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ORLICZ SPACES THAT ARE UNIFORMLY ROTUND IN THE
DIRECTION OF WEAKLY COMPACT SETS

Zhongrui Shi*

Abstract. Sufficient and necessary condition of Orlicz spaces equipped with
Orlicz norm that are uniformly rotund in the direction of weakly compact sets
using only conditions on generated function of the space are given.

1. INTRODUCTION

Let X be a Banach space and let S(X) and B(X) be the unit sphere and the
unit ball of X. X is said to be uniformly rotund in the direction of weakly compact
sets (URWC) if |[xn|| = 1, |lyn]| = 1, [[Xn + Yn|| = 2, and X, — yn — z (in weak
topology) imply that z = 0 [7]. X is said to be uniformly rotund in every direction
(URED) if Xn|| = L, [lynll = L [Xn + Ynl — 2, and Xn — yn — z (in norm
topology) imply that z = 0. X is said to be uniformly weak* rotund (W*UR) if
%]l = 1, [lyn|| = 1, and ||Xn + yn|| — 2 imply that x, —y, — 0. X is said to
be rotund (R) if ||x|| =1, |ly|| =1, and ||x +y|| = 2 imply that x =y. Clearly,

W*UR = URWC == URED == R:

Banach spaces with these types of rotundity were studied in [7], [8] and have
been applied to fixed point theory. For Orlicz spaces with Luxemburg norm, W*UR
is equivalent to R. But for Orlicz spaces with Orlicz norm, W*UR and URED have
much different criteria [11], [12]. All known characterizations of URWC for Orlicz
spaces with Orlicz norm have been described by reference both to elements in the
Orlicz space and to the generated function M [5], [10], [14]. Up to now, no
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characterization of URWC by using only conditions on the generated function M
has been given. As stated in [9], “some new methods and techniques are needed to
solve this kind of difficult problems.” In this paper, we give a characterization of
URWC by using only conditions on the generated function M. As a consequence,
we show that no criterion of URWC for Orlicz spaces with Orlicz norm can be
obtained by using only the classical conditions of M, such as M € UC, M € ¢,
and M € V5. The proof of our result is relatively complicated.

In the sequel, let R be the set of all real numbers. A function M: & —
R+ is called an N-function if M is convex and even, limy_o MS‘) =0, and
limy o @ = oo. The complemented function N of M is defined in the sense
of Young by

N (v) = sup{uv — M(u)}:
ueR

It is known that if M is an N-function, then its complemented function N is also
an N-function. Let p and q be the derivatives on the right-hand of M and N,
respectively. M is said to be strictly convex (SC) if M (U$¥) < MM for y
v. M is said to be uniformly convex if for every " > 0, there exists + > 0 such that
for given u and v, if [u —v| > "max(|u]; |v[), then M (4£Y) < (1 — ) MM,
M is said to satisfy the ¢, condition for large u (M € &) if for some up > 0
there exists K > 0 such that for all u > up, M(2u) < KM(u). M is said to
satisfy the V, condition (M € V,) if N € ¢,. Let G be a bounded set in "
and let (*; §; G) be a finite atomless measure space. For a real-valued measurable
function x(t) on G, let %, (X) = 5 M(x(t))d*, called the modular of x. The
Orlicz function space Ly, generated by M is the Banach space

Lv = {X(t) : % (LX) < oo for some _ };

equipped with the Orlicz norm
Z 13 -
IIX|[m = sup x@)y®)dr = inf — 1+ %, (kx) :
by ()<L G k>0 K

See [3], [6] for references to Orlicz function spaces.
We firstly state several lemmas.

Lemma 1. ([3, 13]) For x € Ly and for k € K(x) = [K?; K??], where
K? = inf{k : %\ (p(kx)) > 1} and K?? = sup{k : % (p(kx)) < 1}, the Orlicz
norm ||x||y, is given by

1? i
IXlha = 0 1+ (k)
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3 -
Lemma 2. ([11]) Suppose 2 > [[Xn[ly = & 1+ %y (knXn) (N =1;2;::1)
and kn, — oco. Then xn(t) is convergent to zero in measure.
3 -

Lemma 3, ([11]) Suppose M € €2, and |[Xnlly = % 1+%, (knXn) — 1,

Il = i~ 1+%y(hayn) — 1 (0 — o), with {kn} and {hn} bounded. If

[Xn + Ynlly — 2 then KnXn(t) — hnyn(t) 2 0 in measure.
3 g 3
Lemma 4. ([11]) Let [Xn|lyy = @ 1+%y(nxn) =1, [ynly = 1+

