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FULL ELEMENTS IN REGULAR RINGS

Huanyin Chen

Abstract. In this paper we introduce full elements in regular rings, and
show that every matrix over regular rings admits a diagonal reduction by
full matrices. Also we get that a regular ring R is unit-regular if and only
if aR »= bR with full elements a; b 2 R implies a = ubv for some units
u; v 2 R.

1. INTRODUCTION

A ring R is a regular ring provided that for every x 2 R there exists y 2 R
such that x = xyx. We say that a ring R is unit-regular if for every x 2 R, there
exists a unit u 2 R such that x = xux. We refer the reader to [6] for the general
theory of regular rings. It is well known that every matrix over unit-regular rings
admits a diagonal reduction by invertible matrices (cf. [12, Theorem 3]). P. Ara
et. al. have extended this result to separative regular rings (cf. [2, Theorem 2.5]).
In this paper we introduce full elements in regular rings and observe that these
result can be generalized to general regular rings by virtue of full elements. In [10,
Theorem 2], D. Handelman proved that a regular ring R is unit-regular if and only
if eR »= fR with idempotents e; f 2 R implies e = ufu¡1 for a unit u 2 R. We
also characterize unit-regularity by full elements, and show that a regular ring R is
unit-regular if and only if aR »= bR with full elements a; b 2 R implies a = ubv
for some units u; v 2 R.

Throughout, all rings are associative with identity and all modules are right
modules. The notation I ∙ R means that I is a two-sided ideal of R, and we use
U(R) to denote the set of all units of R.

Definition 1. An element x 2 R is said to be full in case RxR = R. We
denote the set of all full elements of R by Q(R).
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Clearly, U(R) µ Q(R) ( R and Q(R) = R ¡SfI j I ¯ Rg. If R is either
a local ring or a commutative ring, then Q(R) = U(R). Let D be a division
ring and V a countably infinite dimensional vector space over D. We claim that
Q(EndD(V )) 6= U(EndD(V )). Set I = fx 2 EndD(V ) j dimD(xV ) < 1g. Then
I is the only proper ideal of EndD(V ) and so Q

¡
EndD(V )

¢
= EndD(V )¡ I. Since

EndD(V ) is not a local ring, Q
¡
EndD(V )

¢ 6= U
¡
EndD(V )

¢
.

Theorem 2. Let R be a regular ring. Then aR + bR = R implies that there
exists y 2 R such that a + by is a full element.

Proof. Suppose that aR + bR = R. Since R is regular, aR\ bR is a principal
right ideal of R and so it is a direct summand of R. Therefore, by Modular Law,
bR = (aR \ bR) © cR and so R = aR + bR = aR © cR. Hence there exist
two orthogonal idempotents u; vR such that u + v = 1; aR = uR and cR = vR.
Obviously, c = by for y 2 R. We claim that a + c = a + by is a full element.
Indeed, u(a + c) = a; v(a + c) = c and so a; c 2 R(a + c)R. Therefore R =
aR + cR = R(a + c)R, as required.

Corollary 3. A ring R is regular if and only if for every x 2 R, there exists
a w 2 Q(R) such that x = xwx.

Proof. One direction is obvious. Conversely, let x 2 R. Then there exists
y 2 R such that x = xyx and y = yxy. From yx + (1 ¡ yx) = 1, we have a
z 2 R such that y + (1 ¡ yx)z = w 2 Q(R) by Theorem 2. Hence x = xyx =
x

¡
y + (1¡ yx)z

¢
x = xwx.

Corollary 4. Let R be a regular ring. Then for every x 2 R, there exist an
idempotent e 2 R and a w 2 Q(R) such that x = ew.

Proof. Given any x 2 R, we have a y 2 R such that x = xyx and y = yxy.
Since xy + (1¡ xy) = 1, by virtue of Theorem 2, we can find a z 2 R such that
x + (1 ¡ xy)z = w 2 Q(R). So x = xyx = xy

¡
x + (1 ¡ xy)z

¢
= xyw. Set

e = xy. Then e 2 R is an idempotent and x = ew, as asserted.

Corollary 5. Let R be a regular ring and n a positive integer. If 1=2 2 R,
then for every A 2 Mn(R), there exist U; V 2 Q

¡
Mn(R)

¢
such that A = U + V .

