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CONFORMALLY FLAT HYPERSURFACES IN REAL SPACE
FORMS WITH LEAST TENSION

Bang-Yen Chen, Franki Dillen, Johan Fastenakels and Leopold Verstraelen

Abstract. Roughly speaking, an ideal immersion of a Riemannian manifold
into a real space form is an isometric immersion which receives the least pos-
sible amount of tension imposed on the submanifold from the ambient space.
The purpose of this paper is to classify conformally flat ideal hypersurfaces
in real space forms; thus we completely determine conformally flat manifolds
which admit codimension one isometric immersions into real space forms with
least possible tension.

1. INTRODUCTION

The theorema which asserts the invariance of the Gauss curvature under isomet-
ric deformations of surfaces M2 in the Euclidean world E3 is egregium, as C. F.
Gauss labeled it in his general theory of curved surfaces ([18], 1827). Its impact on
the development of mathematics has been equally egregium indeed. Immediately,
this theorem lead to the distinction between the intrinsic and the extrinsic qualities
of such surfaces. Later, the awareness of the existence of an intrinsic geometry of
surfaces M2 in E3, resulted in the creation of global analysis; extending classical
analysis from space Rn to differentiable manifolds Mn; and of general differential
geometry as the study of such manifolds endowed in addition with a geometrical
structure; most notable a Riemannian metric tensor, as the simplest such structure
discussed by B. Riemann in his habilitation lecture (1814). The anticipation of this
work was likely Gauss’s motivation to be so happy with his theorema egregium.
As expressed by S. S. Chern [13], the Riemannian geometry forms the modern
differential geometry.
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Once Riemannian spaces were around, the differential geometry of surfaces M2

in E3 was generalized to submanifoldsMn of Riemannian manifolds. In this general
theory of Riemannian submanifolds, the relations between intrinsic and extrinsic
qualities constitute a central theme of study (see [9]).

The crucial characteristics of Riemannian spaces are their curvatures (see [1,
22]). Besides the sectional curvatures and the Ricci curvatures, the scalar curvature
has been the most studied invariants on Riemannian manifolds. Among the beautiful
results are those linking these local metric invariants with the global-topological
nature of the differentiable manifolds.

The abstract mathematical theories of differentiable manifolds and Riemannian
manifolds proved their relevance for understanding better many diverse types of
experiences related to real world situations in exact, medical and human sciences.
More direct through the celebrated theorems of H. Whitney (1935) and J. F. Nash
(1954) showing the realizability as submanifolds of the differentiable manifolds in
standard manifold Em. Nash’s theorem was aimed for, in particular, in the hope that
it would made possible to derive new Riemannian results, taking profit from the fact
that if so that Riemannian manifolds could always be considered as submanifolds
of Euclidean spaces, this would then yield the opportunity to use extrinsic help. Till
when observed as such by M. Gromov [19], this hope had not been materialized
however.

Another observation concerning Nash’s theorem was expressed by S. T. Yau
[23] who pointed to the lack of controls of the extrinsic properties by the known
intrinsic data and, related to this, to the difficulties in having criteria to determine
nice ways, amongst all possible ones, to shape an actual realization of a given
Riemannian manifold in some Euclidean space. In this line of thought, S. S. Chern
formulated already in [12] the specific question for new intrinsic obstructions for
the existence of minimal immersibility of a Riemannian manifold into a Euclidean
space besides positivity of the Ricci curvatures.

The first author gave a first answer to Chern’s question in 1993 [5] and many
more afterwards [7, 8], in terms of the new scalar valued curvature invariants
±(n1; : : : ; nk) on a Riemannian n-manifold M . In the context of Nash’s theorem,
the first author established for all these invariants optimal pointwise inequalities
involving the squared mean curvature. These inequalities give rise to new results on
intrinsic spectral properties of homogeneous spaces obtained via extrinsic data [8]
which extend a well-known result of T. Nagano [21]. These and subsequently ob-
tained inequalities give prima controls on the most important extrinsic curvature(s),
namely, the mean curvature (and the scalar normal curvatures), by the initial intrin-
sic curvatures of M [7, 8, 14, 15]. These give rise to criteria to naturally consider
the best one(s) among all possible realizations of a given Riemannian manifold as
submanifolds. In particular, one gets new views on rigidity of submanifolds as ex-
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pressed in the notion of ideal immersions. In physical language: ideal immersions
of M are isometric immersions giving M such a shape that at each point the sur-
face tension on this submanifold assumes the least possible value as is determined
by the intrinsic curvature characteristics ±(n1; : : : ; nk) of M . In variational terms:
every ideal immersion is a stable critical point of the total squared mean curvature
functional within the class of all isometric immersions.

The main new notions briefly mentioned above are recalled in Section 2. In
Section 3 we review some special functions and special families of Riemannian
manifolds for later use. In Section 4 we define some special families of Rie-
mannian manifolds. Rotation hypersurfaces in real space forms in the sense of [3]
are briefly explained in Section 5. In Section 6 we prove some basic properties
of conformally flat ideal hypersurfaces. The complete classification of conformally
flat ideal hypersurfaces in real space forms are obtained in the last three sections.

This paper once more illustrates the close ties between special functions of
classical analysis and explicit formulas describing basic geometrical objects.

2. RIEMANNIAN INVARIANTS, INEQUALITIES AND IDEAL IMMERSIONS

Let M be a Riemannian n-manifold. Denote by K(¼) the sectional curvature
of M associated with a plane section ¼ ½ TpM , p 2M . For any orthonormal basis
e1; : : : ; en of the tangent space TpM , the scalar curvature ¿ at p is defined to be

(2:1) ¿(p) =
X
i<j

K(ei ^ ej):

When L is a 1-dimensional subspace of TpM , we put ¿(L) = 0. If L is a
subspace of TpM of dimension r ¸ 2, we define the scalar curvature ¿(L) of L by

(2:2) ¿(L) =
X
®<¯

K(e® ^ e¯); 1 ∙ ®; ¯ ∙ r;

where fe1; : : : ; erg is an orthonormal basis of L.
For an integer k ¸ 0, denote by S(n; k) the finite set consisting of unordered

k-tuples (n1; : : : ; nk) of integers ¸ 2 satisfying n1 < n and n1 + ¢ ¢ ¢ + nk ∙ n.
Let S(n) is the union [k¸0 S(n; k). If n = 2, we have k = 0 and S(2) = f;g.

For each (n1; : : : ; nk) 2 S(n), the invariant ±(n1; : : : ; nk) is defined by [7, 8]:

(2:3) ±(n1; : : : ; nk)(p) = ¿(p)¡ S(n1; : : : ; nk)(p);

where
S(n1; : : : ; nk)(p) = inf

©
¿(L1) + ¢ ¢ ¢+ ¿(Lk)

ª
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and L1; : : : ; Lk run over all k mutually orthogonal subspaces of TpM such that
dimLj = nj ; j = 1; : : : ; k. Clearly, the invariant ±(;) is nothing but the scalar
curvature ¿ of M .

For a given (n1; : : : ; nk) 2 S(n), we put

(2:4) b(n1; : : : ; nk) =
1

2

³
n(n¡ 1)¡

kX
j=1

nj(nj ¡ 1)
´
;

(2:5) c(n1; : : : ; nk) =
n2(n+ k ¡ 1¡P

nj)

2(n+ k ¡P
nj)

:

For each real number ² and each (n1; : : : ; nk) 2 S(n), the associated normalized
invariant ¢²(n1; : : : ; nk) is defined by

(2:6) ¢²(n1; : : : ; nk) =
±(n1; : : : ; nk)¡ b(n1; : : : ; nk)²

c(n1; : : : ; nk)
:

We recall the following general result from [7, 8].

Theorem 2.1. Let M be an n-dimensional submanifold of a real space form
Rm(²) of constant sectional curvature ². Then for each (n1; : : : ; nk) 2 S(n) we
have

(2:7) H2 ¸ ¢²(n1; : : : ; nk);

where H2 is the squared norm of the mean curvature vector.
The equality case of inequality (2:7) holds at a point p 2M if and only if, for

each normal vector » at p, there exists an orthonormal basis e1; : : : ; en at p, such
that the shape operator A» of M in Rm(²) with respect to e1; : : : ; en takes the
following form:

(2:8) A» =

0BBB@
A»1 0

. . .
A»k

0 ¹»I

1CCCA
where fA»jgkj=1 are symmetric nj £ nj submatrices satisfy

(2:9) trace (A»1) = ¢ ¢ ¢ = trace (A»k) = ¹»:

For an isometric immersion x : M ! Rm(²) of a Riemannian n-manifold into
Rm(²), this theorem implies that

(2:10) H2(p) ¸ ¢̂²(p);
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where ¢̂² denotes the invariant on M defined by

(2:11) ¢̂² = max
©

¢²(n1; : : : ; nk) j (n1; : : : ; nk) 2 S(n)
ª
:

Theorem 2.1 implies the the following result for hypersurfaces.

Theorem 2.2. Let M be a hypersurface of a real space form Rn+1(²) (n ¸ 2)
of constant sectional curvature ². Then we have

(2:12) H2 ¸ ¢̂²:

The equality case of inequality (2:12) holds at a point p 2 M if and only if
there is a k-tuple (n1; : : : ; nk) 2 S(n) such that, up to a suitable permutation of
the principal curvatures ∙1; : : : ;∙n of M at p, we have

(2:13)
∙1 + : : :+ ∙n1 = ∙n1+1 + : : :+ ∙n1+n2 = ¢ ¢ ¢ =

= ∙n1+:::+nk¡1+1 + : : :+ ∙n+1+:::+nk
= ∙n+1+:::+nk+1 = ¢ ¢ ¢ = ∙n:

Remark 2.1. If m = 0, (2.13) reduces to ∙1 = ¢ ¢ ¢ = ∙n, i.e., M is totallly
umbilical.

In general, there do not exist direct relations between these new invariants. On
the other hand, Theorem 2.1 gives rise to the following maximum principle.

A Maximum Principle. Let M be an n-dimensional submanifold of Rm(²). If
it satisfies the equality case of (2.7) for some (n1; : : : ; nk) 2 S(n), then

(2:14) ¢²(n1; : : : ; nk) ¸ ¢²(m1; : : : ;mj)

for every (m1; : : : ;mj) 2 S(n).
This maximum principle yields the following important fact.

Fact. If an isometric immersion x : M ! Rm(²) satisfies the equality case of
(2:7) for a k-tuple (n1; : : : ; nk) 2 S(n), then it is an ideal immersion automatically.

Applying inequality (2.10) the first author introduced in [7, 8] the notion of
ideal immersions as follows.

Definition 2.1. An isometric immersion x : M ! Rm(²) is called an ideal
immersion if the equality case of (2.10) holds at every point p 2 M . An iso-
metric immersion is called (n1; : : : ; nk)-ideal if it satisfies H2 = ¢²(n1; : : : ; nk)
identically for (n1; : : : ; nk) 2 S(n).

Physical Interpretation of Ideal Immersions. An isometric immersion x : M !
Rm(²) is ideal means that M receives the least possible amount of tension (given
by ¢̂²(p)) at each point p 2M from the ambient space. This is due to (2.10) and
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the well-known fact that the mean curvature vector field is exactly the tension field
for isometric immersions. Therefore, the squared mean curvature H2(p) at a point
p 2M simply measures the amount of tension M receiving from the ambient space
Rm(²) at that point.

The following result provides a direct relationship between the first nonzero
eigenvalue ¸1 of Laplacian and the invariants ¢0(n1; : : : ; nk).

Theorem 2.3. ([8]) If M is a compact homogeneous Riemannian n-mani-
fold with irreducible isotropy action, then the first nonzero eigenvalue ¸1 of the
Laplacian on M satisfies

(2:15) ¸1 ¸ n¢(n1; : : : ; nk)

for every (n1; : : : ; nk) 2 S(n). Therefore, we have

(2:16) ¸1 ¸ n ¢̂0:

The equality sign of (2:16) holds if and only if M admits a 1-type ideal immer-
sion in a Euclidean space.

When k = 0, inequality (2.15) reduces to a well-known result of T. Nagano
[21], namely, ¸1 ¸ n½, where ½ = 2¿=n(n¡ 1) is the normalized scalar curvature.
Strict inequality ¢̂0 > ½ holds for most Riemannian manifolds.