Yonn (hn%n) — 1(n — o0), with {kn } and {hn} bounded. For vy € Ln;, % (Vn) <
1 and 5 (Xn(t) +yn(t)) va(t)d* — 2, then there hold uniformly for all sets
Ghe ,

Z 3 < Z 3 -
lim KnXn(t) —hnyn(t) va(t)d*= lim M (KnXn(t)) —M (hnyn(t)) d*:
n—oo Gn n—oo Gn

Next, we prove some lemmas with elementary arguments.

M (Lu+(1-)t)

MWFA—OM© S

Lemma 5. If M € SC,then0 < _ <1, A(t) =

increasing on [0; u].

5

Proof. Because M € SC, p(u) is increasing on [0; o), we get
3 -3 - 3 -

N p .u+(1-)t _M@W+@A-_)M(@®) —M _u+(1—_)t p(t)
A = - M@+ A )M OP

>0 ]

Lemma 6. For " € (0;1),, €[®; ]1C (0;1), and u in R, let

M “_“ + (1{ ")u'IT
*T M@ FME =)
2
and
_omusa- ,)(lf")u¢ _
YT TM@F @ - OM@ -y
Then

limy =1 uniformly for _ €[®; ] if and only if limx=1:
Xx—1 y—1
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Proof. Let f(,)) =M
By [6], f(.) is convex and for ;"

Thus

nh 3

=M Ju+(1-
3

>

<M Lu+(d-

h 3
179//
< =7 M

>

Hence

//h
> /
- . M@u)+(1 —

h

< ."M@u)+@1-

1 nh

= 73/ JM@W+A-.O)M @ -")u

1—

s

and so

Zhon

(-

"

>

) =")u
9//)(1 - “)U

Ju+ (=)@ -")u

3

al)M (1—")u

3

,//)M (1*")U

3

3 -

il M (- ih

=+

grui Shi

. 3

= - MU= (@-OM (@-T
e® ] . <.

> f( /)<f( //)<17> f( /)

3 i

—UM@U - (1-.M (1"

— D”M(U) _ (1 _ ;H)M (1 . “)u

3

3 -

ih MU - )R-
3

—- MW+ -_."YM (1-

Ju

“u

JM@U+A-,O)M (1-")u

“ih M ,”U"'(l*,”)(l—“)u
3

U M@W+(1—-."YM (1—")u

Jih M u+a- e -
3

Ju

M@U)+(L- )M (1-")u

3 -

M ,lu + (1 _ ;l)(% . ..)u

>

h
< 9//+(1*

1 nh

—. b/+(1—b/)

<
ST

s

Note that ® < " + (1 —

_,//)

M (u) /
3 >

M (Q-")u i

MU+ — .M (- ")u

h M ,//U+(1*,//)(1*")u
3

M(u)

M (1-")u

M u+(1-, )0 ="

) UM +(Q-.OM (1 - "’)U

M(u)

M(@-"
- M (u)

)<1’®<>”+(1 )

UMM (1"

M(@-"
M (u)

mM@-—u) _ g
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& < <5 s < < L2 Hence,
3 < 3 -
M u+(1-_"HY1—-")u M u+(1-_.")@A—")u
3 -1 = = —1L
SMU+A-.OM (1 -")u SMW+A-,"M (1-")u
Replacing ,” by % and _’ by _, respectively, leads to the conclusion. ]

M(W)+M (1 §")u) B . "
Lemma?7. Letu=>0. If M3 < 1+7, then there exists, (1—3)u <

u+(12i "Ju
t < u such that
n 3 Il’
plt—5u) > 1-2"=— p(o):
M (W+M((1 § ")u)
Proof. From ﬁth' <1+ 7, we have
ur@itu
3 " - 3 - 3 " - 3 " -
22M 1-=)u > MuU+M Q11— — M (Q2—=)u —M (L—=>)u
2 2 2
VAN yA (1-3)u
= i p(s)ds — p(s) ds
Z(1u—§)u (1—I'I‘)u
= . [p(s) —p(s — E”)] ds
Il(l_z)LJ n
> - _ -
> Zulp(t) — p(t — u)]
3 - 3 g

where (1 —s)u<t<u. From (1—3)up (1—5u >M (1-3)u , we have

S 5 > p(t) — p(t — )

Hence
3 ~

" 2 . n
p(t— EU) > 1-2"—— p(®): u
In [11], necessary and sufficient conditions of URED are given in terms of
derivatives of M. In Lemma 8, necessary and sufficient conditions of URED in
terms of M directly are given.