Proof. Since R is a regular ring, so is Mn(R) by [6, Theorem 1.7]. Given
any A 2 Mn(R), from Corollary 4, we can find an idempotent matrix E and a
full matrix U such that A = EU . It is easy to verify that E = diag(1

2 ; ¢ ¢ ¢ ; 1
2) +

1
2

¡
2E¡diag(1; ¢ ¢ ¢ ; 1)

¢
. Clearly, 1

2

¡
2E¡diag(1; ¢ ¢ ¢ ; 1)

¢¡
4E¡diag(2; ¢ ¢ ¢ ; 2)

¢
=

1
2

¡
4E ¡ diag(2; ¢ ¢ ¢ ; 2)

¢¡
2E ¡ diag(1; ¢ ¢ ¢ ; 1)

¢
= diag(1; ¢ ¢ ¢ ; 1), so we see that
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diag(
1

2
; ¢ ¢ ¢ ;

1

2
);

1

2

¡
2E ¡ diag(1; ¢ ¢ ¢ ; 1)

¢ 2 GLn(R):

Therefore A = diag(1
2 ; ¢ ¢ ¢ ; 1

2 )U + 1
2

¡
2E ¡ diag(1; ¢ ¢ ¢ ; 1)

¢
U , as desired.

Lemma 6. Let R be a regular ring. Then the following hold:
(1) Whenever aR = bR, there exists a w 2 Q(R) such that a = bw.
(2) Whenever Ra = Rb, there exists a w 2 Q(R) such that a = wb.

Proof. Suppose that aR = bR with a; b 2 R. Then we have x; y 2 R such that
ax = b and a = by. Obviously, b = ax = byx. Since yx+(1¡yx) = 1, we have a
z 2 R such that y +(1¡yx)z = w 2 Q(R). Therefore a = by = b

¡
y+(1¡yx)z

¢
=

bw, as required. The second statement is proved analogously.

Lemma 7. Let R be a regular ring. Whenever aR »= bR, there exist
w1; w2 2 Q(R) such that a = w1bw2.

Proof. Suppose that Ã : aR »= bR. Since R is a regular ring, by [11, Lemma
1], we know that Ra = RÃ(a) and Ã(a)R = bR. In view of Lemma 6, there exist
w1; w2 2 Q(R) such that Ã(a) = w1a and b = Ã(a)w2. Therefore we conclude
that b = w1aw2 with w1; w2 2 Q(R).

Theorem 8. Let R be a regular ring and n be a positive integer. For any A 2
Mn(R), there exist full matrices P; Q 2 Mn(R) such that P AQ = diag(e1; ¢ ¢ ¢ ; en)
for some idempotents e1; ¢ ¢ ¢ ; en 2 R.

Proof. Because R is a regular ring, so is Mn(R) by [6, Theorem 1.7]. Given
any A 2 Mn(R), there exists E = E2 2 Mn(R) such that AMn(R) = EMn(R).
Clearly, ERn is a finitely generated projective right R-module. By virtue of [6,
Proposition 2.6], we can find idempotents e1; : : : ; en 2 R such that ERn »=
e1R © ¢ ¢ ¢ © enR »= diag(e1; : : : ; en)Rn as right R-modules. Hence ERn£1 »=
diag(e1; : : : ; en)Rn£1, where Rn£1 consisting of all n-column vectors over R is a
right R-module and a left Mn(R)-module. Let R1£n = f(x1; : : : ; xn) j xi 2 Rg.
Then R1£n is a left R-module and a right Mn(R)-module. One easily checks that

(ERn£1)
O

R

R1£n »= ¡
diag(e1; : : : ; en)Rn£1

¢ O
R

R1£n:

In addition, Rn£1
N

R1£n »= Mn(R) as right Mn(R)-modules. Hence AMn(R) =
EMn(R) »= diag(e1; : : : ; en)Mn(R). According to Lemma 7, we can find P; Q 2
Q

¡
Mn(R)

¢
such that PAQ = diag(e1; : : : ; en), as asserted.