3. SOME SPECIAL FUNCTIONS

First, we review briefly some known facts on Jacobi’s elliptic functions, theta
function, zeta function and hypergeometric function for later use (for details, see,
for instances, [2, 20]).

Let µ be the temperature at time t at any point in a solid material whose con-
ducting properties are uniform and isotropic. If ½ is the material’s density, s its
specific heat, and k its thermal conductivity, µ satisfies the heat conduction equa-
tion: ∙r2µ = @µ=@t; where ∙ = k=s½ is the diffusivity. In the special case where
there is no variation of temperature in the x and y-directions, the heat flow is
everywhere parallel to the z-axis and the heat equation reduced to

(3:1) ∙
@2µ

@z2
=
@µ

@t
; µ = µ(z; t):

Consider the boundary conditions: µ(0; t) = µ(¼; t) = 0 and µ(z; 0) = ¼±(z ¡
¼=2) for 0 < z < ¼; where ±(z) is Dirac’s unit impulse function. Then the solution
of the boundary value problem is given by

(3:2) µ(z; t) = 2
1X
n=0

(¡1)ne¡(2n+1)2∙t sin(2n+ 1)z
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By writing e¡4∙t = q, the solution (3.2) assume the form:

(3:3) µ1(z; q) = 2
1X
n=0

(¡1)nq(n+1=2)2
sin(2n+ 1)z;

which is the first of the four theta functions. When the precise value of q is not
important, we shall suppress the dependence upon q.

If one changes the boundary conditions to @µ=@z = 0 on z = 0 and on z = ¼
with µ(z; 0) = ¼±(z ¡ ¼=2) for 0 < z < ¼, then the corresponding solution of the
boundary value problem of the heat equation (3.1) is given by

(3:4) µ4(z) = µ4(z; q) = 1 + 2
1X
n=1

(¡1)nqn
2

cos 2nz:

The theta function µ1(z) is periodic with period 2¼. Incrementing z by 1
2¼

yields the second theta function:

(3:5) µ2(z) = µ2(z; q) = µ1(z + 1
2¼; q) = 2

1X
n=0

q(n+1=2)2
cos(2n+ 1)z:

Similarly, incrementing z by 1
2¼ for µ4 yields the third theta function:

(3:6) µ3(z) = µ3(z; q) = µ4(z + 1
2¼; q) = 1 + 2

1X
n=1

qn
2

cos 2nz:

The four theta functions µ1; µ2; µ3; µ4 can be extended to complex values for z
and q such that jqj < 1.

The elliptic functions snu; cnu and dnu are defined as ratios of theta functions:

(3:7) snu =
µ3(0)µ1(z)

µ2(0)µ4(z)
; cnu =

µ4(0)µ2(z)

µ2(0)µ4(z)
; dnu =

µ4(0)µ3(z)

µ3(0)µ4(z)
;

where u = µ2
3(0)z: Define parameters k and k0 by

k =
µ2

2(0)

µ2
3(0)

; k0 =
µ2

4(0)

µ2
3(0)

which are called the modulus and the complementary modulus of the elliptic func-
tions; k and k0 satisfy k2 + k02 = 1. When it is required to state the modulus
explicitly, the elliptic functions of Jacobi will be written sn(u; k); cn(u; k);dn(u; k).

The elliptic functions snu; cnu and dnu satisfy the following relations:

(3:8)

8<:sn2u+ cn2u = 1; dn2u+ k2sn2u = 1; k2cn2u+ k02 = dn2u;
nd2u¡ 1 = k2sd2u; 1¡ cd2u = k02sd2(u); sc2u+ 1 = nc2u;
cs2u+ k02 = ds2u = ns2u¡ k2; k02nc2u = dc2u¡ k2;
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(3:9)

8>>>><>>>>:
sn0(u) = cn(u)dn(u); cn0(u) = ¡sn(u)dn(u);
dn0(u) = ¡k2sn(u)cn(u); cd0(u) = ¡k02sd(u)nd(u);
sd0(u) = cd(u)nd(u); nd0(u) = k2sd(u)cd(u);
ns0(u) = ¡ds(u)cs(u); ds0(u) = ¡cs(u)ns(u);
cs0(u) = ¡ns(u)ds(u); nc0(u) = sc(u)dc(u):

The theta function £(u) and the zeta function Z(u) are defined by

(3:10) £(u) = µ4

³ ¼u
2K

´
; Z(u) =

d

du
(lnµ4); K =

¼

2
µ2

3(0):

Put

(3:11) u =

Z x

0

dtp
(1¡ t2)(1¡ k2t2)

;

(3:12) K =

Z 1

0

dtp
(1¡ t2)(1¡ k2t2)

;

where we first suppose that x and k satisfy 0 < k < 1; ¡1 ∙ x ∙ 1. The number
K is known as the quarter-period of the Jacobi’s elliptic functions.

Equation (3.11) defines u as an odd function of x which is positive, increasing
from 0 to K as x increases from 0 to 1. Inversely, the same equation defines x as
an odd function of u which increases from 0 to 1 as u increase from 0 to K; this
function is nothing but the Jacobi elliptic function sn(u; k), so we have

(3:13) u = sn¡1(x); x = sn(u):

Now, we review briefly the hypergeometric function. The second order differ-
ential equation:

(3:14) z(z ¡ 1)
d2u

dz2
+ fc¡ (a+ b+ 1)zgdu

dz
¡ abu = 0

is called the hypergeometric equation, where a; b and c are the parameters. Its
solutions are called the hypergeometric functions. Many elementary and special
functions can be obtained from the hypergeometric functions by choosing appropriate
values for their parameters.

Equation (3.14) has three singular points at z = 0; z = 1 and z = 1, respec-
tively. Its solutions in the neighborhood of these three points can be obtained in the
form of power series by using the method of Frobenius.

In the neighborhood of the point z = 0, a solution of (3.14) is given by

(3:15) F (a; b; c; z) =
1X
k=0

¡(a+ k)

¡(a)

¡(b+ k)

¡(b)

¡(c)

¡(c+ k)

zk

n!
;
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where ¡ is the Gamma function and the region of convergence is jzj < 1. A second
independent solution of (3.14) is given by z1¡cF (a+ 1¡ c; b+1¡ c; 2¡ c; z): The
hypergeometric function F (a; b; c; z) can also be expressed as

(3:16) F (a; b; c; z) =
¡(c)

¡(b)¡(c¡ b)
Z 1

0
tb¡1(1¡ t)c¡b¡1(1¡ zt)¡adt:

For simplicity we define the following special function:

(3:17) Bc;±(a; ®; x) =Z x

0

at®dt

(± ¡ ct2)
p
± ¡ ct2 ¡ a2t2®

if ® > 2; ± = 0; c < 0;

Z (
p¡c

a
)

1
®¡1

x

¡at®dt
(± ¡ ct2)

p
± ¡ ct2 ¡ a2t2®

if 1 < ® ∙ 2; ± = 0; c < 0;Z 1

x

¡at®dt
(± ¡ ct2)

p
± ¡ ct2 ¡ a2t2®

if ® < 1; ± = 0; c < 0;Z x

0

at®dt

(± ¡ ct2)
p
± ¡ ct2 ¡ a2t2®

if ® > 0; ± > 0 and c arbitrary;Z (
p
±=a)1=®

x

¡at®dt
(± ¡ ct2)

p
± ¡ ct2 ¡ a2t2®

if ¡ 1 < ® < 0; ± > 0; c = 0;Z 1

x

¡at®dt
(± ¡ ct2)

p
± ¡ ct2 ¡ a2t2®

if ® < ¡1; ± > 0; c = 0;Z 1

x

¡at®dt
(± ¡ ct2)

p
± ¡ ct2 ¡ a2t2®

if ® < 1; ± 6= 0; c < 0;

Z x

¯

at®dt

(± ¡ ct2)
p
± ¡ ct2 ¡ a2t2®

8<:
if ® > 1; c; ± < 0; ¯ is the smallest
positive root of ± ¡ ct2 ¡ a2t2®

whenever it exists;Z x

°

at®dt

(± ¡ ct2)
p
± ¡ ct2 ¡ a2t2®

8<:
if ® < 0; c; ± > 0; ° is the smallest
positive root of ±t¡2® ¡ ct2¡2® ¡ a2

whenever it exists:

By making the substitution t = 1=u, one obtain from (3.17) the following
relationship:

(3:18) Bc;±(a; ®; x) = ¡B¡±;¡c

µ
a; 1¡ ®; 1

x

¶
:

Moreover, we have the following relations between the special functions Bc;± and
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hypergeometric functions:

(3:19)
B0;±(a; ®; x) =

ax®+1

(®+ 1)±3=2
F

µ
1

2
;
®+ 1

2®
;
3®+ 1

2®
;
a2

±
x2®

¶
;

± > 0 and ® > 0 or ® < ¡1;

(3:20)
B¡c;0(a; ®; x) =

ax®¡2

(2¡ ®)c3=2
F

µ
1

2
;
®¡ 2

2®¡ 2
;
3®¡ 4

2®¡ 2
;
a2

c
x2®¡2

¶
;

c > 0 and ® > 2 or ® < 1:

4. SOME SPECIAL FAMILIES OF RIEMANNIAN MANIFOLDS

We recall the following model for the hyperbolic space. Let Hn+1(c), c < 0,
be the hypersurface of Rn+2 given by

Hn+1(c) =
©
x 2 Rn+2 j ¡ x2

1 + x2
2 + ¢ ¢ ¢+ x2

n + x2
n+2 = c¡1; x1 > 0

ª
:

If we endow Hn+1(c) with the Riemannian metric induced by the Lorentzian
metric ds2 = ¡dx2

1 + dx2
2 + ¢ ¢ ¢ + dx2

n+2 on Rn+2, then Hn+1(c) has constant
negative curvature c. A totally umbilical hypersurfaces of Hn+1(c) is given by the
intersection of Hn+1(c) with an affine hyperplane L. The hypersurface is totally
geodesic if L goes through the origin. If L does not pass through the origin, then
the hypersurface is hyperbolic, parabolic or elliptic if the angle between L and e1

is smaller than, equal to, or greater than ¼=4.
Now, let Sn+1(c), c > 0, be the hypersphere of curvature c in Euclidean (n+2)-

space En+2, centered at the origin, i.e.,

Sn+1(c) =
©
x 2 En+2 jx2

1 + ¢ ¢ ¢+ x2
n+1 + x2

n+2 = c¡1
ª
:

Then any totally umbilical hypersurface of Sn+1(c) is given by the intersection of
Sn+1(c) and an affine hyperplane L and it is totally geodesic if L goes through the
origin.

We denote by Rn+1(c) the complete, simply-connected Riemannian (n + 1)-
manifold of constant curvature c. So, we have Rn+1(c) = Sn+1(c);En+1 or
Hn+1(c) according to c > 0; c = 0 or c < 0. Denote by g1; g0 and g¡1 the
standard metrics on Sn¡1(1); En and Hn¡1(¡1), respectively.

For each a > 1 we denote by Cna (respectively, by Pna ) the warped product n-
manifold I £f (x) S

n¡1(1) with f = (2ak=(a2 + 1))cn(ax; k); k =
p
a2 + 1=

p
2a

(respectively, f = (2ak=(a2 + 1))cn(ax; k); k =
p
a2 ¡ 1=

p
2a). Also for each a

with 0 < a < 1, we denote by Dna the warped product manifolds R£f Hn¡1(¡1)
with f = (2a=(1 ¡ a2)k) dn(ax=k; k); k =

p
2a=

p
a2 + 1; by Ln the warped

product n-manifold R£sech(x) Rn¡1; and by F n® the n-manifold R£Hn¡1(¡1)
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with metric g = ds2 + ®
®¡1g¡1 for ® > 1

The Dna ; F n; Ln are complete Riemannian n-manifolds, but Pna and Cna are not
complete. Topologically, Sn is the two point compactification of both P na and Cna .
The Riemannian metrics defined on Pna and Cna can be extended smoothly to their
two point compactification Sn. We denote by P̂ na and Ĉna the Sn together with the
Riemannian metrics given by the extensions of the metrics on P na and Cna to Sn,
respectively (see [6, 10] for details).

