2

2 · · ·xkr
r

k1!k2! · · ·kr!
.

Furthermore, they satisfy for all n the isobaric property (of weight n):

Hn(tx1, t
2x2, . . . , t

rxr) = tnHn(x1, x2, . . . , xr)(1.5)

and consequently, they are solutions of the first order partial differential equation:

x1
∂Hn

∂x1
+ 2x2

∂Hn

∂x2
+ · · ·+ rxr

∂Hn

∂xr
= nHn.(1.6)
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The multivariate Hermite-Kampé de Fériet polynomials appear as an interesting
tool for introducing and studying multidimensional generalizations of the Appell
polynomials too, including the Bernoulli and Euler ones, starting from the corre-
sponding generating functions. A first approach in this direction was given in [7].

In this article, we will study in some detail properties of the generalized 2D
Appell polynomials, considering first the case of the 2D Bernoulli polynomials, in
order to introduce the subject in a more friendly way. The relevant extensions to the
multidimensional Bernoulli and Appell case can be derived almost straightforwardly,
but the relevant equations are rather involved.

We will show that for every integer j≥2 it is possible to define a class of 2D
Bernoulli polynomials denoted by B

(j)
n (x, y) generalizing the classical Bernoulli

polynomials.
Furthermore, in sect. 5, the bivariate Appell polynomials R

(j)
n (x, y) are intro-

duced, by means of the generating function

A(t) ext+ytj =
∞∑

n=0

R(j)
n (x, y)

tn

n!
.

Exploiting the factorization method, introduced in [15] and recalled in [13], we
derive differential equations satisfied by these 2D polynomials. The differential
equation for the classical Appell polynomials was first obtained in [17], and recently
recovered in [14], by using the factorization method.

It is worth noting that, in general, the differential operators satisfied by the
multidimensional Appell polynomials are of infinite order. This is a quite general
situation, since the Appell type polynomials satisfying a differential operator of finite
order can be considered as an exceptional case [7].

In a forthcoming article we will consider further generalizations as the multi-
index polynomials defined by means of the generating functions

A(t, τ)extl+yτ j
=

0,+∞∑
n,m

R(l,j)
n,m(x, y)

tn

n!
τm

m!

or, more generally:

A(t1, . . . , tr)ex1t
j1
1 +···+xrt

jr
r =

0,+∞∑
n1,...,nr

R(j1,...,jr)
n1,...,nr

(x1, . . . , xr)
tn1
1

n1!
· · · t

nr
r

nr!
,

which belong to the set of multidimensional special functions recently introduced
by G. Dattoli and his group.
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2. RECALLING BERNOULLI AND APPELL POLYNOMIALS

The Bernoulli polynomials Bn(x) are defined (see [12], p. xxix) by the gener-
ating function:

G(x, t) :=
text

et − 1
=

∞∑
n=0

Bn(x)
tn

n!
, |t| < 2π,(2.1)

and consequently, the Bernoulli numbers Bn := Bn(0) satisfy

t

et − 1
=

∞∑
n=0

Bn
tn

n!
.(2.2)

It is well known that

Bn(0) = Bn(1) = Bn, n �= 1,

Bn(x) =
n∑

k=0

(
n

k

)
Bkx

n−k ,

B′
n(x) = nBn−1(x).

The Bernoulli numbers (see [4-16]) enter in many mathematical formulas, such
as

• the Taylor expansion in a neighborhood of the origin of the circular and
hyperbolic tangent and cotangent functions,

• the sums of powers of natural numbers,

• the residual term of the Euler-MacLaurin quadrature rule.

The Bernoulli polynomials, first studied by Euler [10], are employed in the
integral representation of differentiable periodic functions, since they are employed
for approximating such functions in terms of polynomials. They are also used for
representing the remainder term of the composite Euler-MacLaurin quadrature rule
(see [19]).

