FULL ELEMENTS IN REGULAR RINGS

Huanyin Chen

Abstract

In this paper we introduce full elements in regular rings, and show that every matrix over regular rings admits a diagonal reduction by full matrices. Also we get that a regular ring R is unit-regular if and only if $a R \cong b R$ with full elements $a ; b \in R$ implies $a=u b v$ for some units $u ; v \in R$.

1. Introduction

A ring R is a regular ring provided that for every $x \in R$ there exists $y \in R$ such that $x=x y x$. We say that a ring R is unit-regular if for every $x \in R$, there exists a unit $u \in R$ such that $x=x u x$. We refer the reader to [6] for the general theory of regular rings. It is well known that every matrix over unit-regular rings admits a diagonal reduction by invertible matrices (cf. [12, Theorem 3]). P. Ara et. al. have extended this result to separative regular rings (cf. [2, Theorem 2.5]). In this paper we introduce full elements in regular rings and observe that these result can be generalized to general regular rings by virtue of full elements. In [10, Theorem 2], D. Handelman proved that a regular ring R is unit-regular if and only if $e R \cong f R$ with idempotents $e f f \in R$ implies $e=u f u^{i}{ }^{1}$ for a unit $u \in R$. We also characterize unit-regularity by full elements, and show that a regular ring R is unit-regular if and only if $a R \cong b R$ with full elements $a ; b \in R$ implies $a=u b v$ for some units $u ; v \in R$.

Throughout, all rings are associative with identity and all modules are right modules. The notation $I \leq R$ means that I is a two-sided ideal of R, and we use $U(R)$ to denote the set of all units of R.

Definition 1. An element $x \in R$ is said to be full in case $R x R=R$. We denote the set of all full elements of R by $Q(R)$.

[^0]Clearly, $U(R) \subseteq Q(R)\left(R\right.$ and $Q(R)=R-^{S}\left\{I \mid I^{-} R\right\}$. If R is either a local ring or a commutative ring, then $Q(R)=U(R)$. Let D be a division ring and V a countably infinite dimensional vector space over D. We claim that $Q\left(\operatorname{End}_{D}(V)\right) \neq U\left(\operatorname{End}_{D}(V)\right)$. Set $I=\left\{x \in \operatorname{End}_{D}(V) \mid q \operatorname{cim}_{D}(x V)<\infty\right\}$. Then I is the only proper ideal of $\operatorname{End}_{D}(V)$ and $\operatorname{so~}^{1} \operatorname{End}_{D}(V){ }_{\Phi}=\operatorname{End}_{D}(V)-I$. Since $\operatorname{End}_{D}(V)$ is not a local ring, $Q^{\prime} \operatorname{End}_{D}(V)^{+} \neq U^{\prime} \operatorname{End}_{D}(V)^{4}$.

Theorem 2. Let R be a regular ring. Then $\mathrm{aR}+\mathrm{bR}=\mathrm{R}$ implies that there exists $\mathrm{y} \in \mathrm{R}$ such that $\mathrm{a}+\mathrm{by}$ is a full element.

Proof. Suppose that $a R+b R=R$. Since R is regular, $a R \cap b R$ is a principal right ideal of R and so it is a direct summand of R. Therefore, by Modular Law, $b R=(a R \cap b R) \oplus c R$ and so $R=a R+b R=a R \oplus c R$. Hence there exist two orthogonal idempotents $u ; v R$ such that $u+v=1 ; a R=u R$ and $c R=v R$. Obviously, $c=b y$ for $y \in R$. We claim that $a+c=a+b y$ is a full element. Indeed, $u(a+c)=a ; v(a+c)=c$ and so $a ; c \in R(a+c) R$. Therefore $R=$ $a R+c R=R(a+c) R$, as required.

Corollary 3. A ring R is regular if and only if for every $\mathrm{X} \in \mathrm{R}$, there exists $a \mathrm{w} \in Q(\mathrm{R})$ such that $\mathrm{x}=\mathrm{xwx}$.

Proof. One direction is obvious. Conversely, let $x \in R$. Then there exists $y \in R$ such that $x=x y x$ and $y=y x y$. From $y x+(1-y x)=1$, we have a $z_{i} \in R$ such that $y+(1-y x) z=w \in Q(R)$ by Theorem 2. Hence $x=x y x=$ $x y+(1-y x) z x=x w x$.