Let Ana (a > 1); Bna (0 < a < 1);Gn ;Hn
a (a > 0) and Y na (0 < a < 1) denote

the warped product manifolds:

R£p
a2¡1 cosh x S

n¡1(1);
¡¡ ¼

2 ;
¼
2

¢£p
1¡a2 cos x S

n¡1(1);

R£coshx En¡1; R£p
a2+1 cosh x H

n¡1(¡1); (0;1)£p
1¡a2 sinhx S

n¡1(1);

respectively. Ana ;Gn;Hn
a are complete Riemannian manifolds. Sn is the two point

compactification of Bna . Similar to P na and Cna , the warped metric on Ban can be
extended smoothly to its two point compactification. Let B̂na denote the Sn together
with the Riemannian metrics on Sn extended from the metric on Bna (see [11] for
details).

Beside the families defined above, we also need the following families of special
Riemannian manifolds.

We denote by Ena (0 < a < 1) the n-manifold R £ Sn¡1 equipped with
the metric g = (a2k02=k2)nd2(ax=k; k)(dt2 + g1), k =

p
2a=
p

1 + a2; k0 =p
1¡ a2=

p
1 + a2; by Qna (a > 1) the I £ Sn¡1 with g = a2k02 nc2(ax; k)(dt2 +

g1), k =
p
a2 + 1=

p
2a and k0 =

p
a2 ¡ 1=

p
2a; by Rna (a > 1) the n-manifold

I£Hn¡1 equipped with g = a2k02 nc2(ax; k)(dt2+g¡1), k =
p
a2 ¡ 1=

p
2a; k0 =p

a2 + 1=
p

2a; by Sna (a > 0) the n-manifold I £ Rn¡1 with g = 2a2 ds2(
p

2ax;
1=
p

2) (dt2 + g0); by Kn
a (a > 0) the n-manifold R£ Sn¡1 with g = cosh2(t=a)

(dt2 +a2g1); by On the R£Sn¡1 with g = ds2 +e2sg1; and by Ina the n-manifold
R£ Sn¡1(1) with g = ds2 + a

a¡1g1 for a < 0. Also, for any a > 0, we denote by
Nn
a® the n-manifold (¡a¡1=®; a¡1=®)£Sn¡1 equipped with g = (1¡a2t2®)¡1dt2+

t2g1; by Jna® the n-manifold I £ Sn¡1 with g = (1¡ t2 ¡ a2t2®)¡1dt2 + t2g1; by
Una® the n-manifold I£Rn¡1 with g = (1+ t2¡a2t2®)¡1dt2 + t2g1; by V na® the n-
manifold I£Hn¡1 with g = (t2¡1¡a2t2®)¡1dt2 + t2g¡1. Finally, denote by Zna®
the n-manifold I£Rn¡1 with g==f(2®¡ 2)2t2(1¡a2t(2®¡1)=(2®¡2))g¡1dt2+t2g0:

In the above the open intervals I’s are the maximal open intervals on which the
corresponding metrics g are Riemannian.

5. ROTATION HYPERSURFACES IN REAL SPACE FORMS

We recall what is a rotation hypersurface of a real space form Rn+1(c) with
c 6= 0 following [3]. We always consider Rn+1(c); c 6= 0 as a hypersurface in
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(Rn+2; ds2) as above. Let P 3 be a 3-dimensional linear subspace linear space of
En+2 that intersects Rn+1(c). We denote the intersection by R2(c), if c < 0 we
take only the upper part. Let P 2 be any linear subspace in P 3. We recall that any
isometry of Rn+1(c) is the restriction to Rn+1(c) of an orthogonal transformation of
(Rn+2; ds2), and conversely. Let O(P 2) be the group of orthogonal transformations
(with positive determinant) that leave P 2 pointwise fixed. We take any curve ° in
R2(c) which does not intersect P 2. The orbit of ° under O(P 2) is called the
rotation hypersurface with profile curve ° and axis P 2. The orbit of °(s) for a
fixed s is a sphere, and if c < 0, then this sphere is elliptic, hyperbolic, or parabolic
according to P 2 respectively being Lorentzian, Riemannian, or degenerate.

In order to give a parametrization of a rotation hypersurface of the different
types, we introduce the vector u 2 P 3 such that P 2 coincides with u? = fv 2
P 3 j hv;ui = 0g. We can always assume that u has length 1, ¡1, or 0, according to
P 2 respectively being Lorentzian, Riemannian, or degenerate, and that hu; ° 0i > 0.
Let ± = hu;ui. We define the map Q as the orthogonal projection of P 3 on u? if
± 6= 0 and as the identity map of P 3 if ± = 0. Further, let Pn¡1 be the orthogonal
complement of P 3 in Rn+2 and let Pn be the linear space, spanned by Pn¡1 and
u. If ± = 1 (resp. ± = ¡1), then P n is Riemannian (resp. Lorentzian) and we
can define a mapping Á of Rn¡1(±) into Pn by considering Rn¡1(±) as a unit
hypersphere in Pn. If ± = 0, then we can define a mapping Á of Rn¡1(0) into Pn
by identifying Rn¡1(0) and Pn¡1 and defining

(5:1) Á(p) = p¡ 1

2
hp; piu:

Then a parametrization of the rotation hypersurface of ° around the axis P 2 is

(5:2) f(s; p) = Q(°(s)) + h°(s);uiÁ(p):

6. CONFORMALLY FLAT IDEAL HYPERSURFACES IN REAL SPACE FORMS

The main purpose of this section is to prove the following basic properties of
conformally flat ideal hypersurfaces in real space forms.

Proposition 6.1. Let M be a conformally flat ideal hypersurface of a real
space form Rn+1(c) (n ¸ 2). Then M is a quasi-umbilical hypersurface such that,
up to permutations, the principal curvatures are given by

(6:1) ∙1 = ®¹; ∙2 = ¢ ¢ ¢ = ∙n = ¹

at each point p 2M , where ® is an integer given by one of the following:
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1: ® = 0 or 1 for n ¸ 3 and ® = 1 (® 6= 0) when n = 2;

2: ® = 2 and n+ 1 is not a prime;

3: n ¸ 4 and ® is a positive integer satisfying

(6:2) ® = ms¡ n+ 1 and n¡ 1 ¸ ® ¸ 3

for some positive integers s;m with m ¸ 2 and (m¡ 1)s < n;
4: n ¸ 4 and ® is a negative integer ¸ 3¡ n.

Proof. Assume that M is a conformally flat ideal hypersurface of a real space
form Rn+1(c) with n ¸ 2. It follows from Theorem 2.2 that M is ideal associated
with ; 2 S(n) if and only if M is totally umbilical.

Case (a): n = 2. In this case, we have k = 0 and S(n) = f;g. Thus, M is
ideal and totally umbilical. So, we get ® = 1.

Case (b): n = 3. In this case, we have S(n) = f;; (2)g. Hence, M is ideal
if and only if M is totally umbilical or (2)-ideal. If M is (2)-ideal, Lemma 5 of
[11] implies that M is quasi-umbilical. Thus, the three principal curvatures of M
are given either by 0; ¹; ¹ or by 2¹; ¹; ¹. Thus, we have ® = 0, 1 or 2.

Case (c): n ¸ 4. In this case, by a well-known result of Cartan and Schouten,
M is quasi-umbilical (see [4]). Hence, there exists a principal curvature, say ¹, of
multiplicity at least n¡ 1. If M is totally umbilical, we have ® = 1.

If M is non-totally umbilical, the multiplicity of ¹ is n¡ 1 on some nonempty
open subset U . Let ¸ denote the other principal curvature with multiplicity one so
that ¸ 6= ¹ on U and ¸ = ¹ on M ¡U . Without loss of generality, we may put

(6:3) ∙1 = ¸; ∙2 = ¢ ¢ ¢ = ∙n = ¹:

SinceM is ideal, Theorem 2.2 implies that there is (n1; : : : ; nk) 2 S(n) with k ¸ 2
such that the condition (2.13) holds.

We put m = k + n¡ (n1 + ¢ ¢ ¢+ nk) and nk+1 = ¢ ¢ ¢ = nm = 1. By applying
(2.13) and (6.3), we find

(6:4) ¸ = ®¹; n2 = ¢ ¢ ¢ = nm;

where

(6:5) ® = n2 + 1¡ n1:
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Since ® is an integer by (6.5), the continuity of ¸ and ¹ imply that ® is a global
constant. Also from (6.4) and the definition of (n1; : : : ; nm), we find

(6:6) n1 + (m¡ 1)n2 = n;

If ¹ = 0, then (6.3) and (6.4) imply that M is totally geodesic which is a
contradiction. Hence, we have ¹ 6= 0 and ® 6= 1.

Case (c.1): ® ¸ 3. From (6.6) we have n1 = n ¡ (m ¡ 1)s, with s = n2.
Substituting this into (6.5) we obtain ® = ms ¡ n + 1. Since n1 ¸ 1, we get
n > (m ¡ 1)s. Clearly, we also have ® ∙ n ¡ 1 from (6.5), with the equality
® = n¡ 1 holding if and only if n2 = n¡ 1 and n1 = 1. This gives Case (3).

Case (c.2): ® = 2, In this case, (6.3) and (6.5) yield n2 = n1 +1. Combining
this with (6.6), we obtain n+ 1 = (n1 + 1)m. So, n+ 1 is not a prime. This gives
Case (2).

Case (c.3): ® < 0. The smallest possible integer of ® = n2 + 1 ¡ n1 is
obtained from n2 = 1 and n1 = n¡ 1. So, we get ® ¸ 3¡ n. This gives Case
(4).

Proposition 6.1 implies immediately the following.

Proposition 6.2. The only minimal conformally flat ideal hypersurfaces in a
real space form are totally geodesic hypersurfaces.

Example 6.1. For n = 4, 5, 6, 7 or 8, Proposition 6.1 implies that the only
values of ® are the following:

(6:7)

n = 4; ® = ¡1; 0; 1; 3;
n = 5; ® = ¡2; ¡1; 0; 1; 2; 4;
n = 6; ® = ¡3; ¡2; ¡1; 0; 1; 3; 5;
n = 7; ® = ¡4; ¡3; ¡2; ¡1; 0; 1; 2; 3; 4; 6;
n = 8; ® = ¡5; ¡4; ¡3; ¡2; ¡1; 0; 1; 2; 3; 5; 7:

Example 6.2. When n is an even integer¸ 4, every odd integer in f1; 3; 5; : : : ;
n ¡ 1g is a possible value for ®. Similarly, when n is an odd integer ¸ 3, every
even integer in f2; 4; : : : ; n¡ 1g is a possible value for ®. In particular, for any
n ¸ 2, n¡ 1 always occurs as a possible value of ® . Furthermore, when n is an
odd integer ¸ 7, 3 is a possible value of ® if and only if n+ 2 is not a prime.

Let M be a rotation hypersurface with profile curve ° in a real space form
Rn+1(c). If we assume that s is the arc length of ° , then the rotation hypersurface
Mn is intrinsically the warped product I £½ Rn¡1(±), where I is an open interval
of R and ½ is defined by ½(s) = h°(s);ui (see [3, (3.9)]).
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The second fundamental form of M is then given by

(6:8) h
³ @
@s
;
@

@s

´
=

½00(s) + c½p
± ¡ c½2 ¡ ½02 »;

(6:9) h(X;Y ) = ¡
p
± ¡ c½2 ¡ ½02(s)

½
hX;Y i »

for X and Y tangent to Rn¡1(±), where » is a unit normal vector field of M in
Rn+1(c) (see [3, (3.10)]).

Lemma 6.1. Let M be a conformally flat ideal hypersurface in a real space
form Rn+1(c) with n ¸ 3 so that M is a rotation hypersurface with profile curve
°. If ½0(s) 6= 0, then, up to sign, the arc length function s of ° is given by

(6:10) s(x) =

Z x

a

d½p
± ¡ c½2 +A½2®

;

where a and A are constants and ® is an integer listed in Proposition 6.1, and x
is the height function of ° given by h°(s);ui.

Proof. Under the hypothesis of the lemma, we know from (6.8) and (6.9) that
the principal curvatures of M are given by

(6:11) ∙1 =
½00 + c½p
± ¡ c½2 ¡ ½02 ; ∙2 = ¢ ¢ ¢ = ∙n = ¡

p
± ¡ c½2 ¡ ½02

½
:

Comparing this with (6.1), we find

(6:12) ½½00 + c(1¡ ®)½2 + ®± ¡ ®½02 = 0:

After solving (6.12), we find

(6:13) ½02(s) = ± ¡ c½2 +A½2®;

where A is a constant. From (6.13) we obtain formula (6.10) for the arc length
function of the profile curve ° in terms of x.