The Appell polynomials [1] can be defined by the generating function

GA(x, t) = A(t) ext =
∞∑

n=0

Rn(x)
n!

tn(2.3)

where

A(t) =
∞∑

k=0

Rk

k!
tk, (A(0) �= 0)(2.4)
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is analytic function at t = 0, and Rk := Rk(0).
It is easy to see that for any A(t) the derivatives of Rn(x) satisfy

R′
n(x) = nRn−1(x),(2.5)

and furthermore

• if A(t) = t
et−1 , then Rn(x) = Bn(x),

• if A(t) = 2
et+1 , then Rn(x) = En(x), i.e. the Euler polynomials,

• if A(t) = α1 · · ·αmtm[(eα1t − 1) · · · (eαmt − 1)]−1, then the Rn(x) are the
Bernoulli polynomials of order m [3],

• if A(t) = 2m[(eα1t + 1) · · ·(eαmt + 1)]−1, then the Rn(x) are the Euler
polynomials of order m [3],

• If A(t) = eξ0+ξ1t+···ξd+1td+1
, ξd+1 �= 0, then the Rn(x) are the generalized

Gould-Hopper polynomials [9] including the Hermite polynomials when d = 1
and classical 2-orthogonal polynomials when d = 2.

3. THE 2D BERNOULLI POLYNOMIALS B
(2)
n (x, y)

Starting from the Hermite–Kampé de Fériet (or Gould-Hopper) polynomials
H

(2)
n (x, y), we define the 2D Bernoulli polynomials B

(2)
n (x, y) by means of the

generating function:

G(2)(x, y; t) :=
t

et − 1
ext+yt2 =

∞∑
n=0

B(2)
n (x, y)

tn

n!
(3.1)

It is possible to find the explicit form of the polynomials B
(2)
n (x, y) in terms of

the Hermite–Kampé de Fériet polynomials H
(2)
n (x, y) and vice-versa.

Theorem 3.1. The following representation formulas hold true:

B
(2)
n (x, y) =

n∑
h=0

(
n
h

)
Bn−hH

(2)
h (x, y) =

= n!
n∑

h=0

Bn−h

(n − h)!

[ h
2
]∑

s=0

xh−2sys

(h − 2s)!s!
,

(3.2)

where Bk denote the Bernoulli numbers;
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H (2)
n (x, y) =

n∑
h=0

(
n

h

)
1

n − h + 1
B

(2)
h (x, y).(3.3)

Proof. Eq. (3.2) is obtained starting from the generating function (3.1) by
using the Cauchy product of the series expansions (2.2) and (1.1), for j = 2, and
then using the identity principle of power series.

Eq. (3.3) is obtained in the same way, starting from the equation

ext+yt2 =
et − 1

t

∞∑
n=0

B(2)
n (x, y)

tn

n!
.

A recurrence relation for the polynomials B
(2)
n is given by the following theorem

Theorem 3.4. For any integral n ≥ 1 the following linear homogeneous
recurrence relation for the generalized Bernoulli polynomials B

(2)
n (x, y) holds true:

(3.4)

B
(2)
0 (x, y) = 1,

B
(2)
n (x, y) = − 1

n

n−2∑
k=0

(
n
k

)
Bn−kB

(2)
k (x, y) +

(
x − 1

2

)
B

(2)
n−1(x, y)

+2(n − 1)yB
(2)
n−2(x, y),

where Bh denote the Bernoulli numbers.

Proof. Differentiating both sides of eq. (3.1) with respect to t, recalling the
generating functions (2.2) of the Bernoulli numbers, and using some elementary
algebra and the identity principle of power series, recursion (3.4) easily follows.

We are now in condition to prove the following theorem, which gives differential
equations satisfied by the B

(2)
n (x, y):

Theorem 3.4. The 2D Bernoulli polynomials B
(2)
n (x, y) satisfy the differential

or integro-differential equations:

(3.5)

[
Bn

n!
Dn

x + · · ·+ B4

4!
D4

x

+
(

B2

2!
− 2y

)
D2

x +
(

1
2
− x

)
Dx + n

]
B

(2)
n (x, y) = 0,

(3.6)

[(
x − 1

2

)
Dy + 2D−1

x Dy + 2yD−1
x D2

y

−
n−1∑
k=1

Bn−k+1

(n − k + 1)!
D−(n−k)

x Dn−k+1
y − (n + 1)Dx

]
B

(2)
n (x, y) = 0,
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(3.7)

[(
x − 1

2

)
D(n−1)

x Dy + (n − 1)Dn−2
x Dy + 2D(n−2)

x

(
Dy + yD2

y

)

−
n−1∑
k=1

Bn−k+1

(n − k + 1)!
Dk−1

x Dn−k+1
y − (n + 1)Dn

x

]
B

(2)
n (x, y)= 0, (n ≥ 2).

