TAIWANESE JOURNAL OF MATHEMATICS Vol. 8, No. 2, pp. 337-341, June 2004 This paper is available online at http://www.math.nthu.edu.tw/tjm/

ON THE PRIME RADICAL OF A MODULE OVER A NONCOMMUTATIVE RING

Fethi Çallialp and Ünsal Tekir

Abstract. Let R be a ring and M a left R-module. The radical of M is the intersection of all prime submodules of M: It is proved that if R is a hereditary, noetherian, prime and non right artinian and M a finitely generated R-module then the radical of M has a certain form.

Throughout this note, all rings are associative with identity and all modules are unital left modules. Let M be a left R-module. Then a proper submodule N of M is prime if, for any $r \in R$ and $m \in M$ such that $rRm \subseteq N$; either $rM \subseteq N$ or $m \in N$: Prime submodules have been studied in a number of papers, for example [2]; [3]: In particular, a number of papers have been devoted to describing the radical of a module over a commutative ring. It is natural therefore to ask whether the radical of a module over noncommutative ring has a simple description. A ring R is called hereditary if all left and right ideals are projective R-modules. A ring R is called Noetherian if R is left and right Noetherian and R is called prime if every product of non-zero(2-sided) ideals is again non-zero. A ring R is called HNP-ring if it is hereditary, noetherian, prime and non right artinian. We shall define the prime radical of M to be intersection of all prime submodules of M: We shall denote the radical of M by radM: In [3]; James Jenkins and Patrick F.Smith proved that if R is a Dedekind domain and M an R-module then the radical of M has a certain form. We shall prove that if R is a HNP-ring and M a left R-module then the radical of M has a certain form.

Definition 1. Let R be a ring and M an R-module. Let $r_1 \in R$; $m_1 \in M$: The element r_1m_1 of M is called strongly nilpotent if every sequence r_1m_1 ; r_2m_1 ; r_3m_1 ; ::: such that $r_{i+1}m_1 \in r_i Rr_i m_1$ and $r_{i+1} \in r_i Rr_i$ (i = 1; 2; 3; ...) is ultimately zero. W (M) will denote the submodule of M generated by strongly nilpotent elements.

Received April 15, 2003.

Communicated by S. B. Hsu.

²⁰⁰⁰ Mathematics Subject Classification: 16E60; 16D40.

Key words and phrases: Prime submodule, Hereditary rings, Noetherian rings.

Lemma 1. Let M be an R-module. Then, W (M) \subseteq radM:

Proof. Let $r_1m_1 \in radM$ where $r_1 \in R$ and $m_1 \in M$: We will show that r_1m_1 is not strongly nilpotent element of M: Since $r_1m_1 \in radM$; there exists a prime submodule N of M such that $r_1m_1 \in N$: Thus, $r_1Rr_1m_1$ " N and so there exists an element $r_2m_1 \in r_1Rr_1m_1$ such that $r_2m_1 \in N$: Since N is prime submodule of M, $r_2Rr_2m_1$ " N. There exists $r_3m_1 \in r_2Rr_2m_1$ such that $r_3m_1 \in N$: Therefore, there exists a sequence r_1m_1 ; r_2m_1 ; r_3m_1 ; ... such that $r_{i+1}m_1 \in r_iRr_im_1$ and $r_{i+1} \in r_iRr_i$ (i = 1; 2; 3; ...) but is not ultimately zero. Then r_1m_1 is not strongly nilpotent. So W (M) ⊆ radM:

For any submodule N of M; $(N : M) = \{r \in R : rM \subseteq N\}$ is the annihilator of the module M=N and Ann (m) = $\{r \in R : rm = 0\}$ is the annihilator of the element $m \in M$:

Lemma 2. Let R be a ring and M a cyclic module such that M = Rm for some $m \in M$: Suppose that P is a prime ideal of R and Ann (m) \subseteq P: Then Pm is a prime submodule of M and P = (Pm : M):