7. CONFORMALLY FLAT IDEAL HYPERSURFACES IN EUCLIDEAN SPACES

Example 7.1. For each integer n ¸ 2 and each positive real number a, there
is a well-known Lagrangian immersion from the n-sphere Sn into the complex
Euclidean n-space Cn defined by

(7:1) wa(y0; y1; : : : ; yn) =
a

1 + y2
0

(y1; : : : ; yn; y0y1; : : : ; y0yn) ;
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where y2
0 + y2

1 + ¢ ¢ ¢ + y2
n = 1. This immersion wa has a unique self-intersection

point at wa(¡1; 0; : : : ; 0) = wa(1; 0; : : : ; 0).
The Sn together with the metric induced from the Whitney immersion wa is

called a Whitney n-sphere which is denoted by Wn
a . The Whitney n-sphere Wn

a is
a conformally flat n-manifold.

The following theorem completely classifies conformally flat ideal hypersurfaces
in Euclidean spaces.

Theorem 7.1. Let M be a conformally flat hypersurface in En+1 (n ¸ 2).
Then M is an ideal hypersurface if and only if, up to rigid motions of En+1, one
of the following eight cases occurs:

(1) n ¸ 2 and M is immersed as an open portion of a hyperplane.

(2) n ¸ 2 and M is immersed as an open portion of a hypersphere.

(3) n ¸ 3 and M is immersed as an open portion of a spherical hypercylinder
Sn¡1 £R.

(4) n ¸ 3 and M is immersed as an open portion of a round hypercone.

(5) n ¸ 3, n+ 1 is not a prime, M is an open part of a Whitney n-sphere Wn
a

for a > 0, and the immersion x : W n
a ! En+1 is given by

(7:2) x =

Ã
1

2

Z t

0
sd 2

Ãp
2

a
u

!
du; ay1sd

Ãp
2

a
t

!
; : : : ; aynsd

Ãp
2

a
t

!!
;

for y2
1 + : : : + y2

n = 1=2, where k = 1=
p

2 is the modulus of the Jacobi’s
elliptic function.

(6) n ¸ 4, M is an open portion of Kn
a for some a > 0, and the immersion

x : Kn
a ! En+1 is the hypercaternoid given by

(7:3) x(t; y1; : : : ; yn) =

µ
t; ay1 cosh

µ
t

a

¶
; : : : ; ayn cosh

µ
t

a

¶¶
for y2

1 + : : :+ y2
n = 1:.

(7) n ¸ 4, M is an open portion of Nn
a® for a > 0, and

(7:4) x(t; y1;: : :; yn)=

µ
at®+1

®+1
F

µ
1

2
;
®+1

2®
;
3®+1

2®
; a2t2®

¶
; ty1: : :; tyn

¶
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for y2
1 + : : : + y2

n = 1, where F is the hypergeometric function defined by
(3:16) and ® is a positive integer in [3; n¡ 1] such that ® = ms¡n+ 1 for
some positive integers s, m with m ¸ 2 and (m¡ 1)s < n.

(8) n ¸ 5, M is an open portion of Nn
a® for some a > 0 and negative integer

® 2 [3¡ n;¡2], and the immersion is given by

(7:5) x(t; y1; : : : ; yn) =

µ
at®+1

®+ 1
F

µ
1

2
;
®+ 1

2®
;
3®+ 1

2®
; a2t2®

¶
; ty1 : : : ; tyn

¶
for y2

1 + : : :+ y2
n = 1.

Proof. Assume that M is a conformally flat ideal hypersurface of En+1. If
n = 2, we already know in the proof of Proposition 6.1 that the immersion is totally
umbilical. So, we have either Case (1) or Case (2) of the theorem for n = 2.

Now, let us assume that n ¸ 3. Then Proposition 6.1 implies that the principal
curvatures of M satisfies ∙1 = ®¹;∙2 = ¢ ¢ ¢ = ∙n = ¹; where ® is one of the
integers listed in Proposition 6.1. By applying Theorem 4.2 of [3] or Proposition 3
of [17], we know that M is an open part of a hypersurface of revolution in En+1

whose profile curve is congruent to the graph of a function y = Á(x) satisfying

(7:6) ÁÁ00 + ®(1 + Á02) = 0:

Without loss of generality, we may assume that Á ¸ 0. After solving (7.6) for Á0(x),
we find

(7:7) Á¡® = a2
p

1 + (Á0)2;

for some non-negative constant a. By solving (7.7), we find

(7:8) c+ x =

8>><>>:
Z y

0

at®dtp
1¡ a2t2®

; when ® ¸ 2 and 0 ∙ y < a¡®¡1;

§
Z y

a¡®¡1

at®dtp
1¡ a2t2®

; when ® ∙ ¡1 and y > a¡®¡1 ,

where c is a constant. Thus, after a suitable choice of Euclidean coordinate system,
we obtain

(7:9) x =

8>><>>:
Z y

0

at®dtp
1¡ a2t2®

; when ® ¸ 2 and 0 ∙ y < a¡®¡1;

¡
Z 1

y

at®dtp
1¡ a2t2®

; when ® ∙ ¡1 and y > a¡®¡1 .
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Case (a): ® = 1. In this case, M is totally umbilical. Thus, M is an open
part of a hyperplane or of a hypersphere. Thus, we obtain Cases (1) or (2) of the
theorem. Conversely, we already know that every totally umbilical hypersurface in
a Euclidean space is a conformally flat hypersurface which is ideal.

Case (b): ® = 0. In this case, the profile curve is contained in a line.
Thus, M is an open part of a hyperplane, a spherical hypercylinder, or a spherical
hypercone. Thus, we obtain Cases (1), (3), or (4) of the theorem. Conversely, such
hypersurfaces are conformally flat hypersurfaces which are (2)-ideal.

Case (c): ® = ¡1. In this case, Proposition 6.1 yields n ¸ 4. Moreover, (7.9)
implies that the profile curve is a catenary, i.e., y = Á(x) = a cosh(x=a). Thus, M
is an open portion of a hypercaternoid. It is easy to verify that the induced metric
is given by g = cosh2

¡
t
a

¢
(dt2 + a2g1). This gives Case (6) of the theorem.

Conversely, it is easy to see that a hypercaternoid defined by (7.3) is a confor-
mally flat hypersurface which is (3)-ideal.

Case (d): ® = 2 and n+ 1 is not a prime. In this case, (7.9) reduces to

(7:10) x = Á(y) =

Z y

0

at2dtp
1¡ a2t4

; 0 ∙ y < 1p
a
:

After making the substitution t = (1=
p

2a)sd(
p

2au) and applying (3.9) and the
fourth and fifth equations in (3.8), we find

x = Á(y) =
1

2

Z 1p
2a

sd¡1
¡p

2ay
¢

0
sd2(

p
2au)du:

Consequently, the ideal hypersurface M is given by

(7:11) x(y; y1; : : : ; yn) =

Ã
1

2

Z 1
p

2asd¡1(
p

2ay)

0
sd2

¡p
2au

¢
du; yy1; : : : ; yyn

!
;

where y2
1 + : : :+ y2

n = 1. Therefore, we obtain (7.2) after making the substitution
y = 1p

2a
sd

¡p
2at

¢
and replacing yi and

p
a by

p
2yi and a¡1, respectively. Hence,

we obtain Case (5).
Since n+1 is not a prime, we may put n+1 = qk; q; k ¸ 2. It is straightforward

to verify that the hypersurface defined by (7.11) is a conformally flat hypersurface
which is (n1; : : : ; nk)-ideal with n1 = q ¡ 1; n2 = ¢ ¢ ¢ = nk = q.

Case (e): n ¸ 4 and ® 6= ¡1; 0; 1; 2. In this case, either ® is a positive integer
in [3; n¡ 1] such that ® = ks¡ n + 1 for some positive integers s; k with k ¸ 2
and (k ¡ 1)s < n or ® is a negative integer in [3¡ n;¡2].
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We consider these two cases separately.

Case (e.1): n ¸ 4 and ® 2 [3; n¡ 1]. This case occurs only when ® is a
positive integer in [3; n¡ 1] such that ® = ms¡n+1 for some positive integers s,
m with m ¸ 2 and (m¡ 1)s < n. By making the substitution t = yu, we obtain

(7:12)

Z y

0

t®dtp
1¡ a2t2®

=

Z 1

0

u®y®+1dup
1¡ a2y2®u2®

:

Next, by making the substitution u = z1=2®, we getZ 1

0

u®y®+1dup
1¡ a2y2®u2®

= y®+1

2®

Z 1

0
z

®+1
2®

¡1
¡
1¡ a2y2®z

¢¡ 1
2 dz

=
y®+1

®+ 1
F

µ
1

2
;
®+ 1

2®
;
3®+ 1

2®
; a2y2®

¶
;

where we have applied formula (3.16) of hypergeometric function. Consequently,
if ® ¸ 3, we obtain from (7.9) that

(7:13) x =
ay®+1

®+ 1
F

µ
1

2
;
®+ 1

2®
;
3®+ 1

2®
; a2y2®

¶
:

Consequently, after a suitable translation, the hypersurface is an open portion of a
hypersurface of rotation defined by

(7:14) x(t; y1; : : : ; yn) =

µ
at®+1

®+ 1
F

µ
1

2
;
®+ 1

2®
;
3®+ 1

2®
; a2t2®

¶
; ty1; : : : ; tyn

¶
for y2

1 + : : :+ y2
n = 1. So, we obtain Case (7). It is straightforward to verify that

the hypersurface defined by (7.14) is (n1; : : : ; nm)-ideal with n1 = n¡ (m¡ 1)s
and n2 = ¢ ¢ ¢ = nm = s when s > 1; and it is (n1)-ideal when s = 1.

Case (e.2): n ¸ 5 and ® 2 [3 ¡ n;¡2]. Making the substitution t = y=u
yields

(7:15)

Z 1

y

t®dtp
1¡ a2t2®

= y®+1

Z 1

0

du

u®+2
p

1¡ a2y2®u¡2®
:

Next, by making the substitution u = z¡1=2®, we getZ 1

0

du

u®+2
p

1¡ a2y2®u¡2®
= ¡ 1

2®

Z 1

0

z
1¡®
2® dzp

1¡ a2y2®z
:
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Consequently, we obtain from (7.8) that

§(c+ x) =
ay®+1

®+ 1
F

µ
1

2
;
®+ 1

2®
;
3®+ 1

2®
; a2y2®

¶
:

Consequently, after a suitable translation, the hypersurface is an open portion of a
hypersurface of rotation defined by

(7:16) x(t; y1; : : : ; yn) =

µ
at®+1

®+ 1
F

µ
1

2
;
®+ 1

2®
;
3®+ 1

2®
; a2t2®

¶
; ty1; : : : ; tyn

¶
for y2

1 + : : : + y2
n = 1. It follows from (7.16) that the metric on M is given by

g =
¡
1¡ a2t2®

¢¡1
dt2 + t2g0. Hence, we obtain Case (8).

Conversely, it is straightforward to verify that the hypersurface defined by (7.16)
is a (2¡ ®)-ideal conformally flat hypersurface.

Remark 7.1. Theorem 7.1 shows that all values of ® listed in Proposition 6.1
do occur.

Corollary 7.1. Let M be a simply-connected open portion of a Whitney n-
sphere Wn

a . Then M admits an ideal isometric immersion into En+1 if and only
if n + 1 is not a prime. In particular, every open portion of an odd-dimensional
Whitney sphere Wn

a can be isometric immersed in a Euclidean space as an ideal
hypersurface.

Since a rotation hypersurface in En+1 is minimal if and only if the integer ®
given by (6.4) is 1¡n. Thus, from the proof of Theorem 7.1 we have the following.

Proposition 7.1. A rotation hypersurface M in En+1 is minimal if and only
if, up to rigid motions of En+1, the hypersurface M is an open portion of Nn

a 1¡n
for some a > 0 and the immersion is given by
(7:17)

x(t; y1; : : : ; yn) =

µ
at2¡n

2¡ nF
µ

1

2
;

2¡ n
2¡ 2n

;
4¡ 3n

2¡ 2n
; a2t2¡2n

¶
; ty1; : : : ; tyn

¶
;

y2
1 + : : :+ y2

n = 1:

Similar results also hold for minimal rotation hypersurfaces in Sn+1 and Hn+1.