Proof. We start proving eq. (3.5), which gives a differential equation satisfied
by the B

(2)
n (x, y) with respect to the x variable, assuming y as a parameter.

It is easily seen that a lowering operator L−
n for the polynomials B

(2)
n (x, y) is

given by

L−
n =

1
n

∂

∂x
.

In fact, for any fixed y, the B
(2)
n (x, y) belong to the Appell class, assuming in

eq. (2.3) A(t) = t
et−1eyt2 , and therefore eq. (2.5) holds true.

Furthermore, by using the recurrence relation of Theorem 3.2, we find the cor-
responding increasing operator L+

n (see [13], which is given by

L+
n =

(
x − 1

2

)
+ 2yDx −

n−1∑
k=0

Bn−k+1

(n − k + 1)!
Dn−k

x .

Then, by exploiting the factorization method (see [15], [13]), equation (3.5)
immediately follows using

L−
n+1L

+
n B(2)

n (x, y) = B(2)
n (x, y).

In order to find the integro-differential equation (3.6), including derivatives with
respect to y, note that differentiating the generating function (1.1) (assuming j = 2),
with respect to y, yields:

∂B
(2)
n (x, y)
∂y

= n(n − 1)B(2)
n−2(x, y) = n

∂B
(2)
n−1(x, y)
∂x

,(3.8)

so that

D−1
x DyB

(2)
n (x, y) = nB

(2)
n−1(x, y)(3.9)

and therefore, we can assume:

L−
n :=

1
n

D−1
x Dy.(3.10)

Using again the recurrence relation of Theorem 3.2, we obtain the corresponding
increasing operator L+

n :

L+
n :=

(
x − 1

2

)
+ 2yD−1

x Dy −
n−1∑
k=0

Bn−k+1

(n − k + 1)!
D−(n−k)

x Dn−k
y(3.11)
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and consequently the integro-differential equation (3.6) follows.
Therefore, the differential equation (3.7) immediately follows differentiating both

sides of eq. (3.6) (n − 1)-times with respect to x.

4. THE 2D BERNOULLI POLYNOMIALS B
(j)
n (x, y)

In a similar way, starting from the Hermite–Kampé de Fériet (or Gould-Hopper)
polynomials H

(j)
n (x, y), we define the 2D Bernoulli polynomials B

(j)
n (x, y) by

means of the generating function:

G(j)(x, y; t) :=
t

et − 1
ext+ytj =

∞∑
n=0

B(j)
n (x, y)

tn

n!
(4.1)

It is worth noting that the polynomial H
(j)
n (x, y), being isobaric of weight n,

cannot contain the variable y, for every n = 0, 1, ..., j− 1.
Using the same procedure as before, the following results for the B

(j)
n (x, y)

polynomials can be easily derived.

• Explicit forms of the polynomials B
(j)
n in terms of the Hermite–Kampé de

Fériet polynomials H
(j)
n and vice-versa.

Theorem 4.1. The following representation formulas hold true:

B
(j)
n (x, y) =

n∑
h=0

(
n
h

)
Bn−hH

(j)
h (x, y)

= n!
n∑

h=0

Bn−h

(n − h)!

[ h
j
]∑

r=0

xh−jryr

(h − jr)!r!
,

where Bk denote the Bernoulli numbers:

H
(j)
n (x, y) =

n∑
h=0

(
n

h

)
1

n − h + 1
B

(j)
h (x, y).

• Recurrence relation.

Theorem 4.2. For any integral n ≥ 1 the following linear homogeneous
recurrence relation for the generalized Bernoulli polynomialsB

(j)
n (x, y) holds true:

B
(j)
0 (x, y) = 1,

B
(j)
n (x, y) = − 1

n

n−2∑
k=0

(
n

k

)
Bn−kB

(j)
k (x, y)

+
(

x − 1
2

)
B

(j)
n−1(x, y) + jy

(n− 1)!
(n− j)!