Proof. Let $e \in M$ and $r \in R$: Let $rRe \subseteq Pm$ and e = sm for some $s \in R$: Then $rRsm \subseteq Pm$: Since Ann (m) $\subseteq P$; $rRs \subseteq P$ and so $r \in P$ or $s \in P$: Therefore, $rM = rRm \subseteq Pm$ or $e = sm \in Pm$: Pm is a prime submodule of M: It is clear that $P \subseteq (Pm : M)$: Let $r \in (Pm : M)$: Then $rRm \subseteq Pm$: Since Ann (m) $\subseteq P$; $rR \subseteq P$ and so $r \in P$: As a result, P = (Pm : M):

Theorem 1. Let R be a ring and M a cyclic module such that $M = Rm_1$ for some $m_1 \in M$: Let Ann $(m_1) \subseteq radR$: Then radM = W(M):

Proof. By Lemma 1, W (M) \leftarrow radM: We will show that radM \subseteq W (M): We have radM $\subseteq (P_im_1) = (P_i)m_1 = (radR)m_1$ where P_i are the prime ideals of R and P_im_1 ($i \in I$) are prime submodules of M by Lemma 2. Since radR is precisely the set of strongly nilpotent elements of R; then every element of (radR) m_1 is strongly nilpotent element of M: Then (radR) $m_1 \subseteq$ W (M): Therefore radM \subseteq W (M):

Proposition 1. Let N be any submodule of an R-module M: Then W (N) \subseteq W (M):

Proof. Elementary.

Lemma 3. Let N be a submodule of an R-module M: Then, radN \subseteq radM:

Proof. Let P be a prime submodule of M: If $N \subseteq P$; then rad $N \subseteq P$: If N " P; then $N \cap P$ is a prime submodule of N: Indeed, let $rRn \subseteq N \cap P$ and $r \in$

 $(N \cap P : N) = (P : N)$ where $r \in R$ and $n \in N$: Since P is a prime submodule of M; then $n \in P$: Therefore $n \in N \cap P$: Consequently, $radN \subseteq N \cap P \subseteq P$ and so $radN \subseteq radM$:

Lemma 4. Let R be a ring and M an R-module such that $M = \bigcup_{i \ge 1}^{L} N_i$ is a direct sum of submodules N_i ($i \in I$): Then rad $M = \bigcup_{i \ge 1}^{L} radN_i$:

Lemma 5. Let R be a ring and M an R-module such that radM = W(M): Then radN = W(N) for any direct summand N of M:

Proof. Suppose that $M = N \stackrel{L}{} K$ for some submodule K of M: We know that W (N) \subseteq radN by lemma 1. Suppose that $m \in radN$: Then $m \in radM$ by Lemma 3. By hypothesis, $m = a_1r_1m_1 + \dots + a_nr_nm_n$ where $a_i \in R$ and r_im_i are strongly nilpotent elements of M and $r_im_i = r_ix_i + r_iy_i$ for all $1 \leq i \leq n$: Clearly, r_ix_i are strongly nilpotent elements of N: Then $m - (a_1r_1x_1 + \dots + a_nr_nx_n) = a_1r_1y_1 + \dots + a_nr_ny_n \in N$; and so $m = a_1r_1x_1 + \dots + a_nr_nx_n \in W$ (N): It follows that radN \subseteq W (N):

Lemma 6. Let R be a ring and M any projective R-module. Suppose that Ann (m) \subseteq radR for all m \in M: Then, radM = W (M):

Proof. There exists a free R-module F such that M is a direct summand of F: There exist an index I and cyclic free submodules F_i ($i \in I$) of F such that $F = F_i$: Then $radF = radF_i$ by Lemma 4. But by Theorem 1, $radF_i = W(F_i) \subseteq W(F)$ for each $i \in I$: Hence radF = W(F): Consequently, radM = W(M) by Lemma 5.

Lemma 7. Let R be a HNP-ring and M a finitely generated R-module. Then, $M = \bigcup_{i \ge 1}^{1} M_i$ where submodules M_i is either projective or cyclic. *Proof.* By [1; Lemma 7.4]; $M = i (M)^{L} M = i (M)$ where i (M) is a torsion submodule of M: Moreover, i (M) has finite length and M = i (M) is projective. i (M) is cyclic or a direct sum of cyclics by [1; Lemma 7:3]: Indeed, let N be a submodule of M such that i (M) = N is cyclic. We use induction on the length of N: If N = 0; it is trivial. Otherwise, choose a simple submodule L of N: By induction i (M) = L is cyclic, and if the sequence $0 \to L \to i (M) \to i (M) = L \to 0$ is nonsplit, then by [1; lemma 7:3 (a)]; i (M) is cyclic. So, suppose the sequence is split; and then i (M) = L = i (M) = L:

Theorem 2. Let R be a HNP-ring and M a finitely generated R-module. Suppose that Ann (m) \subseteq radR for all $m \in M$: Then radM = W(M):

Proof. We know that W (M) ⊆ radM by Lemma1: Now M = $\underset{i \ge 1}{\overset{i}{\underset{j \ge 1}{\underset{j \ge 1}{\underset{j$

Lemma8. If $f : M \to S$ is an epimorphism of R-modules with kernel K then there is a one-to-one correspondence between the set of prime submodules of M which contain K and the set of prime submodules of S:

Proof. Let N be a prime submodule of M containing K: Let $r \in R$ and $m \in M$ such that $rRf(m) \subseteq f(N)$ and $f(m) \in f(N)$: We will show that $rS \subseteq f(N)$: As $f(rRm) \subseteq f(N)$; $rRm \subseteq K + N = N$ and $m \in N$ which implies that $rM \subseteq N$: Hence $rS = rf(M) = f(rM) \subseteq f(N)$: Let L be a prime submodule of S: Let $rRm^{\alpha} \subseteq f_{C}^{i}^{1}(L)$ and $m^{\alpha} \in f^{i}^{1}(L)$ where $m^{\alpha} \in M$; $r \in R$: Then $f(rRm^{\alpha}) \subseteq f^{1}f^{i}^{1}(L) \subseteq L$ and so $rRf(m^{\alpha}) \subseteq L$: Since L is a prime submodule of S and $f(m^{\alpha}) \in L$; then $rS \subseteq L$ and so $rf(M) \subseteq L$: Consequently, $rM \subseteq f^{i}^{1}(L)$. ■

M satisfies the radical formula if rad (M=N) = W(M=N) for any submodule N of M: A proper submodule N of a module M is called semiprime if, for any $r \in R$ and $m \in M$ such that $rRrm \subseteq N$; $rm \in N$: If N is a submodule of M such that N is an intersection of prime submodules of M; then N is semiprime. We don't know if the converse is true in general, but it is true in the following special case. (see 2, for more detail)

Theorem 3. Let R be a ring and M an R-module. If M satisfies the radical formula, then every semiprime submodule of M is an intersection of prime submodules of M and $W(M=W(M)) = \overline{0}$:

Proof. Let N be a semiprime submodule of M: Then, W(M=N) = $\overline{0}$: Indeed, if $r_1m_1 \in N$ where $r_1 \in R$ and $m_1 \in M$; then there exists a chain $r_1m_1; r_2m_1; ...$ such that $r_{i+1} \in r_i Rr_i$ and $r_im_1 \in N$ for all i = 1; 2; 3; ...as N is a semiprime submodule. Then $r_1\overline{m_1}$ is not strongly nilpotent element of M=N: By hypothesis, $rad(M=N) = \overline{0}$: Hence N is an intersection of prime submodules of M by Lemma 8. Moreover, it is clear that $rad(M=radM) = \overline{0}$, so $W(M=W(M)) = rad(M=radM) = \overline{0}$:

ACKNOWLEDGMENT

We thank the referee for the helpful suggestions and comments.

References

- 1. J. C. McConell and J. C. Robson, *Noncommutative Noetherian rings*, Wiley, Chichester, 1987.
- 2. J. Dauns, *Prime submodules and one-sided ideals, in Ring Theory and Algebra III*, Proceeding of the third Oklohama Conference (B. R. Mc Donald, ed.), Dekker, New York, (1980), 301-344.
- 3. James Jenkins and Patrick F. Smith, *Prime radical of a module over a commutative ring*, Comm. Algebra **20** (1992), 3593-3602.

Fethi Çallalp University of Dogus, Department of Mathematics, Acibadem-Istanbul, Turkey E-mail: fcallialp@dogus.edu.tr

Unsal Tekir University of Marmara, Department of Mathematics, Goztepe-Istanbul, Turkey E-mail: utekir@marmara.edu.tr