8. CONFORMALLY FLAT IDEAL HYPERSURFACES IN SPHERES

In this section we classify conformally flat ideal hypersurfaces in spheres.

Theorem 8.1. Let x : M ! Sn+1(1) ½ En+2 be an isometric immersion of a
conformally flat n-manifold with n ¸ 2. Then x is ideal if and only if, up to rigid
motions, one of the following seven cases occurs.
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(1) n ¸ 2, M is an open portion of Sn(a); a ¸ 1, and x is totally umbilical.
(2) n ¸ 3, M is an open portion of B̂na , a 2 (0; 1), and

(8:1)
x(t; y1; : : : ; yn) = cos t

³
tan t; a;

p
1¡ a2 y1; : : : ;

p
1¡ a2 yn

´
;

y2
1 + y2

2 + ¢ ¢ ¢+ y2
n = 1:

(3) n ¸ 3, n + 1 is not a prime, M is an open portion of P̂nb for some b > 1,
and the immersion is given by

(8:2)

x(t; y1; : : : ; yn) =
1

bk0

Ã
y1 cn(bt); : : : ; yn cn(bt);p

b2k02 ¡ cn2(bt) cos

µ
k0

k
t+

i

2
ln

£(bt¡ °)

£(bt+ °)
+ i bZ(°)t

¶
;p

b2k02 ¡ cn2(bt) sin

µ
k0

k
t+

i

2
ln

£(bx ¡ °)

£(bt+ °)
+ i bZ(°)t

¶ !
;

for y2
1 + y2

2 + ¢ ¢ ¢ + y2
n = 1; where k =

p
b2 ¡ 1=

p
2b; k0 =

p
b2 + 1=

p
2b

and ° = sn¡1
¡
i=bk2

¢
.

(4) n ¸ 4, M is an open portion of In® for some negative integer ® 2 [3¡n;¡1].
Moreover, the immersion is given by

(8:3)
x(t; y1; : : : ; yn) = 1p

1¡®
³

cos
¡p

1¡ ®s¢; cos
¡p

1¡ ®s¢;
p¡®y1; : : : ;

p¡®yn
´
; y2

1 + y2
2 + ¢ ¢ ¢+ y2

n = 1:

(5) n ¸ 4, M is an open portion of Enb ; b 2 (0; 1), and

(8:4)

x(t; y1; : : : ; yn) =
1

k

Ã
bk0 nd

µ
b

k
t

¶
y1; : : : ; bk

0 nd

µ
b

k
t

¶
yn;s

k2 ¡ b2k02nd2

µ
b

k
t

¶
cos

Ã
k0t¡ i

2 ln
£

³
b
k
t¡°

´
£

³
b
k
t+°

´ ¡ i bkZ(°)t

!
;

s
k2 ¡ b2k02nd2

µ
b

k
t

¶
cos

Ã
k0t¡ i

2 ln
£

³
b
k
t¡°

´
£

³
b
k
t+°

´ ¡ i bkZ(°)t

!!
;

for y2
1 +y2

2 + ¢ ¢ ¢+y2
n = 1, where k =

p
2b=
p

1 + b2; k0 =
p

1¡ b2=p1 + b2

are the modulus and the complementary modulus of Jacobi’s elliptic functions
and ° = sn¡1 (k=b).
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(6) n ¸ 4, M is an open portions of Jna® for some a > 0 and some integer
® = ms¡n+ 1 2 [3; n¡ 1], where s and m are positive integers satisfying
m ¸ 2 and (m¡ 1)s < n. Moreover, the immersion is given by

(8:5) x =
³p

1¡t2 cos
¡
B1;1(a; ®; t)

¢
;
p

1¡t2 sin
¡
B1;1(a; ®; t)

¢
; ty1;: : : ;tyn

´
;

for y2
1 + y2

2 + ¢ ¢ ¢+ y2
n = 1; where B1;1 is defined by (3.17).

(7) n ¸ 5, M is an open portions of Jna® for some integer ® 2 [3¡ n;¡2] and
for a 2

³
0; (¡®)¡®=2

(1¡®)(1¡®)=2

´
. Moreover, the immersion is given by

(8:6) x =
³p

1¡t2 cos
¡
B1;1(a; ®; t)

¢
;
p

1¡t2 sin
¡
B1;1(a; ®; t)

¢
; ty1; : : : ; tyn

´
for y2

1 + y2
2 + ¢ ¢ ¢+ y2

n = 1.

Proof. Assume that n ¸ 2 and x : M ! Sn+1(1) ½ En+2 is an ideal
isometric immersion of a conformally flat n-manifold M into Sn+1(1)

When n = 2, the immersion x is totally umbilical. Thus, we obtain Case (1).
When n = 3, we have S(n) = f;; (2)g. Thus, the immersion is either totally

umbilical or (2)-ideal. If it is totally umbilical, we obtain Case (1). If it is (2)-ideal
and non-totally umbilical, then, by Theorem 5 of [11], we get Cases (2) and (5).

Next, assume that n ¸ 4. From Proposition 6.1, we have

(8:7) ∙1 = ®¹; ∙2 = ¢ ¢ ¢ = ∙n = ¹

for some function ¹ and an integer ® given in the list of Proposition 6.1.
If we have ® = 1 or ¹ = 0, (8.7) implies that the immersion is totally umbilical.

So, we obtain Case (1).
Now, assume that ® 6= 1 and ¹ 6= 0. Then Theorem 4.2 of [3] implies that M

is a rotation hypersurface in Sn+1(1). In this case, the function ± defined in Section
4 is equal to 1 and the profile curve °(s) =

¡
x(s); y(s); z(s)

¢
of M satisfies

(8:8) x2(s) + y(s)2 + z(s)2 = 1:

Up to rigid motions, the rotation hypersurface M in Sn+1(1) ½ En+2 is given by

(8:9) x(s; y1; : : : ; yn) =
¡
y(s); z(s); x(s)y1; : : : ; x(s)yn)

with y2
1 + ¢ ¢ ¢+ y2

n = 1. From (8.8), we also have x2 ∙ 1. If x is constant, say b,
then the principal curvature of the hypersurface M in Sn+1(1) are given by

(8:10) ∙1 =
bp

1¡ b2 ; ∙2 = ¢ ¢ ¢ = ∙n = ¡
p

1¡ b2
b
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which implies b 6= 0; 1. Thus, by applying condition ∙1 = ®∙2 from Proposition
6.1, we get b2 = ®=(® ¡ 1). So, ® is negative since b2 < 1. Thus, by applying
Proposition 6.1 again, we see that ® is a negative integer ¸ 3¡n. Hence, by (8.8),
we may put y = cos t=

p
1¡ ®; z = sin t=

p
1¡ ®: So, we obtain from (8.9) that

(8:11) x(t; y1; : : : ; yn) =

Ã
cos tp
1¡ ®;

sin tp
1¡ ®;

r
®

®¡ 1
y1; : : : ;

r
®

®¡ 1
yn

!

for y2
1 +¢ ¢ ¢+y2

n = 1: Thus, we obtain Case (4) after the substitution: t =
p

1¡ ®s.
Next, assume that x is non-constant. Because x is the height function of

the profile curve, we may assume x ¸ 0 and put y =
p

1¡ x2 cosÁ(x); z =p
1¡ x2 sinÁ(x) for some function Á(x). From (8.8) we see that the arc length

function s of the profile curve ° satisfies

(8:12)
³ds
dx

´2
= 1 + y0(x)2 + z0(x)2:

By applying Lemma 6.1 and (8.12), we find

(8:13) Á02 =
¡Ax2®

(1¡ x2)2(1¡ x2 +Ax2®)

which implies A ∙ 0, since 0 ∙ x ∙ 1. So, we may put A = ¡a2 with a ¸ 0.
From (8.13) we obtain

Á(x) = §
Z x at®dt

(1¡ t2)
p

1¡ t2 ¡ a2t2®
:

When ® ¸ 0, without loss of generality we may assume that

(8:14) Á(x) =

Z x

0

at®dt

(1¡ t2)
p

1¡ t2 ¡ a2t2®
:

Since ® 6= 1, Proposition 6.1 implies that ® is one of the following integers:

(a) ® = 0;

(b) ® = 2 and n+ 1 is not a prime;

(c) n ¸ 4 and ® is a positive integer in [3; n¡ 1] satisfying ® = ms¡n+ 1 for
some positive integers s;m with k ¸ 2 and (m¡ 1)s < n;

(d) n ¸ 4 and ® is a negative integer in [3¡ n;¡1].
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We consider these four cases separately.

Case (a): ® = 0. In this case, we have

(8:15) Á(x) =

Z x

0

adt

(1¡ t2)
p

1¡ a2 ¡ t2 = ¡ tan¡1

Ãp
1¡ a2 ¡ x2

ax

!
:

From y =
p

1¡ x2 cosÁ(x); z =
p

1¡ x2 sinÁ(x) and (8.15), we find

(8:16) y =
axp

1¡ a2
; z = ¡

p
1¡ a2 ¡ x2

p
1¡ a2

:

After making the substitution: x =
p

1¡ a2 cos t, (8.16) becomes x =
p

1¡ a2 cos t;
y = a cos t; z = ¡ sin t: Thus, we see from (8.9) that, up to rigid motions, M is
given by

(8:17) x(t; y1; : : : ; yn) = cos t
³

tan t; a;
p

1¡ a2 y1; : : : ;
p

1¡ a2 yn
´

for y2
1 + y2

2 + ¢ ¢ ¢+ y2
n = 1, and a 2 [ 0; 1). This gives Case (2) for a 2 (0; 1).

When a = 0, M is totally geodesic in Sn+1(1) which is in Case (1).

Case (b): ® = 2 and n+ 1 is not a prime. In this case, (8.14) reduces to

(8:18) Á(x) =

Z x

0

at2dt¡
1¡ t2¢p

1¡ t2 ¡ a2t4
;

which implies 0 < x <
pp

1 + 4a2 ¡ 1=
p

2a. If we put

(8:19) b =
¡
1 + 4a2

¢1=4
; k =

p
b2 ¡ 1=

p
2b; k0 =

p
b2 + 1=

p
2b;

then (8.18) becomes

(8:20) Á(x) =

Z x

0

at2dt¡
1¡ t2¢q¡

1¡ b2k02t2
¢¡

1 + b2k2t2
¢ :

If we make the substitution: t = cn(bu)=bk0, we obtain from (8.20) that

(8:21) Á(x) = ¡
Z (1=b)cn¡1(bk0x)

K=b

a cn2(bu)

b2
¡
k02 ¡ b¡2cn2(bu)

¢du;
where k is the the modulus and K is the quarter-period of the Jacobi’s function
cn(bu). (8.21) can be put in the form:

(8:22) Á(x) = ¡
Z (1=b)cn¡1(bk0x)

K=b

b¯
p

(k2 + ¯2)(k02 ¡ ¯2)cn2(bu)

k02 ¡ ¯2cn2(bu)
du;
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where ¯ = 1=b. Hence, by applying formulas (6.15)-(6.18) of [11, page 485], we
obtain, up to constants, that

Á(x) = ¡ k
0

bk
cn¡1(bk0x)¡ i

2

µ
ln

£(cn¡1(bk0x)¡ °)

£(cn¡1(bk0x) + °)
+ 2 Z(°)cn¡1(bk0x)

¶
where £(u) = £(u; k) is the theta function and Z(u) = Z(u; k) the zeta function
and ° = sn¡1

¡
i=bk2

¢
. (Notice that ® in (8.23) and (8.25) of [11] shall read a.)

Thus, after making the substitution t = (1=b)cn¡1(bk0x) and choosing a suitable
Euclidean coordinate system, we obtain Case (3) from (8.9).

Case (c): n ¸ 4, 3 ∙ ® ∙ n ¡ 1 and ® = ms ¡ n + 1 for some positive
integers s;m with k ¸ 2 and n > (m¡ 1)s. We obtain from (3.17), (8.9), and
(8.14) that

x =
³p

1¡ t2 cos
¡
B1;1(a; ®; t)

¢
;
p

1¡ t2 sin
¡
B1;1(a; ®; t)

¢
; ty1; : : : ; tyn

´
for y2

1 + y2
2 + ¢ ¢ ¢+ y2

n = 1. This gives Case (6).