Lemma 8. ([11]) Ly is URED if and only if



348 Zhongrui Shi

(i) M € SC;

(ii) Let [®;"] C (0;1),and ";"™ € (0;1) , there exists uy, >0, D = D(";") >0
and © = °(";") > 4 such that for all , € ;7], and for all |u| > ug, if
MOWHE=IOM @="u <A+OM u+ (1) (1= ")u , then

M("u).

ny

M(u) < D("™)

Proof. By [11], it is enough to show that (ii) is necessary. Otherwise, for
some " > 0 there exist sequences u,, oo and _,, € [®; ] such that M(u,) >
20nMCla) ang

3 - 1 3 -
;nM(un) + (1 - an)M (1 - ")un < (1 + H)M -nUn + (1 - an)(l - ")un :
3

By Lemma 6, there exists (1 — z)u, < t, < u, so that p(t, — zu,) > 1-—
222" p(t,). Since the function () in the proof of Lemma 5 is convex, we
can get that MM—((::% — 0. If necessary passing to a subsequence, we have that
tp(ty) > M(t,) > 2"nMCta) > 2nnp(day a1t leads a contradiction from the
proof of Theorem in [11]. [

Remark 1. ([11]) By the proof of Lemma 6, we have L,, is URED if and
only if

(i) M € SC;

(if) for 0 < ™;"™ < 1 there exist positive number D("";") < o and uy = 0
and ° = °(;’) > 0 so that for all |u| > uy, with M(u)+M (1 —-")u <
(1+°)2M (1 - 3)u , we have

ny

M(u) < D(";™)

For conveniece, we let D(";"") be the infimum over the above inequality,
. . w0
ie,DC;™) =inf{K >0:M(u) < KM—QUL)}. Then we have

Lemma9. IfL,, is URWC then for 0 <" < 1 there exists D(*'), 0 < D(") <
oo, such that for all " € (0; 1),

D(;™) < D(")

where D(";"") is defined as in (ii) of Remark 1.
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Proof. Define D(*") =sup D(""; ") where ' taken over all (0;1). Because of
MO < MU 35 0 < v < u, it is follows that D(";"™) is decreasing with respect
W|th ", Suppose D(") = oo. Then there exist ", \, 0 with D(*";"1) < D(";"2) <

-<D("",) / oo. Define

8 " 3 -9
> M (u) + M((1 — ")u) Wy =
2 1 M "hu
R = _U2n—s <1+ MW =D )
- M 2 n ]

where D(";"g) = 0. Then ®; N R, # 0. In fact, suppose that ®; N R, =0, ie,

MW+M(@ i)W

RS U RS = R, we have that for all u > 2, —=2—— <1+ 3, and
M ==
s -
M "u
M@u) <D("g)—=0;
or 1
s -
M ",u
M(u) <D(")—=
MW+M (1w
Thus for all u > 2, —=—2——"— <1+ 3 and
M =5 s -
M ",u
M(u) <D( ") —=
2

Hence D(™;",) < D(*;",), a contradiction with the fact that D("";";) < D(";"
In general, assume that

RNV, N---NR, #0;

then R, N R, M-+ N Ry # 0. Indeed, if Ry AR, M- N Ry = 0 e,

M@W+M((1 iYW

RIURS U - - URG, ) = R, we get that for all u > n, W <1+
s -
M Il2u
M(u) < D(5 ") ——
or 2
s -
M Il3u
M(u) < D(% ") ——

or 3
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or

M " U
M(u) < D(";" (- .

T n 1]
(n+1)

Then we have one of the following contradictions:
D(" ") <D(" ") < D(' M),

D(;"3) < D(":") < D(");

D" "ne) < D5 "0) < DS (ra)):

Hence it holds that

RoNR,N---NR, # 0

M@up)+M(@iMup)

Take u, € Ry N\, N - N Ry with uy >N, and —S=22m— <1+ 1 and
3 -~ 2
M IlkUn
@) M(uy) =D ) ————  0<k<n
Kk

By Lemma 7, there exists (1 — 5)un < t, < up With
s .