Corollary 4. Let R be a regular ring. Then for every $\mathrm{x} \in \mathrm{R}$, there exist an idempotent $\mathrm{e} \in \mathrm{R}$ and $a \mathrm{w} \in Q(\mathrm{R})$ such that $\mathrm{x}=\mathrm{ew}$.

Proof. Given any $x \in R$, we have a $y \in R$ such that $x=x y x$ and $y=y x y$. Since $x y+(1-x y)=1$, by virtue of Theorem 2 , we can find a $z_{\subsetneq} \in R$ such that $x+(1-x y) z=w \in Q(R)$. So $x=x y x=x y^{\prime} x+(1-x y) z^{+}=x y w$. Set $e=x y$. Then $e \in R$ is an idempotent and $x=e w$, as asserted.

Corollary 5. Let R be a regular ring and n a positive integer. If $\mathrm{l}=2 \in \mathrm{R}$, then for every $\mathrm{A} \in M_{\mathrm{n}}(\mathrm{R})$, there exist $\mathrm{U} ; \mathrm{V} \in Q^{\mathrm{i}} M_{\mathrm{n}}(\mathrm{R})^{\text {c }}$ such that $\mathrm{A}=\mathrm{U}+\mathrm{V}$.

Proof. Since R is a regular ring, so is $\mathrm{M}_{\mathrm{n}}(\mathrm{R})$ by [6, Theorem 1.7]. Given any $A \in M_{n}(R)$, from Corollary 4 , we can find an idempotent matrix E and a full matrix U such that $A=E U$. It is easy to verify that $E=\operatorname{diag}\left(\frac{1}{2} ; \ldots ; \frac{1}{2}\right)+$

$$
\operatorname{diag}\left(\frac{1}{2} ; \cdots ; \frac{1}{2}\right) ; \frac{1}{2} \mathrm{i} 2 \mathrm{E}-\operatorname{diag}(1 ; \cdots ; 1)^{\dagger} \in \mathrm{GL}_{n}(\mathrm{R}):
$$

Therefore $A=\operatorname{diag}\left(\frac{1}{2} ; \cdots ; \frac{1}{2}\right) U+\frac{1}{2}^{i} 2 E-\operatorname{diag}(1 ; \cdots ; 1)^{\dagger} U$, as desired.
Lemma 6. Let R be a regular ring. Then the following hold:
(1) Whenever $\mathrm{aR}=\mathrm{bR}$, there exists $a \mathrm{w} \in Q(\mathrm{R})$ such that $\mathrm{a}=\mathrm{bw}$.
(2) Whenever $\mathrm{Ra}=\mathrm{Rb}$ there exists $a \mathrm{w} \in Q(\mathrm{R})$ such that $\mathrm{a}=\mathrm{wb}$

Proof. Suppose that $a R=b R$ with $a ; b \in R$. Then we have $x ; y \in R$ such that $a x=b$ and $a=b y$. Obviously, $b=a x=b y x$. Since $y x+(1-y x)_{i}=1$, we have a $z \in R$ such that $y+(1-y x) z=w \in Q(R)$. Therefore $a=b y=b y+(1-y x) z=$ bw , as required. The second statement is proved analogously.

Lemma 7. Let R be a regular ring. Whenever $\mathrm{aR} \cong \mathrm{bR}$, there exist $\mathrm{w}_{1} ; \mathrm{w}_{2} \in Q(\mathrm{R})$ such that $\mathrm{a}=\mathrm{w}_{1} \mathrm{bw}_{2}$.

Proof. Suppose that $\tilde{A}: a R \cong \mathrm{bR}$. Since R is a regular ring, by [11, Lemma 1], we know that $R a=R \tilde{A}(a)$ and $\tilde{A}(a) R=b R$. In view of Lemma 6 , there exist $w_{1} ; w_{2} \in Q(R)$ such that $\tilde{A}(a)=w_{1} a$ and $b=\tilde{A}(a) w_{2}$. Therefore we conclude that $b=w_{1} a w_{2}$ with $w_{1} ; w_{2} \in Q(R)$.

Theorem 8. Let R be a regular ring and n be a positive integer. For any $\mathrm{A} \in$ $\mathrm{M}_{\mathrm{n}}(\mathrm{R})$, there exist full matrices $\mathrm{P} ; \mathrm{Q} \in M_{\mathrm{n}}(\mathrm{R})$ such that $\mathrm{PAQ}=\operatorname{diag}\left(\mathrm{e}_{1} ; \cdots ; \mathrm{e}_{\mathrm{n}}\right)$ for some idempotents $\mathrm{e}_{1} ; \cdots ; \mathrm{e}_{\mathrm{n}} \in \mathrm{R}$.