Case (d.1): n ¸ 4 and ® = ¡1. From (8.14) we get

Á(x) =

Z xr
1¡p

1¡4a2

2

adt

(1¡ t2)
p
t2 ¡ t4 ¡ a2

for
q

1¡p
1¡4a2

2 < x <
q

1+
p

1¡4a2

2 : If we put k =
p

2b=
p

1 + b2; k0 =p
1¡ b2=p1 + b2 and b =

¡
1 ¡ 4a2

¢1=4
; then we obtain after making the sub-

stitution: t = 1=u that

(8:23)

Á(x) =

Z 1=x

k

bk0

¡au2du¡
u2 ¡ 1

¢q¡
1¡ 1¡b2

2 u2
¢¡

1+b2

2 u2 ¡ 1
¢ ;

=

Z 1=x

k
bk0

¡ak0u2du¡
u2 ¡ 1

¢q¡
1¡ b2k02

k2 u2
¢¡
b2k02

k2 u2 ¡ k02¢ :
Hence, after making the second substitution: v = bk0u=k, we get

(8:24) Á(x) = ¡
Z bk0=kx

1

ak3v2dv

b3(k02 ¡ b¡2k2v2)
p

(1¡ v2)(v2 ¡ k02)
:

Therefore, after making the third substitution: v = dn(bu=k) and applying formulas
(3.8) and (3.9), we obtain

(8:25) Á(x) = ¡
Z (k=b) dn¡1(bk0=kx)

0

a¯2 dn2
³
bu
k

´
¯2dn2

³
bu
k

´
¡ k02

du;
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where ¯ = k=b. (8.25) can be put in the form:

(8:26) Á(x) = ¡
Z (k=b) dn¡1(bk0=kx)

0

b¯
p

(¯2 ¡ 1)(¯2 ¡ k02)dn2
¡
bu
k

¢
k
³
¯2dn2

¡
bu
k

¢¡ k02
´ du:

Hence, by applying formulas (6.34)-(6.36) of [11, page 485], we find

Á(x) = ¡k
0k
b

dn¡1

µ
bk0

kx

¶
+

i
2

ln
£

³
dn¡1

³
bk0
kx

´
¡ °

´
£

¡
dn¡1

¡
bk0
kx

¢
+ °

¢ + i Z(°)dn¡1

µ
bk0

kx

¶
;

where ° = sn¡1 (k=b). So, after the final substitution: t = (k=b)dn¡1(bk0=kx), we
obtain Á(x(t)) = ¡k0t+ i

2 ln
³

£
³
b
k t¡ °

´
=£

³
b
k t+ °

´´
+ i b

kZ(°)t: Therefore, up
to rigid motions, we may obtain Case (5) from (8.9).

Case (d.2): n ¸ 5 and ® 2 [3 ¡ n;¡2]. We see that from Remark 8.1 that
a satisfies 0 < a < (¡®)¡®=2

(1¡®)(1¡®)=2 . Also from (3.17), (8.9) and (8.14) we know that
the hypersurface is given by
(8:27)

x =
³p

1¡t2 cos
¡
B1;1(a; ®; t)

¢
;
p

1¡t2 sin
¡
B1;1(a; ®; t)

¢
; ty1; : : : ; tyn

´
for y2

1 + y2
2 + ¢ ¢ ¢+ y2

n = 1. The induced metric on the hypersurface is the the one
given by Jna®. This gives Case (7).

Conversely, it is straightforward to verify that all of the hypersurfaces given in
this theorem are ideal conformally flat hypersurfaces.

Remark 8.1 When ® = ¡¯ < 0, the function f(t) = 1 ¡ t2 ¡ a2t2® is
positive at some point happen only when a < (¯¯=(1 + ¯)(1+¯))1=2. This is due
to the facts: (i) f(0) = ¡a2 < 0, (ii) f 0(t) = 0 only at t0 = §p

¯=(1 + ¯), and
(iii) f(t0) is positive if and only if a < (¯¯=(1 +¯)(1+¯))1=2. So, when ® < 0 and
f(t) = 1¡ t2 ¡ a2t2® is positive on some points, we shall replace the lower limit
of the integral (8.14) by the smallest positive root, say ° of f(t).

9. CONFORMALLY FLAT IDEAL HYPERSURFACES IN HYPERBOLIC SPACES

Theorem 9.1. Let x : M ! Hn+1(¡1) ½ En+2
1 be an isometric immersion

of a conformally flat n-manifold with n ¸ 2. Then x is ideal if and only if, up to
rigid motions, one of the following twenty cases occurs.

(1) n ¸ 2, M is an open portion of Hn(c) for c 2 [¡1; 0), and the immersion
is totally umbilical.
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(2) n ¸ 2, M is an open portion of En, and the immersion is totally umbilical.

(3) n ¸ 2, M is an open portion of Sn(c) for c > 0, and the immersion is totally
umbilical.

(4) n ¸ 3, M is an open portion of Gn, and the immersion is given by

(9:1)
x(t; u1; : : : ; un¡1) = cosh t

¡
1 + 1

2

¡
u2

1 + ¢ ¢ ¢+ u2
n¡1

¢
;

¡ 1
2

¡
u2

1 + ¢ ¢ ¢+ u2
n¡1

¢
; tanh t; u1; : : : ; un¡1

¢
:

(5) n ¸ 3, n+ 1 is not a prime, M is an open portion of Ln, and

(9:2)
x(t; u1; : : : ; un¡1) = sech t

¡
1
4 + cosh2 t+ t2 + u2

1 + ¢ ¢ ¢+ u2
n¡1;

1
4 ¡ cosh2 t¡ t2 ¡ u2

1 ¡ ¢ ¢ ¢ ¡ u2
n¡1;¡t; u1; : : : ; un¡1

¢
:

(6) n ¸ 3, M is an open portion of On, and the immersion is given by

(9:3)
x(s; y1; : : : ; yn) =

³
es + e¡s

2 ;
e¡s

2 ; e
sy1; : : : ; e

syn
´
;

y2
1 + ¢ ¢ ¢+ y2

n = 1:

(7) n ¸ 3, M is an open portion of Ana for a > 1, and

(9:4)
x(t; y1; : : : ; yn) = cosh t

³
a; tanh t;

p
a2 ¡ 1y1 ; : : : ;

p
a2 ¡ 1yn

´
;

y2
1 + ¢ ¢ ¢+ y2

n = 1:

(8) n ¸ 3, M is an open portion of Y na for a 2 (0; 1), and

(9:5)
x (t; y1; : : : ; yn) = sinh t

³
coth t; a;

p
1¡ a2y1; : : : ;

p
1¡ a2yn

´
;

y2
1 + ¢ ¢ ¢+ y2

n = 1:

(9) n ¸ 3, M is an open portion of Hn
a for a > 0, and

(9:6)
x(t; y1; : : : ; yn) = cosh t

³p
1 + a2y1; : : : ;

p
1 + a2yn; a; tanh t

´
;

y2
1 ¡ y2

2 ¡ ¢ ¢ ¢ ¡ y2
n = 1:

(10) n ¸ 3, n+ 1 is not a prime, M is an open portion of F n2 , and

(9:7)
x(s; y1; : : : ; yn) =

³p
2 y1; : : : ;

p
2 yn; cos s; sin s

´
;

y2
1 ¡ y2

2 ¡ ¢ ¢ ¢ ¡ y2
n = 1;

(11) n ¸ 3, n+ 1 is not a prime, M is an open portion of Ĉnb for b > 1, and
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x =
1

bk0

µp
b2k02 + cn2(bt) cosh

µ
k0

k
t¡ 1

2
ln

£(bt¡ °)

£(bt+ °)
¡ bZ(°)t

¶
;

p
b2k02 + cn2(bt) sinh

µ
k0

k
t¡ 1

2
ln

£(bt¡ °)

£(bt+ °)
¡ b Z(°)t

¶
;

y1 cn(bt); : : : ; yn cn(bt)t

!
; y2

1 + y2
2 + ¢ ¢ ¢+ y2

n = 1:

(12) n ¸ 3, n+ 1 is not a prime, M is an open portion of Dnb , b 2 (0; 1), and

(9:8)

x(t; y1; : : : ; yn) = 1
bk0

Ã
k dn

¡
kt
b

¢
y1; : : : ; k dn

µ
kt

b

¶
yn;

q
k2dn2

¡
kt
b

¢¡ b2k02 cos

Ã
k0t¡ i

2
ln

£
¡¡
bt
k

¢¡ °¢
£

¡¡
bt
k

¢
+ °

¢ ¡ i
b

k
Z(°)t

!
;

q
k2dn2

¡
kt
b

¢¡ b2k02 sin

Ã
k0t¡ i

2 ln
£(( bt

k )¡°)
£(( bt

k )+°)
¡ i bk Z(°)t

!!
;

y2
1 ¡ y2

2 ¡ ¢ ¢ ¢ ¡ y2
n = 1:

(13) n ¸ 4, M is an open portion of F n® , and the immersion is given by

(9:9) x = 1p
®¡1

³p
®y1; : : : ;

p
®yn; cos

¡p
®¡ 1 s

¢
; sin

¡p
®¡ 1 s

¢´
for y2

1¡y2
2¡¢ ¢ ¢¡y2

n = 1, where ® is a positive integer in [3; n¡1] such that
® = ms¡n+1 for some positive integers s;m withm ¸ 2 and (m¡1)s < n.

(14) n ¸ 4, M is an open portion of Qnb for b > 1, and

x =

Ãp
1 + b2k02nc2(bt) cosh

µ
k0

k
t¡ 1

2
ln

£(bt¡ °)

£(bt+ °)
¡ bZ(°)t

¶
;

p
1 + b2k02nc2(bt) sinh

µ
k0

k
t¡ 1

2
ln

£(bt¡ °)

£(bt+ °)
¡ bZ(°)t

¶
;

y1 bk
0nc(bt); : : : ; yn bk

0nc(bt)

!
; y2

1 + y2
2 + ¢ ¢ ¢+ y2

n = 1:

(15) n ¸ 4, M is an open portion of Snb for b > 0, and
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x =
p

2bds(
p

2bt)

Ã
1

4
+

sd2(
p

2bt)

2b2
+

1

4

µZ t

0
sd2(

p
2bu)du

¶2

+
n¡1X
i=1

u2
i ;

1

4
¡ sd2(

p
2bt)

2b2
¡ 1

4

µZ t

0
sd2(

p
2bu) du

¶2

¡
n¡1X
i=1

u2
i ;

1

2

Z t

0

sd2(
p

2bu) du; u1; : : : ; un¡1

!

with k = 1=
p

2 as the modulus of the Jacobi’s elliptic functions.

(16) n ¸ 4, M is an open portion of Rnb for b > 1, and

(9:10)

x(t; y1; : : : ; yn) =

Ã
y1bk0nc(bt); : : : ; ynbk0nc(bt);p

b2k02nc2(bt)¡ 1 cos

µ
k0

k
t+

i

2
ln

£(bt¡ °)

£(bt+ °)
+ i bZ(°)t

¶
;

p
b2k02nc2(bt)¡ 1 sin

µ
k0

k
t+

i

2
ln

£(bt¡ °)

£(bt+ °)
+ i bZ(°)t

¶ !
;

y2
1 ¡ y2

2 ¡ ¢ ¢ ¢ ¡ y2
n = 1:

(17) n ¸ 4, M is an open portion of Zna®, and the immersion is given by

(9:11)

x(t; u1; : : : ; un¡1) =

t
1

2®¡2

Ã
1

4
+

n¡1X
i=1

u2
i +t

1
1¡®

Ã
1+

t

(2¡ ®)2
F 2

µ
1

2
;
®¡2

2®¡2
;

3®¡4

2®¡2
; t

¶ !
;

1

4
¡
n¡1X
i=1

u2
i ¡ t

1
1¡®

Ã
1 +

t

(2¡ ®)2
F 2

µ
1

2
;
®¡ 2

2®¡ 2
;

3®¡ 4

2®¡ 2
; t

¶ !
;

t(®¡2)=2(®¡1)

2¡ ® F

µ
1

2
;
®¡ 2

2®¡ 2
;
3®¡ 4

2®¡ 2
; t

¶
; u1; : : : ; un¡1

!
;

where a is a positive number and ® is either a negative integer in [¡2; 3¡n]
or a positive integer in [3; n¡1] such that ® = ms¡n+1 for some positive
integers s;m satisfying m ¸ 2 and (m¡ 1)s < n.