@ Ptn — 5Un) > 1 - 2227 p(ta):

Choose two disjoint measurable subsets G and F and ¢ > 0 satisfying 1G = 1F
and
3 - 3 -

N p(c) *G=1=N p(c) 1F:

Let E C F such that
3 .

N p(c) *E=

N| -

Let G, C G such that
3 -

1
1- E)tnp 1- E)tn 1Gh = E;
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and E CE, CF

3 3 - - 3 -

N p(L-pth 2Gn+N pc) *Eq=1

Define
kn = cp(c)rg, + tnp(t?l)lG,l,; -
hn = cp(©)*e, + (1 - E)tnp 1- E)tn 1Gp;
1
Xn = k_(C’En +thlc,);
n
1 n
Yn = H(C’En + S - E)tn|G’n:);
Vn = POfg, +Pp L=t ")
Then
n(vn) = 1,
1 1
< < 1F + _< 1F + ——
hn =~ kn —;p(c) F ’2 " (1 - %;) 2 — Cp(C) F n?
kn - hn 2 Ztnp (1 - E)tn 1Gn
2 —

7
On the other hand, by the Theorem 1.29 of [6], we have

IYnllm = (Vniyn) =1,

and
13 ]
[Xnllm < PN 1+ Yo (KnXn)
n 3 -
1
n 3 -
1
< P cp(C)2En + thp(th)1Gh
n
< 1
but 3 -

(Vniknxn) = cp(c)rEn + thp (l—i)tn 1G,

1
7— thp(th)1Gn

> cp(C)*En + W
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1

> mTkn:

hence (Vn; Xn +Yn) = 2 (N — o0), ||Xn + Ynllyy — 2 and

MOy MU= D) DCY),

M (Un)1Gn < D(":") o

1Gn <

Without loss of generality, assume ** > **;, then for arbitrary ; > 0, let D( <

{ Sewry and take ko such that for all k > ko, sup; i< Mk')e' < ¢, S0 we have
M " N 1G
SUp ( k.EJI) 1
1<i k
< max sup —M("k..Ui)lGi§ sup —M("kui)lGi§ SUp—M("k..Ui)1Gi
1<ild k I<i<k k k<i k
Y T "L 103,
< max sup w; sup w; su w
1<i<l K I<i<k i k<i D("; ")
< max sup LGHTG g MUTC - MU)TC,
1<i<l K 1<i<k D" 1) k<i D( "y

<6

By [1], {un|g, }nz; is relatively weakly compact, but

11
(AgiXn—Yn)= +——+— C*E 40  (n— oo);
n n
a contradiction to that L, is URWC. |

Theorem 1. An Orlicz space L, equipped with Orlicz norm is URWC if and
only if
(i) M € SC;

(if) for [®;, ] € (0;1) and for 0 < "™ < 1 there exist co > D = D("), and
u, > 0, such that for all "/, 0 <™ < 1, we can find © = °("3 > 0 so that

for all _, =€ [® ] and all u > ygy, with M@Uu)+(1—-_ )M (1-"Ju <
@+°)M u+@-_)Q—")u ,we have

M("u)

ny

M(u) < D——2
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Proof. Necessity. Since URW C implies Rotundity, we get (i) M € SC.
By Lemma 6, we have

M (U)+M ((1—")u) (1 o
U M@ IM@ )

M L@ u M u+(1-_)1-")u

and by Lemma 9, (ii) follows.
Sufficiency. If we suppose that k,, is not URWE, there exist sequences £Xn, }

and {yn} satisfying |xnll; = & L+ %y(knxn) — 1 |lyally = p 1+
Ypg(hnyn) — 1 (N = 00), [[Xn + Ynllp — 2 DUt Xn — Yn = Zn Wz#o0.

a1 a1 . .
If Xn — 0 (yn — 0) in measure, set X|, = Xn + 41, y, = X, + 30, |t is easy to

see that [yl — 3, (¥l — 2. X5+ Yl azandx v —z' =z N

75 0. Hence z’ =2 Wz 5 7 0 (n — o0). Clearly xj, 7L> 0. So we assume that
xn 7L> 0 and yn, 7L> 0 |f necessary replacing {xn} and {yn} by {x;,} and {y,}. By
Lemma 2, we get that {kn} and {hn} are bounded, assume k, — k, hn — h by
passing to a subsequence if necessary. .

