ON THE PRIME RADICAL OF A MODULE OVER A NONCOMMUTATIVE RING

Fethi Çallialp and Unsal Tekir

Abstract

Let R be a ring and M a left $R-$ module. The radical of M is the intersection of all prime submodules of M : It is proved that if R is a hereditary, noetherian, prime and non right artinian and M a finitely generated R -module then the radical of M has a certain form.

Throughout this note, all rings are associative with identity and all modules are unital left modules. Let M be a left R -module. Then a proper submodule N of M is prime if, for any $r \in R$ and $m \in M$ such that $r R m \subseteq N$; either $r M \subseteq N$ or $m \in N$: Prime submodules have been studied in a number of papers, for example [2]; [3]: In particular, a number of papers have been devoted to describing the radical of a module over a commutative ring. It is natural therefore to ask whether the radical of a module over noncommutative ring has a simple description. A ring R is called hereditary if all left and right ideals are projective $\mathrm{R}-$ modules. A ring R is called Noetherian if R is left and right Noetherian and R is called prime if every product of non-zero(2-sided) ideals is again non-zero. A ring R is called HNP-ring if it is hereditary, noetherian, prime and non right artinian. We shall define the prime radical of M to be intersection of all prime submodules of M : We shall denote the radical of M by radM : In [3]; James Jenkins and Patrick F.Smith proved that if R is a Dedekind domain and M an R-module then the radical of M has a certain form. We shall prove that if R is a HNP-ring and M a left R -module then the radical of M has a certain form.

Definition 1. Let R be a ring and M an $R-$ module. Let $r_{1} \in R ; m_{1} \in M$: The element $r_{1} m_{1}$ of M is called strongly nilpotent if every sequence $r_{1} m_{1} ; r_{2} m_{1} ; r_{3} m_{1}$; ::: such that $r_{i+1} m_{1} \in r_{i} R r_{i} m_{1}$ and $r_{i+1} \in r_{i} R r_{i}(i=1 ; 2 ; 3 ;:::)$ is ultimately zero. $\mathrm{W}(\mathrm{M})$ will denote the submodule of M generated by strongly nilpotent elements.

[^0]Lemma 1. Let M be an R -module. Then, $\mathrm{W}(\mathrm{M}) \subseteq \operatorname{radM}:$
Proof. Let $r_{1} \mathrm{~m}_{1} \in \mathrm{radM}$ where $\mathrm{r}_{1} \in \mathrm{R}$ and $\mathrm{m}_{1} \in \mathrm{M}$: We will show that $r_{1} m_{1}$ is not strongly nilpotent element of M : Since $r_{1} m_{1} \in \operatorname{radM}$; there exists a prime submodule N of M such that $r_{1} m_{1} \in N$: Thus, $r_{1} R r_{1} m_{1}$ " N and so there exists an element $r_{2} m_{1} \in r_{1} R r_{1} m_{1}$ such that $r_{2} m_{1} \in N$: Since N is prime submodule of $M, r_{2} R r_{2} m_{1}$ " N. There exists $r_{3} m_{1} \in r_{2} R r_{2} m_{1}$ such that $r_{3} m_{1} \in N$: Therefore, there exists a sequence $r_{1} m_{1} ; r_{2} m_{1} ; r_{3} m_{1} ;::$ such that $r_{i+1} m_{1} \in r_{i} R r_{i} m_{1}$ and $r_{i+1} \in r_{i} R r_{i}(i=1 ; 2 ; 3 ;:::)$ but is not ultimately zero.Then $r_{1} m_{1}$ is not strongly nilpotent. So $W(M) \subseteq r a d M$:

For any submodule N of M; $N: M)=\{r \in R: r M \subseteq N\}$ is the annihilator of the module $M \neq \mathbb{N}$ and $A n n(m)=\{r \in R: r m=0\}$ is the annihilator of the element $\mathrm{m} \in \mathrm{M}$:

Lemma 2. Let R be a ring and M a cyclic module such that $\mathrm{M}=\mathrm{R} \mathrm{m}$ for some $\mathrm{m} \in \mathrm{M}$: Suppose that P is a prime ideal of R and $\mathrm{Ann}(\mathrm{m}) \subseteq \mathrm{P}$: Then P m is a prime submodule of M and $\mathrm{P}=(\mathrm{P} \mathrm{m}: \mathrm{M})$:

Proof. Let $\mathrm{e} \in \mathrm{M}$ and $\mathrm{r} \in \mathrm{R}$: Let $\mathrm{rRe} \subseteq \mathrm{Pm}$ and $\mathrm{e}=\mathrm{sm}$ for some $\mathrm{s} \in \mathrm{R}$: Then $r R s m \subseteq P m$: Since $A n n(m) \subseteq P ; r R s \subseteq P$ and so $r \in P$ or $s \in P$: Therefore, $r M=r R m \subseteq P m$ or $e=s m \in P m$: $P m$ is a prime submodule of M : It is clear that $P \subseteq(P m: M)$: Let $r \in(P m: M)$: Then $r R m \subseteq P m$: Since Ann $(m) \subseteq P ; r R \subseteq P$ and so $r \in P:$ As a result, $P=(P m: M):$

Theorem 1. Let R be a ring and M a cyclic module such that $\mathrm{M}=\mathrm{R} \mathrm{m}_{1}$ for some $\mathrm{m}_{1} \in \mathrm{M}:$ Let $\mathrm{Ann}\left(\mathrm{m}_{1}\right) \subseteq \operatorname{radR}$: Then $\operatorname{radM}=\mathrm{W}(\mathrm{M})$:

Proof. By Lemma 1, $\mathrm{W}(\mathrm{M}) \neq \operatorname{radM}$: We will show that $\operatorname{radM} \subseteq \mathrm{W}(\mathrm{M})$: We have radM $\subseteq{ }_{i 21}\left(P_{i} m_{1}\right)=\left({ }_{i 21} P_{i}\right) m_{1}=(\operatorname{radR}) m_{1}$ where P_{i} are the prime ideals of R and $P_{i} m_{1}(i \in I)$ are prime submodules of M by Lemma 2. Since radR is precisely the set of strongly nilpotent elements of R; then every element of $(\operatorname{radR}) \mathrm{m}_{1}$ is strongly nilpotent element of M : Then $(\operatorname{radR}) \mathrm{m}_{1} \subseteq \mathrm{~W}(\mathrm{M})$: Therefore radM $\subseteq \mathrm{W}(\mathrm{M}):$

Proposition 1. Let N be any submodule of an $\mathrm{R}-$ module M : Then $\mathrm{W}(\mathrm{N}) \subseteq$ W (M) :

Proof. Elementary.
Lemma 3. Let N be a submodule of an $\mathrm{R}-$ module $\mathrm{M}:$ Then, $\mathrm{rad} \mathrm{N} \subseteq \operatorname{rad} \mathrm{M}$:
Proof. Let P be a prime submodule of M : If $\mathrm{N} \subseteq \mathrm{P}$; then $\operatorname{rad} \mathrm{N} \subseteq \mathrm{P}$: If N " P; then $N \cap P$ is a prime submodule of N : Indeed, let $r R n \subseteq N \cap P$ and $r \in$
$(N \cap P: N)=(P: N)$ where $r \in R$ and $n \in N$: Since P is a prime submodule of M; then $n \in P$: Therefore $n \in N \cap P$: Consequently, $\operatorname{radN} \subseteq N \cap P \subseteq P$ and so $\operatorname{radN} \subseteq \operatorname{radM}$:

Lemma 4. Let R be a ring and M an R -module such that $\mathrm{M}={ }^{\mathrm{L}} \mathrm{N}_{\mathrm{i}}$ is a direct sum of submodules $\mathrm{N}_{\mathrm{i}}(\mathrm{i} \in \mathrm{I})$: Then $\operatorname{radM}={ }_{\mathrm{i} 21}^{\mathrm{L}} \operatorname{radN}_{\mathrm{i}}$:

L Proof. By Lemma 3, $\operatorname{radN}_{\mathrm{i}} \subseteq \operatorname{radM}$ for all $\mathrm{i} \in \boldsymbol{p}_{\mathrm{p}}$: Then, we obtain $\operatorname{rad} N_{i} \subseteq \operatorname{radM}:$ Let $m \in M$ and suppose that $m=m_{k 21} \in{ }_{i 21} \operatorname{radN}_{\mathrm{i}}$: ${ }^{121}$ There exists $k \in I$ such that $m_{k} \in \operatorname{LadN}_{k}$ and so $m_{k} \in N_{k}^{k}$ where N_{k}^{d} is a prime submodule of N_{k} : Let $K=N_{k}^{a^{2}}\left(N_{i}\right)$: K is a prime submodule of M : Indeed, igpk
let $r R s \subseteq K$ where $r \in R$ and $s={ }_{k 21} s_{k} \in M:$ Then $r R s_{k} \subseteq N_{k}^{x}$: Since N_{k}^{a} is a prime submodule of $N_{k} ; s_{k} \in N_{k}^{\alpha}$ or $r N_{k} \subseteq N_{k}^{\alpha}$: Therefpre, $s \in K$ or $r M \subseteq K$: Since $m \in K$; then $m \in \operatorname{radM}$: It follows that radM $={ }_{i 21} \operatorname{radN}_{\mathrm{i}}$:

Lemma 5. Let R be a ring and M an R -module such that $\mathrm{radM}=\mathrm{W}(\mathrm{M})$: Then radN $=\mathrm{W}(\mathrm{N})$ for any direct summand N of M :

Proof. Suppose that $\mathrm{M}=\mathrm{N}^{\mathrm{L}} \mathrm{K}$ for some submodule K of M : We know that $\mathrm{W}(N) \subseteq \operatorname{radN}$ by lemma 1. Suppose that $\mathrm{m} \in \operatorname{radN}$: Then $\mathrm{m} \in \operatorname{radM}$ by Lemma 3. By hypothesis, $m=a_{1} r_{1} m_{1}+:::+a_{n} r_{n} m_{n}$ where $a_{i} \in R$ and $r_{i} m_{i}$ are strongly nilpotent elements of M and $r_{i} m_{i}=r_{i} x_{i}+r_{i} y_{i}$ for all $1 \leq i \leq n$: Clearly, $r_{i} x_{i}$ are strongly nilpotent elements of N : Then $m-\left(a_{1} r_{1} x_{1}+:::+a_{n} r_{n} x_{n}\right)=$ $a_{1} r_{1} y_{1}+:::+a_{n} r_{n} y_{n} \in N$; and so $m=a_{1} r_{1} x_{1}+:::+a_{n} r_{n} x_{n} \in W(N):$ It follows that $\operatorname{radN} \subseteq \mathrm{W}(\mathrm{N})$:

Lemma 6. Let R be a ring and M any projective R -module. Suppose that $\mathrm{Ann}(\mathrm{m}) \subseteq \operatorname{radR}$ for all $\mathrm{m} \in \mathrm{M}$: Then, $\mathrm{radM}=\mathrm{W}(\mathrm{M})$:

Proof. There exists a free R -module F such that M is a direct summand of F : There exist an index L_{L} and cyclic free submodules $F_{i}(i \in I)$ of F such that $F=F_{i}$: Then radF $={ }^{L} \operatorname{radF}_{i}$ by Lemma 4. But by Theorem 1, $\operatorname{radF}_{i}=$ $W\left(F_{i}\right) \subseteq W(F)$ for each $i \in I:$ Hence $r a d F=W(F):$ Consequently, $r a d M=$ W (M) by Lemma 5 .

Lemma 7. Let R be a HNP-ring and M a finitely generated R -module. Then, $\mathrm{M}={ }_{\mathrm{i} 21} \mathrm{M}_{\mathrm{i}}$ where submodules M_{i} is either projective or cyclic.

Proof. By [1; Lemma 7.4]; $M=\left\langle(M)^{L} \quad M=(M)\right.$ where $\dot{(M)}$ is a torsion submodule of M : Moreover, $\dot{(}(M)$ has finite length and $M=亡(M)$ is projective. ¿(M) is cyclic or a direct sum of cyclics by [1; Lemma 7:3]: Indeed, let N be a submodule of M such that $\dot{(}(\mathrm{M}) \neq \mathbb{N}$ is cyclic. We use induction on the length of N : If $N=0$; it is trivial. Otherwise, choose a simple submodule L of N : By induction $\dot{(}(M)=L$ is cyclic, and if the sequence $0 \rightarrow L \rightarrow \dot{L}(M) \rightarrow \dot{L}(M) \neq L \rightarrow 0$ is nonsplit, then by $[1 ;$ lemma $7: 3(a)] ; ~ ¿(M)$ is cyclic. So, suppose the sequence is split; and then $\dot{¿}(\mathrm{M})=\mathrm{L} \quad \dot{(M)}=\mathrm{L}$:

Theorem 2. Let R be a HNP-ring and M a finitely generated R -module. Suppose that $\mathrm{Ann}(\mathrm{m}) \subseteq \operatorname{radR}$ for all $\mathrm{m} \in \mathrm{M}$: Then $\operatorname{radM}=\mathrm{W}(\mathrm{M})$:

Proof. We know that $W(M) \subseteq \operatorname{radM}$ by Lemma1: Now $M={ }_{i 21}^{L} M_{i}$ where submodules M_{i} is either projective or cyclic by Lemma 7. Then radM = ${ }_{i 21} \operatorname{rad} M_{i}={ }_{i 21} W\left(M_{i}\right) \subseteq W(M):$ As a result, $\operatorname{radM}=W(M):$

Lemma8. If $\mathrm{f}: \mathrm{M} \rightarrow \mathrm{S}$ is an epimorphism of R -modules with kernel K then there is a one-to-one correspondence between the set of prime submodules of M which contain K and the set of prime submodules of S :

Proof. Let N be a prime submodule of M containing K : Let $r \in R$ and $m \in M$ such that $r R f(m) \subseteq f(N)$ and $f(m) \in f(N):$ We will show that $r S \subseteq f(N): A s f(r R m) \subseteq f(N) ; r R m \subseteq K+N=N$ and $m \in N$ which implies that $r M \subseteq N$: Hence $r S=r f(M)=f(r M) \subseteq f(N)$: Let L be a prime submodule of S : Let $r R m^{\infty} \subseteq f_{C}{ }^{1}(L)$ and $m^{\infty} \in f^{i}(L)$ where $m^{\alpha} \in M ; r \in R$: Then $f\left(r R m^{x}\right) \subseteq f^{1} f^{i}{ }^{1}(L) \subseteq L$ and so $r R f\left(m^{\infty}\right) \subseteq L$: Since L is a prime submodule of S and $f\left(m^{\mathbb{x}}\right) \in L$; then $r S \subseteq L$ and so $r f(M) \subseteq L$: Consequently, $r M \subseteq f^{i}(L)$.
M satisfies the radical formula if $\operatorname{rad}(M=N)=W(M \neq N)$ for any submodule N of M : A proper submodule N of a module M is called semiprime if, for any $r \in R$ and $m \in M$ such that $r \operatorname{Rrm} \subseteq N ; r m \in N$: If N is a submodule of M such that N is an intersection of prime submodules of M; then N is semiprime. We don't know if the converse is true in general, but it is true in the following special case. (see 2, for more detail)

Theorem 3. Let R be a ring and M an R -module. If M satisfies the radical formula, then every semiprime submodule of M is an intersection of prime submodules of M and $\mathrm{W}(\mathrm{M}=\mathrm{N}(\mathrm{M}))=\overline{0}$:

Proof. Let N be a semiprime submodule of M : Then, $\mathrm{W}(\mathrm{M}=\mathrm{N})=0$: Indeed, if $r_{1} m_{1} \in N$ where $r_{1} \in R$ and $m_{1} \in M$; then there exists a chain
$r_{1} m_{1} ; r_{2} m_{1} ;::$ such that $r_{i+1} \in r_{i} R r_{i}$ and $r_{i} m_{1} \in N$ for all $i=1 ; 2 ; 3 ;::$: as N is a semiprime submodule. Then $\mathrm{r}_{1} \mathrm{~m}_{1}$ is not strongly nilpotent element of $\mathrm{M} \neq \mathrm{N}$: By hypothesis, $\operatorname{rad}(\mathrm{M} \neq \mathrm{V})=\mathbf{0}$: Hence N is an intersection of prime submodules of M by Lemma 8. Moreover, it is clear that $\operatorname{rad}(M=\operatorname{radM})=\overline{0}$, so $W(M=W(M))=\operatorname{rad}(M=\operatorname{radM})=\overline{0}:$

Acknowledgment

We thank the referee for the helpful suggestions and comments.

References

1. J. C. McConell and J. C. Robson, Noncommutative Noetherian rings, Wiley, Chichester, 1987.
2. J. Dauns, Prime submodules and one-sided ideals, in Ring Theory and Algebra III, Proceeding of the third Oklohama Conference (B. R. Mc Donald, ed.), Dekker, New York, (1980), 301-344.
3. James Jenkins and Patrick F. Smith, Prime radical of a module over a commutative ring, Comm. Algebra 20 (1992), 3593-3602.

Fethi Çallalp
University of Dogus,
Department of Mathematics,
Acibadem-Istanbul,
Turkey
E-mail: fcallialp@dogus.edu.tr
Unsal Tekir
University of Marmara,
Department of Mathematics,
Goztepe-Istanbul,
Turkey
E-mail: utekir@marmara.edu.tr

[^0]: Received April 15, 2003.
 Communicated by S. B. Hsu.
 2000 Mathematics Subject Classification: 16E60; 16D40.
 Key words and phrases: Prime submodule, Hereditary rings, Noetherian rings.