(18) n ¸ 4, M is an open portion of Una® for a > 0, and ® an integer given as in
Case (17), and the immersion is given by
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(9:12)
x(t; y1; : : : ; yn) =

³p
1 + t2 coshB¡1;1(a; ®; t);

p
1 + t2 sinhB¡1;1(a; ®; t); ty1; : : : ; tyn

´
; y2

1 + y2
2 + ¢ ¢ ¢+ y2

n = 1:

(19) n ¸ 4, M is an open portion of V na®, a 2
³

0; 1p
®

¡
(®¡ 1)=®

¢(®¡1)=2
´

and
integer ® = ms ¡ n + 1 2 [3; n¡ 1], where s and m are positive integers
satisfying m ¸ 2 and (m¡ 1)s < n. Moreover, the immersion is given by

(9:13)
x(t; y1; : : : ; yn) =

³
ty1; : : : ; tyn;

p
t2 ¡ 1 cosB¡1;¡1(a; ®; t);

p
t2 ¡ 1 sinB¡1;¡1(a; ®; t)

´
; y2

1 ¡ y2
2 ¡ ¢ ¢ ¢ ¡ y2

n = 1:

(20) n ¸ 5, M is an open portion of V na® for some a > 0 and some integer
® 2 [3¡ n;¡2], and the immersion is given by

(9:14)
x(t; y1; : : : ; yn) =

³
ty1; : : : ; tyn;

p
t2 ¡ 1 cosB¡1;¡1(a; ®; t);

p
t2 ¡ 1 sinB¡1;¡1(a; ®; t)

´
; y2

1 ¡ y2
2 ¡ ¢ ¢ ¢ ¡ y2

n = 1:

Proof. Assume that M is a conformally flat ideal hypersurface of Hn+1(¡1) ½
En+2

1 . When n = 2, we have Cases (1), (2) or (3). When n = 3, the immersion is
either totally umbilical or (2)-ideal. In the first case, we obtain Case (1) for c > ¡1,
Case (2) or Case (3). If it is (2)-ideal and non-totally umbilical, then, by Theorem
6 of [11], we have Cases (4)-(12).

Next, suppose that n ¸ 4. Then, Proposition 6.1 implies that

(9:15) ∙1 = ®¹; ∙2 = ¢ ¢ ¢ = ∙n = ¹;

where ® is an integer given in Proposition 6.1. If we have ® = 1 or ¹ = 0, the
immersion is totally umbilical. So, we obtain Cases (1), (2) or (3) for n ¸ 4. Now,
assume that ® 6= 1 and ¹ 6= 0. Then, Theorem 4.2 of [3] implies that M is a
rotation hypersurface in Hn+1(¡1). Moreover, from Proposition 6.1, we also know
that ® is one of the following integers:

(i) ® = 0;

(ii) ® = 2 and n+ 1 is not a prime;
(iii) n ¸ 4 and ® is a positive integer in [3; n¡ 1] satisfying ® = ms¡n+ 1 for

some positive integers s;m with m ¸ 2 and n > (m¡ 1)s;

(iv) n ¸ 4 and ® is a negative integer in [3¡ n;¡1].
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Let ± be defined as in Section 4. We have ± = 0; 1 or ¡1.

Case (a): ± = 0. In this case, the profile curve ° in the 3-dimensional
Minkowski space-time endowed with metric

(9:16) ds2 = 2dxdy + dz2:

is given by °(s) = (x(s); y(s); z(s)) satisfying

(9:17) 2xy + z2 = ¡1;

If x is constant, (5.8) and (5.9) imply that the principal curvatures are given by
∙1 = ¢ ¢ ¢ = ∙n = ¡1. Thus, M is an open portion of En and immersed as a totally
umbilical hypersurface. Hence, we obtain Case (2) for n ¸ 4. Next, assume that x
is non-constant. Then, we may assume y = y(x); z = z(x). From (9.17) we have

(9:18)
³ ds
dx

´2
= 2y0(x) + z0(x)2:

By applying Lemma 6.1 and (9.18), we find

(9:19)
1

x2 +Ax2®
= 2y0(x) + z0(x)2:

As in Section 7, one may prove that A is non-positive. So we can put A = ¡a2.
On the other hand, (9.17) implies

(9:20) y + xy0 + zz0 = 0:

Computing (z0x¡ z)2 and applying (9.19) and (9.20) yield

(9:21) z0x¡ z =
ax®p

x2 ¡ a2x2®
;

which implies

(9:22) z = x

Z x at®¡2dtp
t2 ¡ a2t2®

:

From (9.17) we get y = ¡(1 + z2)=2x. Thus, up to rigid motions, M is given by

(9:23) x(x; u1; : : : ; un¡1) =

Ã
x; y ¡ x

2

n¡1X
i=1

u2
i ; z; xu1; : : : ; xun¡1

!

in the (n+ 2)-dimensional Minkowski space-time equipped with the non-standard
metric ĝ0 = 2dxdy + du2

1 + du2
1 + ¢ ¢ ¢+ du2

n¡1.
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Case (a.1): ® = ¡1. In this case, we may put

(9:24) z = x

Z 1

x

adt

t2
p
t4 ¡ a2

:

On the other hand, we have

(9:25)

Z 1

x

adt

t2
p
t4¡a2

=
1

2

Z 1

x2

adu

u3=2
p
u2 ¡ a2

=
1

2
p
a

Z ¼
2

sec¡1(x2=a)

p
cos v dv

=
1p
a

½
E

³¼
4
;
p

2
´
¡ E

µ
1

2
sec¡1

µ
x2

a

¶
;
p

2

¶¾
;

where the first and the second equalities are obtained by making the substitutions:
t =

p
u and u = a sec v, respectively. Thus, from (9.24) and (9.25) we obtain

(9:26) z =
x

2

Z 1p
2b

sd¡1(
p

2b=x)

0
sd2

¡p
2bu

¢
du; b =

p
a:

By making the substitution: x =
p

2bds
¡p

2bt
¢
, we obtain from (9.22) and (9.26)

that

y = ¡bds
¡p

2bt
¢

p
2

Ã
sd2

¡p
2bt

¢
2b2

+ 1
4

³R t
0 sd2

¡p
2bu

¢
du

´2
!
;

z =
bds

¡p
2bt

¢
p

2

Z t

0
sd2

¡p
2bu

¢
du:

Thus, from (9.22) and y = ¡(1 + z2)=2x, we know that the hypersurface is
given by

x =
p

2bds
¡p

2bt
¢Ã

1;¡1

2

Ã
sd2

¡p
2bt

¢
2b2

+
1

4

µZ t

0
sd2

¡p
2bu

¢
du

¶2

+
n¡1X
i=1

u2
i

!
;

1

2

Z t

0
sd2

¡p
2bu

¢
du; u1; : : : ; un¡1

!
:

After applying the transformation: x1 = x=4 ¡ 2y; x2 = x=4 + 2y, we get Case
(15).

Case (a.2): ® = 0. In this case, (9.22) reduces to z = ax
R x
a 1=(t2

p
t2 ¡ a2)dt

=
p
x2 ¡ a2=a: If we make the substitution: x = a cosh t, then z = sinh t

and y = ¡(1=2a) cosh t. Thus, fro, (9.23) we know that the hypersurface is
represented by

x(t; u1; : : : ; un¡1) = cosh t

Ã
a;¡ 1

2a
¡ a

2

n¡1X
i=1

u2
i ; tanh t; au1; : : : ; aun¡1

!
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with respect to the nonstandard metric ĝ0. Hence, after applying the following
coordinate transformation on the first two coordinates: x1 = x=2a ¡ ay; x2 =
x=2a+ ay and replacing aui by ui, we see that M is represented by

(9:27)

x(t; u1; : : : ; un¡1) = cosh t

µ
1 +

1

2

¡
u2

1 + ¢ ¢ ¢+ u2
n¡1

¢
;

¡1

2

¡
u2

1 + ¢ ¢ ¢+ u2
n¡1

¢
; tanh t; u1; : : : ; un¡1

¶
with respect to the standard Minkowski metric g0. From (9.27) we know that M is
an open portion of Gn. This gives Case (4).

Case (a.3): ® = 2 and n+ 1 is not a prime. In this case, (9.22) reduces to
z = ¡ax R 1

a
x (1=(t

p
1¡ a2t2)dt = ¡ax cosh¡1 (1=ax) : If we make the substitution

x = a¡1 sech t, then y = ¡(a=2)(cosh t + t2sech t); z = ¡t sech t: Thus, from
(9.22) and y = ¡(1 + z2)=2x we see that M is represented by

x(t; u1; : : : ; un¡1) = sech t

Ã
1

a
;¡a

2

Ã
cosh2 t+t2+

1

a2

n¡1X
i=1

u2
i

!
;¡t; u1

a
; : : : ;

un¡1

a

!
with respect to the nonstandard metric ĝ0. Hence, after applying the following
coordinate transformation: x1 = ax=4 ¡ 2y=ra; x2 = ax=4 + 2y=a and replacing
ui=a by ui, we obtain Case (5).

Case (a.4): 3 ∙ ® ∙ n¡ 1 and n ¸ 4 or 3¡ n ∙ ® ∙ ¡2 and n ¸ 5. If
the first case occurs, we have ® = ms¡n+ 1 for some positive integers s;m with
m ¸ 2 and (m¡ 1)s < n. If n¡ 1 ¸ ® ¸ 3, we make the substitution t = xu to
obtain

(9:28)

Z x

0

t®¡2dtp
t2 ¡ a2t2®

=

Z 1

0

u®¡3x®¡2dup
1¡ a2x2®¡2u2®¡2

:

Next, by making the substitution u = z1=(2®¡2), we getZ 1

0

u®¡3x®¡2dup
1¡ a2x2®¡2u2®¡2

=
x®¡2

2®¡ 2

Z 1

0

z¡ ®
2®¡2

¡
1¡ a2x2®¡2z

¢¡ 1
2dz

=
x®¡2

®¡ 2
F

µ
1

2
;
®¡ 2

2®¡ 2
;
3®¡ 4

2®¡ 2
; a2x2®¡2

¶
:

where we apply formula (3.16) of the hypergeometric function.
When ¡2 ¸ ® ¸ 3¡ n, we make the substitution t = x=u to obtainZ 1

x

t®¡3dtp
1¡ a2t2®¡2

=

Z 1

0

x®¡2u1¡®dup
1¡ a2x2®¡2u2®¡2

:
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Next, by making the substitution u = z1=(2¡2®), we getZ 1

0

x®¡2u1¡®dup
1¡ a2x2®¡2u2®¡2

=
x®¡2

2¡ ®F
µ

1

2
;
®¡ 2

2®¡ 2
;
3®¡ 4

2®¡ 2
; a2x2®¡2

¶
:

Hence, in both cases of ® ¸ 3 and ® ∙ ¡2, we have

(9:29) z =
ax®¡1

2¡ ® F
µ

1

2
;
®¡ 2

2®¡ 2
;
3®¡ 4

2®¡ 2
; a2x2®¡2

¶
:

If we make the substitution: x = (t=a2)1=(2®¡2), then from y = ¡(1 + z2)=2x,
(9.23) and (9.29) we know that M is represented by

x = t
1

2®¡2

Ã
1

¯
;¡¯

2
t

1
1¡®

µ
1 +

t

(2¡ ®)2
F 2

µ
1

2
;
®¡ 2

2®¡ 2
;

3®¡ 4

2®¡ 2
; t

¶¶
¡ 1

2¯

n¡1X
i=1

u2
i ;

p
t

2¡ ®F
µ

1

2
;
®¡ 2

2®¡ 2
;
3®¡ 4

2®¡ 2
; t

¶
;

1

¯
u1; : : : ;

1

¯
un¡1

!
; ¯ = a

1
®¡1

with respect to the nonstandard metric ĝ0. Therefore, after applying x1 = ¯x=4¡
2y=¯; x2 = ¯x=4 + 2y=¯ and replacing ui=¯ by ui, we obtain Case (17).