Proof. Because R is a regular ring, so is $\mathrm{M}_{\mathrm{n}}(\mathrm{R})$ by [6, Theorem 1.7]. Given any $A \in M_{n}(R)$, there exists $E=E^{2} \in M_{n}(R)$ such that $A M_{n}(R)=E M_{n}(R)$. Clearly, $E R^{n}$ is a finitely generated projective right R-module. By virtue of [6, Proposition 2.6], we can find idempotents $e_{1} ;::: ; e_{n} \in R$ such that $E R^{n} \cong$ $e_{1} R \oplus \cdots \oplus e_{n} R \cong \operatorname{diag}\left(e_{1} ;::: ; e_{n}\right) R^{n}$ as right R-modules. Hence $E R^{n f 1} \cong$ $\operatorname{diag}\left(e_{1} ;::: ; \theta_{n}\right) R^{n £ 1}$, where $R^{n £ 1}$ consisting of all n-column vectors over R is a right R-module and a left $M_{n}(R)$-module. Let $R^{1 f} n=\left\{\left(x_{1} ;::: ; x_{n}\right) \mid x_{i} \in R\right\}$. Then $R^{1 £} n$ is a left R-module and a right $M_{n}(R)$-module. One easily checks that

$$
\left(E R^{n £ 1}\right)_{R}^{O} R^{1 £ n} \cong{ }^{i} \operatorname{diag}\left(e_{1} ;:: ; ; \epsilon_{n}\right) R^{n £ 1^{\dagger O}} R^{1 £ n}:
$$

In addition, $R^{n £ 1} N \quad R^{1 £ n} \cong M_{n}(R)$ as right $M_{n}(R)$-modules. Hence $A M_{n}(R)=$ $E M_{n}(R) \widetilde{\widetilde{G}} \operatorname{diag}\left(e_{1} ;::: ; e_{n}\right) M_{n}(R)$. According to Lemma 7 , we can find $P ; Q \in$ $Q^{\prime} M_{n}(R)^{4}$ such that $P A Q=\operatorname{diag}\left(e_{1} ;::: ; \theta_{n}\right)$, as asserted.

Let R be a regular ring. Analogously to Theorem 8, we prove that if $A \in$ $M_{n}(R)$, there exist $P ; Q \in Q^{1} M_{n}(R)$ such that $A=P \operatorname{diag}\left(e_{1} ; \cdots ; e_{n}\right) Q$ for some idempotents $e_{1} ; \cdots ; e_{n} \in R$. Thus, by [13, Lemma 1], qe conclude that if $A \in M_{n}(R)(n \geq 2)$ then there exist $P ; Q ; W \in Q^{1} M_{n}(R)$ such that $A=$ ($\mathrm{P}+\mathrm{Q}$)W.

Recall that a is pseudo-similar to b in R provided that there exist $x ; y ; z \in R$ such that xay $=\mathrm{b} ; \mathrm{zbx}=\mathrm{a}$ and $\mathrm{xyx}=\mathrm{xzx}=\mathrm{x}$. We denote it by $\mathrm{a} \sim \mathrm{b} \quad[5$, Theorem] showed that a regular ring R is unit-regular if and only if whenever $a \approx b$, there exists a unit $u \in R$ such that $a=u b u i^{1}$. In [H. Chen, On Exchange QB-rings, Comm. Algebra, to appear], the author observed the following simple fact.

Lemma 9. Let R be an associative ring with $\mathrm{a} ; \mathrm{b} \in \mathrm{R}$. Then the following are equivalent:
(1) $a \mp b$
(2) There exist some $\mathrm{x} ; \mathrm{y} \in \mathrm{R}$ such that $\mathrm{a}=\mathrm{xby} ; \mathrm{b}=\mathrm{yax} ; \mathrm{x}=\mathrm{xyx}$ and $\mathrm{y}=\mathrm{yxy}$.