B
(j)
n−j(x, y).
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• Shift operators.

L−
n :=

1
n

Dx

L+
n :=

(
x − 1

2

)
−

n−1∑
k=0

Bn−k+1

(n − k + 1)!
Dn−k

x + jyDj−1
x

L−
n :=

1
n

D−(j−1)
x Dy

L+
n :=

(
x − 1

2

)
+ jyD−(j−1)2

x Dj−1
y −

n−1∑
k=0

Bn−k+1

(n − k + 1)!
D−(j−1)(n−k)

x Dn−k
y

• Differential or integro-differential equations.

Theorem 4.3. The 2D Bernoulli polynomials B
(j)
n (x, y) satisfy the differential

or integro-differential equations:[
Bn

n!
Dn

x + · · ·+ Bj+1

(j + 1)!
Dj+1

x +
(

Bj

j!
− jy

)
Dj

x

+
Bj−1

(j − 1)!
Dj−1

x + · · ·+
(

1
2
− x

)
Dx + n

]
B

(j)
n (x, y) = 0,

[(
x − 1

2

)
Dy + jD−(j−1)2

x Dj−1
y

+jyD−(j−1)2

x Dj
y −

n−1∑
k=1

Bn−k+1

(n − k + 1)!
D−(j−1)(n−k)

x Dn−k+1
y

−(n + 1)D(j−1)
x

]
B

(j)
n (x, y) = 0,

[(
x − 1

2

)
D

(j−1)(n−1)
x Dy + (j − 1)(n − 1)D(j−1)(n−1)−1

x Dy

+jD(j−1)(n−j)
x

(
Dj−1

y + yDj
y

) − n−1∑
k=1

Bn−k+1

(n − k + 1)!
D(j−1)(k−1)

x Dn−k+1
y

−(n + 1)D(j−1)n
x

]
B

(j)
n (x, y) = 0, (n ≥ j).

Note that the last equation is derived by differentiating (j−1)(n−1)-times with
respect to x both sides of the preceding one, and does not contain anti-derivatives
for n ≥ j.
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5. 2D APPELL POLYNOMIALS

For any j ≥ 2, the 2D Appell polynomials R
(j)
n (x, y) are defined by means of

the generating function:

G
(j)
A (x, y; t) := A(t) ext+ytj =

∞∑
n=0

R(j)
n (x, y)

tn

n!
(5.1)

Even in this more general case, the polynomial R
(j)
n (x, y), is isobaric of weight

n, so that it does not contain the variable y, for every n = 0, 1, ..., j − 1.

• Explicit forms of the polynomials R
(j)
n in terms of the Hermite–Kampé de

Fériet polynomials H
(j)
n and vice-versa.

Theorem 5.1. The following representation formulas hold true:

R
(j)
n (x, y) =

n∑
h=0

(
n
h

)
Rn−hH

(j)
h (x, y)

= n!
n∑

h=0

Rn−h

(n − h)!

[ h
j
]∑

r=0

xh−jryr

(h − jr)!r!
,

where the Rk are the “Appell numbers” appearing in eq. (2.4),

H (j)
n (x, y) =

n∑
k=0

(
n

k

)
Qn−kR

(j)
k (x, y),

where the Qk are the coefficients of the Taylor expansion in a neighborhood of the
origin of the reciprocal function 1/A(t).

• Recurrence relation.
It is suitable to introduce the coefficients of the Taylor expansion:

A′(t)
A(t)

=
∞∑

n=0

αn
tn

n!
.(5.2)

Theorem 5.2. For any integral n ≥ 1 the following linear homogeneous
recurrence relation for the generalized Appell polynomials R

(j)
n (x, y) holds true:

R
(j)
0 (x, y) = 1,

R
(j)
n (x, y) = (x + α0)R

(j)
n−1(x, y) +

(
n − 1
j − 1

)
jy R

(j)
n−j(x, y)

+
n−2∑
k=0

(
n − 1

k

)
αn−k−1R

(j)
k (x, y).
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• Shift operators.