206 Huanyin Chen

Let R be a regular ring. Analogously to Theorem 8, we prove that if A 2
Mn(R), there exist P; Q 2 Q

¡
Mn(R)

¢
such that A = Pdiag(e1; ¢ ¢ ¢ ; en)Q for

some idempotents e1; ¢ ¢ ¢ ; en 2 R. Thus, by [13, Lemma 1], we conclude that
if A 2 Mn(R)(n ¸ 2) then there exist P; Q; W 2 Q

¡
Mn(R)

¢
such that A =

(P + Q)W .
Recall that a is pseudo-similar to b in R provided that there exist x; y; z 2 R

such that xay = b; zbx = a and xyx = xzx = x. We denote it by a»b. [5,
Theorem] showed that a regular ring R is unit-regular if and only if whenever
a»b, there exists a unit u 2 R such that a = ubu¡1. In [H. Chen, On Exchange
QB-rings,Comm. Algebra, to appear], theauthor observed the following simple fact.

Lemma 9. Let R be an associative ring with a; b 2 R. Then the following
are equivalent:

(1) a»b.
(2) There exist some x; y2R such that a=xby; b=yax; x=xyx and y =yxy.

Proof. (1))(2) is trivial.
(2))(1) Inasmuch as a»b, there are x; y; z 2 R such that b = xay; zbx = a and

x = xyx = xzx. Indeed, xa(yxy) = xzbx(yxy) = xzb(xyx)y = xzbxy = xay =
b. Analogously, (zxz)by = a. By replacing y with yxy and z with zxz, we can
assume y = yxy and z = zxz. Further, we directly check that xazxy = xzbxzxy =
xzbxy = xay = b; zxybx = zxyxayx = zxayx = zbx = a; zxy = zxyxzxy and
x = xzxyx, thus yielding the result.

Theorem 10. Let R be a regular ring. Whenever a»b, there exist full elements
w1; w2 2 R such that a = w1bw2.

Proof. Suppose that a and b are pseudo-similar in R. According to Lemma
9, there exist x; y 2 R such that a = xby; b = yax; x = xyx and y = yxy. By
Corollary 3, we can find a v 2 Q(R) such that y = yvy. Let w1 = (1 ¡ xy ¡
vy)v(1¡ yx¡ yv). It is easy to verify that (1¡ xy¡ vy)2 = 1 = (1¡ yx¡ yv)2.
hence w1 2 Q(R). In addition, we have aw1 = a(1¡ xy ¡ vy)v(1¡ yx¡ yv) =
¡av(1¡yx¡yv) = ¡av + ax + av = ax. Similarly, we see that xb = w1b. From
yx +(1¡yx) = 1, there is a z 2 R such that y +(1¡yx)z = w2 2 Q(R), whence
y = yxy = yx

¡
y + (1¡ yx)z

¢
= yxw2. Therefore a = xby = xbyxw2 = axw2 =

w1bw2, as desired.

Recall that a 2 R is said to be strongly ¼-regular if there exist n ¸ 1 and
x 2 R such that an = an+1x; ax = xa and x = xax. Clearly, the solution x 2 R
is unique, and we say that x is the Drazin inverse ad of a.

Corollary 11. Let R be a regular ring. Whenever ab; ba 2 R are strongly
¼-regular, there exist w1; w2 2 Q(R) such that (ab)d = w1(ba)dw2.
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Proof. As ab and ba 2 R are strongly ¼-regular, we have k ¸ 1 such that
(ab)k = (ab)k+1(ab)d; (ab)(ab)d = (ab)d(ab) and (ab)d = (ab)d(ab)(ab)d. It is
easy to verify that

(ab)k+2a(ba)d(ba)db = (ab)a(ba)k+1(ba)d(ba)db = (ab)a(ba)k(ba)db

= a(ba)k+1(ba)db = a(ba)kb = (ab)k+1;

(ab)(a(ba)d(ba)db) = a(ba)d(ba)d(ba)b

= a(ba)db = (a(ba)d(ba)db)(ab);

(a(ba)d(ba)db)(ab)(a(ba)d(ba)db) = a(ba)d(ba)db: So (ab)d = a(ba)d(ba)db; so
(ab)d = a(ba)d(ba)db. In addition, we check that (ba)d = (ba)d(ba)(ba)d =
(ba)dbabab)d(ab)da = (ba)db(ab)da: Clearly, (ba)dba(ba)db = (ba)db; hence, (ab)d

»(ba)d. We see from Theorem 10 that (ab)d = w1(ba)dw2 for w1; w2 2 Q(R).
Lemma 12. Let R be a regular ring. Then the following are equivalent:

(1) R is unit-regular.
(2) Every full element of R is unit-regular.