Lemma 3 ylelds that knxn — hnyn it 0, i.e, (kn—hn)Xn —hnzn — 0. Ifk =h
it follows that z, 5 0, so z,, vy 0, a contradiction with z # 0. Hence k # h,
assume k > h and k, > hy, passing to a subsequence if necessary. We can do the
same in the case of k < h. Define ., = Hi”rﬁ < %. Since {kn} and {h,} are
bounded we deduce that _, € [®; ] for some [®; ] C (0;1).

Since kKnXn(t) — hnyn(t) S 0andz # 0, by N. Riesz Theorem, there exists a
subset G, D G such that on G, there uniformly hold

(3) KnXn(t) — hnyn(t) — 0;

(4) Z|g, # 0

For arbitrary " > 0.
Since {z,} is weakly compact, then {z,} is Ly weakly compact. From [1], we
take 0 <" < 1 such that

Yona ("2kz "2
(5) M < o)

By (ii), there is © > O such that for all _; , € [®; ], andall u;v, max(|u(; [v[) > uj,
u—v[="max(|u;[v]), with ,M(u)+(1-_IM() < L+)IM(u+(1-.)v),
by Lemma 5, we have

M),

nyn

(6) M(u) <D
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By (3) and (4)

hz =
1
) i (e o) ™ O

For each n, split G into the following parts:
An = {te G\ Gy:max(knxn(®)]; hnyn(t)) <"}
Bn = {teG\Gpy\An:[knxn(t) — hny(t)| <" max(|knXn(t)[; [Nnyn(t)D};

3

knh
Hh = {teG\Gy\An\Bn:(1+°)M K r_"_F] Xn (1) +yn(1))
n n
h 3 - K 3 -
< —" M knxn(t) +—2—M hpxn(t) };

kn + hp kn + hn
Ih = {teG\Gp\An\Bn\Hn:Xa()] < |yn(®)]};
Qn = {teG\Gp\An\Bn\Hn\In:[za(®)] <"[xn(O)]};
Th = G\Gp\An\Bn\Hn\In\Qn
= {te G\ Gy : max(|knxn(®)[; [hnyn(t)[) = ™;

[KnXn () — hny ()] > " max(|knXn(t)[; [Nnyn(t)]);
1+ M 2 (o) + Yn(D)

3 3 -

hin M KnXn(t) + Kn M hpXa(t) ;

~ kn + hpy kn + hp
Za(O)] = "Xn(H)] and  [Xn(t)] > |yn(D)[}:
Pick v, € B(Ln) such that [xn(t) + yn(t)]va(t) > 0 and

(Vn; Xn +Yn) — 2:
Then
(Vn;Xn) = 1, (Vn;yn) = 1,

thus
Z

k—h=limkn —hn) =1lim  [KnXn(t) — hnyn©)]Va(t) d1:
n n G

In the following, we estimate the integrals over the above subsets.
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(@) On G,. Since knXn(t) —hnyn(t) — 0 uniformly on G, for n large enough,
Z "3 - -

" knXn(t) — hpyn(t) va(t)y dt < "HAGHM:
Go

(b) On Ap,. Clearly, by Holder Inequality,
Z "3 - -

" KnXn(t) — hnyn(t) va(t) dt <2"|Ag|m:

An
(c) On B,,.
Z = - n
"~ KnXn(t) — hpyn(t) va(t) d*
Bn Z = -

[KnXn ()] + [nyn(©)| |va(t)[d>
Bn
< "(kn +hp):

IN

(d) On Hj. Notice
[e] h h 3 - k 3 ’i
T oM knXalb, e Mol <2 X0+l > 0;

we get that for n large enough, by Lemma 4
Z "3 - -

" KnXn(t) — hpyn(t) va(t) dt <™
Hn

() On 1. For [xn(t)| < |yn(t)].