L−
n : =

1
n

Dx

L+
n : = (x + α0) +

j

(j − 1)!
y Dj−1

x +
n−1∑
k=0

αn−k

(n − k)!
Dn−k

x

L−
n : =

1
n

D−(j−1)
x Dy

L+
n : = (x + α0) +

j

(j − 1)!
y D−(j−1)2

x Dj−1
y

+
n−1∑
k=0

αn−k

(n − k)!
D−(j−1)(n−k)

x Dn−k
y .

• Differential or integro-differential equations.

Theorem 5.3. The 2D Appell polynomials R
(j)
n (x, y) satisfy the differential

or integro-differential equations:[
αn−1

(n − 1)!
Dn

x + · · ·+ αj

j!
Dj+1

x +
(

αj−1 + jy

(j − 1)!

)
Dj

x

+
αj−2

(j − 2)!
Dj−1

x + · · ·+ (x + α0)Dx − n

]
R(j)

n (x, y) = 0,

[
(x + α0)Dy +

j

(j − 1)!
D−(j−1)2

x

(
yDj

y + Dj−1
y

)

+
n−1∑
k=1

αn−k

(n − k)!
D−(j−1)(n−k)

x Dn−k+1
y − (n + 1)Dj−1

x

]
R(j)

n (x, y) = 0,

[
(x + α0) D(j−1)(n−1)

x Dy + (j − 1)(n− 1)D(j−1)(n−1)−1
x Dy

+
j

(j − 1)!
D(j−1)(n−j)

x

(
yDj

y + Dj−1
y

)
+

n−1∑
k=1

αn−k

(n − k)!
D(j−1)(k−1)

x Dn−k+1
y

−(n + 1)Dn(j−1)
x

]
R

(j)
n (x, y) = 0, (n ≥ j).

6. EXAMPLE

We give in this section a particular example of 2D Appell polynomials, corre-
sponding to a suitable choice of the function A(t), already considered in [5].
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Fix the integral N , and define:

A(t) :=
1
e

exp
(

exp(− t

N
)
)

,

so that the normalizing condition A(0) = R0 = 1 is satisfied.
Then, recalling eq. (5.2), the numerical values

αk =
(−1)k+1

Nk+1

are easily found. Furthermore the Appell numbers can be computed by means of
the recurrence relation:

Rh+1 = − 1
N

h∑
k=0

(
h
k

)
(−1)h−k

Nh−k
Rk

The first values of the Rk are consequently:

R0 = A(0) = 1, R1 = − 1
N

, R2 =
2

N 2
, R3 = − 5

N 3
, . . .

and so on.
Assuming j = 2, the first 2D relevant Appell polynomials are

R
(2)
0 (x, y) = 1,

R
(2)
1 (x, y) = x − 1

N
,

R
(2)
2 (x, y) = x2 − 2

N
x + 2y +

2
N 2

,

R
(2)
3 (x, y) = x3 − 3

N
x2 + 6xy +

6
N 2

x − 6
N

y − 5
N 3

,

and so on.
Following methods of the above sections we have found the recurrence relation:

R
(2)
0 (x, y) = 1,

R
(2)
n (x, y) =

(
x − 1

n

)
R

(2)
n−1(x, y) + 2(n − 1)yR

(2)
n−2(x, y)

+
n−1∑
k=0

(−1)n−k

Nn−k
R

(2)
k (x, y),
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and the differential equations:[
(−1)n

(n − 1)! Nn
Dn

x + · · · − 1
2! N 3

D3
x +

(
1

N 2
+ 2y

)
D2

x

+
(

x − 1
N

)
Dx − n

]
R

(2)
n (x, y) = 0,

and, for n ≥ 2:[(
x − 1

N

)
Dn−1

x Dy + (n − 1)Dn−2
x Dy + 2Dn−2

x

(
yD2

y + Dy

)

+
(−1)n

(n − 1)! Nn
Dn

y + · · ·+ 1
N 2

Dn−2
x D2

y − (n + 1)Dn
x

]
R

(2)
n (x, y) = 0.
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