Proof. (1) ) (2) is trivial.
(2) ) (1) Given aR + bR = R, then ax + by = 1 for x; y 2 R. By Theorem

2, we have z 2 R such that a + bz 2 Q(R). Since every full element in R is unit-
regular, there exist an idempotent e 2 R and a unit u 2 R such that a + bz = eu.
Hence (a + bz)x + b(y ¡ zx) = 1, and then eux + b(y¡ zx) = 1. Thus, we must
have eux(1¡e)+ b(y¡zx)(1¡e) = 1¡e, whence a+b

¡
z +(y¡zx)(1¡e)u

¢
=

eu + b(y¡ zx)(1¡ e)u =
¡
1¡ eux(1¡ e)

¢
u =

¡
1¡ eux(1¡ e)

¢¡1
u 2 U(R). It

follows by [6, Proposition 4.12] that R is unit-regular.

By [14, Proposition 3.3], if R is a regular ring then an idempotent e 2 Q(R)
if and only if there exist nilpotent n1; n2 2 R such that e = 1 + n1n2. Now we
investigate unit-regularity by virtue of full idempotents.

Lemma 13. Let R be a regular ring. Then the following are equivalent:
(1) R is unit-regular.
(2) Whenever eR »= fR with full idempotents e; f 2 R, there exists u 2 U(R)

such that e = ufu¡1.
(3) Whenever eR »= fR with full idempotents e; f 2 R, (1¡ e)R »= (1¡ f)R.

Proof. (1) ) (2) and (2) ) (3) are clear by [10, Theorem 2].
(3) ) (1) Given any x 2 Q(R), then there exists a y 2 R such that x = xyx.

Since xy and yx are both idempotents of R, we have right R-module decompositions
R = yxR© (1¡ yx)R = xyR© (1¡ xy)R. Clearly, Ã : yxR = yR »= xyR given
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by yr ! x(yr) for any r 2 R. If yx 62 Q(R), then there exists an ideal I ¯ R such
that yx 2 I; hence, x = xyx 2 I . So x 62 Q(R), a contradiction. Thus, yx 2 Q(R).
Likewise, xy 2 Q(R). By the hypothesis, we have Á : (1 ¡ yx)R »= (1 ¡ xy)R.
Define u 2 EndR(R) so that u restricts to Ã¡1 : xR = xyR ! yxR and u
restricts to Á¡1 : (1¡xy)R ! (1¡ yx)R. One easily checks that x = xu(1)x and
u(1) 2 U(R). That is, every full elements in R is unit-regular. Therefore we get
the result by Lemma 12.

As a result, we deduce that a regular ring R is unit-regular if and only if
whenever aR »= bR with full elements a; b 2 R, then R=aR »= R=bR .

Theorem 14. Let R be a regular ring. Then the following hold:
(1) R is unit-regular.
(2) Whenever aR »= bR with full elements a; b 2 R, there exist u; v 2 U(R) such

that a = ubv.

Proof. (1) ) (2) Assume that Ã : aR »= bR with a; b 2 R. Since R is unit-
regular, a and b are both unit-regular; hence, a = eu1 and b = fv1 with idempotents
e; f 2 R and units u1; v1 2 R. Clearly, eR = aR »= bR = fR. By [10, Theorem 2],
we have u 2 U(R) such that e = ufu¡1. So a = eu1 = ufu¡1u1 = ubv¡1

1 u¡1u1.
Set v = v¡1

1 u¡1u1. Then there are u; v 2 U(R) such that a = ubv.
(2) ) (1) Given Ã : eR »= fR with idempotents e; f 2 Q(R), then we have

u; v 2 U(R) such that e = ufv. Set e0 = ufu¡1. Obviously, eR = e0R and so
(e¡ e0)2 = 0. Therefore w = 1 ¡ e + e0 2 U(R) and w¡1 = 1 + e¡ e0. Clearly,
we0 = e0 and e0w¡1 = e. Therefore e = we0w¡1 = (wu)f (wu)¡1 and so the result
follows from Lemma 13.

Corollary 15. Let R be a regular ring, I an ideal of R. Then the following
hold:

(1) R is unit-regular.
(2) Whenever aR »= bR with a; b 62 I , there exist u; v 2 U(R) such that a = ubv.

Proof. (1) ) (2) is analogous to Theorem 14.
(2) ) (1) Given aR »= bR with full elements a; b 2 R, then we have a; b 62 I;

hence, there exist u; v 2 U(R) such that a = ubv. Therefore we complete the proof
by Theorem 14.
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