Case (b): ± = 1. In this case, the profile curve °(s) = (x(s); y(s); z(s))
satisfies

(9:30) x2 + y2 ¡ z2 = ¡1:

If x is constant, say b, then the principal curvature are given by ∙1 = ¡b=p1 + b2

and ∙2 = ¢ ¢ ¢ = ∙n = ¡p1 + b2=b: Thus, by using ∙1 = ®∙2, we obtain
® = b2=(1 + b2) 2 (0; 1) which is a contradiction. Thus x is non-constant and
we may put

(9:31) y =
p

1 + x2 sinhÁ(x); z =
p

1 + x2 coshÁ(x);

for some function Á(x). From (9.30) and (9.31) we get

(9:32)
³ds
dx

´2
= 1 + (1 + x2)Á02 ¡ x2

1 + x2
:

From Lemma 6.1 and (9.32) we obtain

(9:33) Á(x) =

Z
at®dt

(1 + t2)
p

1 + t2 ¡ a2t2®
; a ¸ 0:
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Case (b.1): ® = 0. In this case, (9.33) reduces to

(9:34) Á(x) =

Z
adt

(1 + t2)
p

1¡ a2 + t2
; a ¸ 0:

We separate this case into three subcases: a = 1; a > 1 and 0 < a < 1.

Case (b.1.1): a = 1. In this case, we have

(9:35) Á(x) =

Z 1

x

dt

(1 + t2)t
= ¡ ln

µ
xp

1 + x2

¶
:

Since

cosh

µ
ln

µ
xp

1 + x2

¶¶
=

1 + 2x2

2x
p

1 + x2
; sinh

µ
ln

µ
xp

1 + x2

¶¶
=

1

2x
p

1 + x2
;

we obtain from (9.31) that y = 1=2x; z = x + 1=2x: Therefore, after replacing x
by es, we obtain Case (6).

Case (b.1.2): a > 1. In this case, we have

(9:36)

Á(x) =

Z x

p
a2¡1

adt

(1 + t2)
p

1¡ a2 + t2
= tanh¡1

Ãp
1¡ a2 + x2

ax

!
;

cosh(Á(x))=
axp

(1+x2)(a2¡1)
; sinh(Á(x))=

s
1¡a2 + x2

(1+x2)(a2¡1)
:

Hence, we obtain from (9.31) that y=
p

(1¡a2+x2)=(a2¡1); z = ax=
p
a2¡1: If

we make the substitution: x =
p
a2 ¡ 1 cosh t, then we obtain Case (7).

Case (b.1.3): 0 < a < 1. In this case, by applying an argument similar to
Case (b-1-2), we obtain Case (8).

Case (b.2): ® = 2 and n+ 1 is not a prime. In this case, (9.33) reduces to

(9:37) Á(x) =

Z x

0

at2dt

(1 + t2)
p

1 + t2 ¡ a2t4
;

which implies 0 < x <
p

2=
pp

1 + 4a2 ¡ 1. If we put b = (1 + 4a2)1=4; k =p
b2 + 1=

p
2b and k0 =

p
b2 ¡ 1=

p
2b; then (9.37) becomes

(9:38) Á(x) =

Z x

0

at2dt

(1 + t2)
p

(1 + b2k2t2)(1¡ b2k02t2)
:
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If we make the substitution: t = cn(bu)=bk0, we obtain from (9.38) that

(9:39) Á(x) = ¡
Z (1=b)cn¡1(bk0x)

K=b

a cn2(bu)

b2(k02 + b¡2cn2(bu))
du;

where k is the the modulus and K is the quarter-period of the Jacobi’s function.
(9.39) can be put in the form:

(9:40) Á(x) = ¡
Z (1=b)cn¡1(bx)

K=b

b¯
p

(k2 ¡ ¯2)(k02 + ¯2) cn2(bu)

k02 + ¯2cn2(bu)
du;

where ¯ = 1=b. Hence, by applying formulas (6.24)-(6.27) of [11, page 485], we
obtain, up to constants, that

Á(x) = ¡ k
0

bk
cn¡1(bk0x) +

1

2
ln

£(cn¡1(bk0x)¡ °)

£(cn¡1(bk0x) + °)
+ Z(°)cn¡1(bk0x) ;

where ° = sn¡1
¡
1=bk2

¢
. Thus, after making the substitution t = (1=b)cn¡1(bk0x)

and choosing a suitable Euclidean coordinate system we obtain Case (11).

Case (b.3): n ¸ 4 and ® = ¡1. In this case (9.33) reduces to

Á(x) =

Z 1

x

adt

(1 + t2)
p
t2 + t4 ¡ a2

which implies x >
pp

1 + 4a2 ¡ 1=
p

2. If we make the substitution t = 1=u, we
find

(9:41) Á(x) =

Z 1=x

0

au2du

(1 + u2)
p

1 + u2 ¡ a2u4
:

Hence, by applying the same argument as in Case (b.2), we have

Á(x) = ¡ k
0

bk
cn¡1

µ
bk0

x

¶
+

1

2
ln

£
³

cn¡1
³
bk0
x

´
¡ °

´
£

³
cn¡1

³
bk0
x

´
+ °

´ + Z(°)cn¡1

µ
bk0

x

¶
;

where b = (1+4a2)1=4; k =
p
b2 + 1=

p
2b; k0 =

p
b2 ¡ 1=

p
2b; ° = sn¡1

¡
1=bk2

¢
:

Thus, after making the substitution t = b¡1cn¡1(bk0=x) and choosing a suitable
coordinate system, we obtain Case (14).

Case (b.4): n ¸ 4, ® 2 [3; n ¡ 1], and ® = ms ¡ n + 1 for some positive
integers s;m satisfying m ¸ 2 and (m¡ 1)s < n. From (3.17), (9.31) and (9.33)
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we obtain
(9:42)

x(t; y1; : : : ; yn) =
³p

1 + t2 cosh
¡
B¡1;1(a; ®; t)

¢
;

p
1 + t2 sinh

¡
B¡1;1(a; ®; t)

¢
; ty1; : : : ; tyn

´
; y2

1 + y2
2 + ¢ ¢ ¢+ y2

n = 1:

Thus M is an open portion of Una® with a > 0. This gives Case (18) for positive
®.

Case (b.5): (b:5): n ¸ 5 and ® 2 [3 ¡ n;¡2]. As in Case (b.4), we obtain
Case (18) for negative ®.

Case (c): ± = ¡1. In this case, the profile curve °(s) = (x(s); y(s); z(s))
satisfies

(9:43) ¡x2 + y2 + z2 = ¡1;

which implies x2 ¸ 1. Without loss of generality, we may assume x ¸ 1. If
x is constant, say b, then the principal curvature of M in Sn+1(1) are given by
∙1 = ¡b=pb2 ¡ 1;∙2 = ¢ ¢ ¢ = ∙n = ¡pb2 ¡ 1=b: Thus, we get b > 1. By using
the condition ∙1 = ®∙2 from Proposition 6.1, we find

(9:44) b2 =
®

®¡ 1
; ® =

b2

b2 ¡ 1
:

From b > 1 and (9.44), we know that ® ¸ 2 holds. Hence, Proposition 6.1 implies
that ® is one of the following integers:

(i) ® = 2 and n+ 1 is not a prime;

(ii) n ¸ 4 and ® is a positive integer in [3; n¡ 1] such that ® = ms¡ n+ 1 for
some positive integers s;m with m ¸ 2 and (m¡ 1)s < n.

From (9.43) and (9.44), we may put

(9:45) y =
cos tp
®¡ 1

; z =
sin tp
®¡ 1

:

Thus, the hypersurface is represented by

(9:46) x(t; y1; : : : ; yn) =

Ãr
®

®¡ 1
y1; : : : ;

r
®

®¡ 1
yn;

cos tp
®¡ 1

;
sin tp
®¡ 1

!
for y2

1 ¡ y2
2 ¡ ¢ ¢ ¢ ¡ y2

n = 1: When ® = 2 and n+ 1 is not a prime, we obtain Case
(10) after making the substitution: t =

p
®¡ 1 s. When n ¸ 4 and ® is a positive

integer in [3; n¡ 1], we obtain Case (13) after making the same substitution.
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Next, let us assume that x is non-constant. From (9.43) we may put

(9:47) y =
p
x2 ¡ 1 cosÁ(x); z =

p
x2 ¡ 1 sinÁ(x);

for some function Á(x). From (9.43) we get

(9:48)
³ds
dx

´2
= ¡1 + y0(x)2 + z0(x)2:

From (5.5), (9.47), and (9.48) we obtain

(9:49)
1

¡1 + x2 +Ax2®
= ¡1 +

x2

x2 ¡ 1
+ (x2 ¡ 1)Á02

which implies A ∙ 0. So, after setting A = ¡a2 as before, we obtain

(9:50) Á0(x) =
ax®

(1¡ x2)
p¡1 + x2 ¡ a2x2®

:

Case (c.1): ® = 0. In this case, we have

(9:51) Á(x) =

Z x

p
1+a2

adt

(1¡ t2)
p
t2 ¡ 1¡ a2

= ¡ tan¡1

Ãp
x2 ¡ 1¡ a2

a

!
:

Thus, we obtain y = ax=
p

1 + a2; z =
p
x2 ¡ 1¡ a2=

p
1 + a2: Hence, if we put

x =
p

1 + a2 cosh t, then we obtain Case (9) for n ¸ 4.

Case (c.2): n ¸ 4 and ® = ¡1. In this case, (9.50) reduces to

Á(x) =

Z 1

x

adt

(t2 ¡ 1)
p¡t2 + t4 ¡ a2

;

which implies x >
pp

1 + 4a2 + 1=
p

2. So, after making the substitution: t =
1=u, we obtain

Á(x) =

Z 1=x

0

au2du

(1¡ u2)
p

1¡ u2 ¡ a2u4
:

Hence, by applying the same argument as Case (b) in Section 8, we obtain
(9:52)

Á(x) = ¡ k
0

bk
cn¡1

µ
bk0

x

¶
¡ i

2
ln

£
³

cn¡1
³
bk0
x

´
¡ °

´
£

³
cn¡1

³
bk0
x

´
+ °

´ ¡ i Z(°)cn¡1

µ
bk0

x

¶
;

where b =
¡
1+4a2

¢1=4
; k =

p
b2 ¡ 1=

p
2b; k0 =

p
b2 + 1=

p
2b; ° = sn¡1

¡
ci=bk2

¢
.

Thus, after making the substitution t = (1=b)cn¡1(bk0=x) and choosing a suitable
coordinate system we obtain Case (16).
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Case (c.3): ® = 2 and n+ 1 is not a prime. In this case we have

(9:53) Á(x) =

Z x

k=b

at2dt¡
1¡ t2¢p¡1 + t2 ¡ a2t4

;

where b =
¡
1 ¡ 4a2

¢1=4
; k =

p
2b=
p

1 + b2 and k0 =
p

1¡ b2=p1 + b2. Thus,
we find a < 1=2. If we make the substitution t = 1=u, then we obtain Á(x) =

¡ R 1=x
b=k (a=(

¡
u2 ¡ 1

¢p
u2 ¡ u4 ¡ a2))du: Hence, by applying the same argument as

Case (d.1) in the proof of Section 8, we obtain

Á(x) = ¡kk
0

b
dn¡1

µ
bk0x
k

¶
¡ i

2
ln

£
³

dn¡1
³
bk0x
k

´
¡ °

´
£

³
dn¡1

³
bk0x
k

´
+ °

´ ¡ i Z(°)dn¡1

µ
bk0x
k

¶

where ° = sn¡1(k=b): Thus, after making the substitution t = (k=b)dn¡1(bk0x=k)
and choosing a suitable coordinate system, we obtain Case (12).

Case (c.4): n ¸ 4 and ® 2 [3; n ¡ 1]. This case occurs only when ® =
ms¡ n+ 1 for some positive integers s;m with m ¸ 2 and n > (m¡ 1)s. From
(9.50) and using an argument similar to Remark 8.1, we have

0 < a <
1p
®

¡
(®¡ 1)=®

¢(®¡1)=2
:

Moreover, from (3.17), (9.47) and (9.50) we know that the hypersurface is given by

(9:54)
x(t; y1; : : : ; yn) =

³
ty1; : : : ; tyn;

p
t2 ¡ 1 cos

¡
B¡1;¡1(a; ®; t)

¢
;

p
t2 ¡ 1 sin

¡
B¡1;¡1(a; ®; t)

¢´
; y2

1 ¡ y2
2 ¡ ¢ ¢ ¢ ¡ y2

n = 1

which implies that M is an open portion of V na®. This gives Case (19).

Case (c.5): n ¸ 5 and ® 2 [3 ¡ n;¡2]. In this case, we obtain Case (20)
from (3.17), (9.47) and (9.50).

Conversely, we can verify that all of the hypersurfaces listed in the theorem are
ideal conformally flat hypersurfaces.
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