When Xn (t)yn(t) > 0, by [Xn (t) +yn(t)]va(t) > 0, we have x, (t)vn(t) > 0 and
Yn(OVn(t) > 0, S0 Xn(1)zn(t) = Xn(H)[Xn(t) — yn(t)] < 0, then z,(t)va(t) < 0.
Hence

[knXn(t) — hnyn(Ova(t) = (kn — hn)Xn(OVn(t) + hn[Xn (t) — yn()]va(t)
= (kn — hn)Xn(O)Vn(t) + hnzn(t)vn(t)
< (kn = hn)Xn(HVvn(b):

When xn(t)yn(t) < 0, by [xn(t)| < |yn(t)|, we have yn(t)va(t) > 0 and
Xn()Vn(t) <0, by z,(t) = Xa(t) — yn(t), then z,(t)va(t) < 0. Hence
[KnXn() = hpyn(OIva(t) = (kn — hn)Xn(OVa(t) + hn[Xn (1) — yn()]va(t)

= (Kn — hp)Xn(t)Va(t) + hnza(tva(t)
< (kn — hp)Xn(®Vva(D):
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We have
z z
[knXn(t) — hpyn(O]va(t)dt < (kn — hp)Xa(t)vn(t) dL:
In |n
Notice
1 3 - 3 - 3 - -
E%M KnXnlg, ='%wm Xnlg, — %m k—hZ_Go
and
L 3 - 3 “i
1< [Xnllm = P knXnlg, *%m KnXnlg\g,
n 1 3 -~
= [[Xnlg\gollm + k_l/ZM knXn |G,
n 3 : -~
2 Xn(Ovn (D) d* + Yoy, z
Go h GO
we have that for n large enough
Z 3 - -
Xn(E)va(t)|dT < 1 — Yoy z
G\Go —h G
Combining I, C G\ G,
Z 3 - -
Hvp()|dr <1 -% C
" [Xn(Dvn(t)[d* < ™M pt Go

() On Qn. For |zn(t)] < "[Xn(t)]. From |yn(t)] < |Xa(t)| and [xn(t) +
Yn(D)]vn(t) > 0, we get Xn(t)va(t) > 0 and z,(t)va(t) > 0,

[knXn(t) — hnyn(OIva(t) = (kn —hn)Xn(HVn(t) + hnzn(t)vn(t)

< (kn — hp)Xp(O)Va(t) + "haxn(Dva(b):
Thus
Z
[knXn(t) — hnyn(D]vn(t) d*
Qn 7
< (kn — hn+"hp) Xn(HVn(t) d*
Qn -

h 3 e
< (kn—hn+ o) Loty




Orlicz Spaces That are Uniformly Rotund in the Direction of Weakly Compact Sets 357

(@) On Tp. Fort e Ty,
max{[knXn(®)|; [Nnyn (|} >";

[knXn(t) — hnyn(t)| > " max{kn[Xn(B)|; [Nnyn (D)[};

3 3

,nMSann(t) + (1 _,n)M hnyn(t)
M | nKnXn(t) + (1 — ,n)hnyn(t)

<1+

By "

Xn(©)| < |zn ()|, from (6) and Lemma 5, we get that for t € T,
3 - 3 -

3 - M ""knXn(t) M "2kzn(t)
M Kknxn(t) <D D :

II/II —_— II/II
Hence, by (5)

¥ ("2K2nl,) _ D2 _
II/II —_— DII -

Since [xn (t)| > |yn(t)| and kn > hn, we have [knXn(t)| > [hnyn(t)], S0 %y, (Mnynlt,) <

o (KnXnl7,) <D

Since " = 0 is arbitrary, from (a) to (g), this leads to a contradiction:
h 35 - i
_ < _ _ 1 - — h:
k—h<(k—h) 1-1%y kithO <k-h

By Lemma 6 and Theorem 1, we have the following:

Remark 2. L,, is URWC if and only if
(i) M € SC;

(if) for 0 < " < 1 there exist D = D("), and u, > 0 such that for all ",
0 <" < 3% wecanfind © = °("3 > 0 so-that for all |u| > u, with

MU +M 1-"Ju <@+°)2M (1—3)u , we have

M("u).

M(u) <D—;
Example The Young function defined by
Yo

2 <9
M (U) = Au as |u| <2

Bexplu| as|u|>2;
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where A and B are constants, satisfies the condition (ii) in Theorem 1 and Remark
2. The condition (ii) for URWC in Theorem 1 and Remark 2 cannot be expressed
by using classical conditions of M, such as convexity, M € ¢,, and M € V.
The condition (ii) for URED in Lemma 8 can be described as saying that, in this
context, a non-uniform ‘point’ (‘sequence’) is a ¢, ‘point’ (‘sequence’). By an
example in [11], the condition (ii) for URED in Lemma 8 is not equivalent to the
¢, condition. The condition (ii) for URWC in Theorem 1 is strictly stronger than
the condition (ii) for URED in Lemma 8.
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