Proof. (1) $\Rightarrow(2)$ is trivial.
(2) \Rightarrow (1) Inasmuch as $a \sim b$ there are $x ; y ; z \in R$ such that $b=x a y ; z b x=a$ and $x=x y x=x z x$. Indeed, $x a(y x y)=x z b x(y x y)=x z b(x y x) y=x z b x y=x a y=$ b. Analogously, (zxz)by $=a$. By replacing y with $y x y$ and z with $z x z$, we can assume $y=y x y$ and $z=z x z$. Further, we directly check that $x a z x y=x z b x z x y=$ $x z b x y=x a y=b ; z x y b x=z x y x a y x=z x a y x=z b x=a ; z x y=z x y x z x y$ and $x=x z x y x$, thus yielding the result.

Theorem 10. Let R be a regular ring. Whenever $\mathrm{a} \sim \mathrm{b}$ there exist full elements $\mathrm{w}_{1} ; \mathrm{w}_{2} \in \mathrm{R}$ such that $\mathrm{a}=\mathrm{w}_{1} \mathrm{bw}_{2}$.

Proof. Suppose that a and b are pseudo-similar in R . According to Lemma 9 , there exist $x ; y \in R$ such that $a=x b y ; b=y a x ; x=x y x$ and $y=y x y$. By Corollary 3 , we can find a $v \in Q(R)$ such that $y=y v y$. Let $w_{1}=(1-x y-$ $v y) v(1-y x-y v)$. It is easy to verify that $(1-x y-v y)^{2}=1=(1-y x-y v)^{2}$. hence $w_{1} \in Q(R)$. In addition, we have $a w_{1}=a(1-x y-v y) v(1-y x-y v)=$ $-\operatorname{av}(1-y x-y v)=-a v+a x+a v=a x$. Similarly, we see that $x b=w_{1} b$ From $y x+(1-y x)=1$, there is a $z_{\psi} \in R$ such that $y+(1-y x) z=w_{2} \in Q(R)$, whence $y=y x y=y x y+(1-y x) z=y x w_{2}$. Therefore $a=x b y=x b y x w_{2}=a x w_{2}=$ $\mathrm{w}_{1} \mathrm{bw}_{2}$, as desired.

Recall that $a \in R$ is said to be strongly $1 /$ /regular if there exist $n \geq 1$ and $x \in R$ such that $a^{n}=a^{n+1} x ; a x=x a$ and $x=x a x$. Clearly, the solution $x \in R$ is unique, and we say that x is the Drazin inverse a^{d} of a.

Corollary 11. Let R be a regular ring. Whenever $\mathrm{ab}, \mathrm{ba} \in \mathrm{R}$ are strongly $1 / 4$ regular, there exist $\mathrm{w}_{1} ; \mathrm{w}_{2} \in Q(\mathrm{R})$ such that $(\mathrm{ab})^{\mathrm{d}}=\mathrm{w}_{1}(\mathrm{ba})^{\mathrm{d}} \mathrm{w}_{2}$.

Proof. As ab and $\mathrm{ba} \in \mathrm{R}$ are strongly $1 /$ rregular, we have $\mathrm{k} \geq 1$ such that $(a b)^{k}=(a b)^{k+1}(a b)^{d} ;(a b)(a b)^{d}=(a b)^{d}(a b)$ and $(a b)^{d}=(a b)^{d}(a b)(a b)^{d}$. It is easy to verify that

$$
\begin{aligned}
(a b)^{k+2} a(b a)^{d}(b a)^{d} b= & (a b) a(b a)^{k+1}(b a)^{d}(b a)^{d} b=(a b) a(b a)^{k}(b a)^{d} b \\
= & a(b a)^{k+1}(b a)^{d} b=a(b a)^{k} b=(a b)^{k+1} ; \\
& (a b)\left(a(b a)^{d}(b a)^{d} b\right)=a(b a)^{d}(b a)^{d}(b a) b \\
= & a(b a)^{d} b=\left(a(b a)^{d}(b a)^{d} b\right)(a b) ;
\end{aligned}
$$

$\left(a(b a)^{d}(b a)^{d} b\right)(a b)\left(a(b a)^{d}(b a)^{d} b\right)=a(b a)^{d}(b a)^{d} b:$ So $(a b)^{d}=a(b a)^{d}(b a)^{d} b$; so $(\mathrm{ab})^{\mathrm{d}}=\mathrm{a}(\mathrm{ba})^{\mathrm{d}}(\mathrm{ba})^{\mathrm{d}} \mathrm{b}$ In addition, we check that $(\mathrm{ba})^{\mathrm{d}}=(\mathrm{ba})^{\mathrm{d}}(\mathrm{ba})(\mathrm{ba})^{\mathrm{d}}=$ $\left.(\mathrm{ba})^{\mathrm{d}} \mathrm{babab}\right)^{\mathrm{d}}(\mathrm{ab})^{\mathrm{d}} \mathrm{a}=(\mathrm{ba})^{\mathrm{d}} \mathrm{b}(\mathrm{ab})^{\mathrm{d}} \mathrm{a}$: Clearly, (ba) ${ }^{\mathrm{d}} \mathrm{ba}(\mathrm{ba})^{\mathrm{d}} \mathrm{b}=(\mathrm{ba})^{\mathrm{d}} \mathrm{b}$, hence, $(\mathrm{ab})^{\mathrm{d}}$ $\bar{\sim}(\mathrm{ba})^{\mathrm{d}}$. We see from Theorem 10 that $(\mathrm{ab})^{\mathrm{d}}=\mathrm{w}_{1}(\mathrm{ba})^{\mathrm{d}} \mathrm{w}_{2}$ for $\mathrm{w}_{1} ; \mathrm{w}_{2} \in \mathrm{Q}(\mathrm{R})$.

Lemma 12. Let R be a regular ring. Then the following are equivalent:
(1) R is unit-regular.
(2) Every full element of R is unit-regular.

Proof. (1) \Rightarrow (2) is trivial.
(2) \Rightarrow (1) Given $a R+b R=R$, then $a x+b y=1$ for $x ; y \in R$. By Theorem 2 , we have $z \in R$ such that $a+b z \in Q(R)$. Since every full element in R is unitregular, there exist an idempotent $e \in R$ and a unit $u \in R$ such that $a+b z=e u$. Hence $(a+b z) x+b(y-z x)=1$, and then eux $+b(y-z x)=1$. Thus, we must have eux $(1-e)+b(y-z x)(1-e)=1-e$, whence $a+b^{\prime} z+(y-z x)(1-e) u^{4}=$ $e u+b(y-z x)(1-e) u={ }^{i} 1-e u x(1-e)^{C} u={ }^{i} 1-e u x(1-e)^{\phi_{i}} 1_{u} \in U(R)$. It follows by [6, Proposition 4.12] that R is unit-regular.

By [14, Proposition 3.3], if R is a regular ring then an idempotent $e \in Q(R)$ if and only if there exist nilpotent $n_{1} ; n_{2} \in R$ such that $e=1+n_{1} n_{2}$. Now we investigate unit-regularity by virtue of full idempotents.

Lemma 13. Let R be a regular ring. Then the following are equivalent:
(1) R is unit-regular.
(2) Whenever $\mathrm{eR} \cong \mathrm{f} R$ with full idempotents $\mathrm{e} f \in \mathrm{R}$, there exists $\mathrm{u} \in U(\mathrm{R})$ such that $\mathrm{e}=\mathrm{uf} \mathrm{ui}^{1}$.
(3) Whenever $e R \cong f R$ with full idempotents $e ; f \in R,(1-e) R \cong(1-f) R$.

Proof. (1) $\Rightarrow(2)$ and $(2) \Rightarrow(3)$ are clear by [10, Theorem 2].
(3) \Rightarrow (1) Given any $x \in Q(R)$, then there exists a $y \in R$ such that $x=x y x$. Since $x y$ and $y x$ are both idempotents of R, we have right R-module decompositions $R=y x R \oplus(1-y x) R=x y R \oplus(1-x y) R$. Clearly, $\tilde{A}: y x R=y R \cong x y R$ given
by $y r \rightarrow x(y r)$ for any $r \in R$. If $y x \notin Q(R)$, then there exists an ideal $I^{-} R$ such that $y x \in I$; hence, $x=x y x \in I$. So $x \notin Q(R)$, a contradiction. Thus, $y x \in Q(R)$. Likewise, $x y \in Q(R)$. By the hypothesis, we have A : $(1-y x) R \cong(1-x y) R$. Define $u \in \operatorname{End}_{R}(R)$ so that u restricts to $\tilde{A}^{1}: x R=x y R \rightarrow y x R$ and u restricts to Á ${ }^{1}:(1-x y) R \rightarrow(1-y x) R$. One easily checks that $x=x u(1) x$ and $u(1) \in U(R)$. That is, every full elements in R is unit-regular. Therefore we get the result by Lemma 12 .

As a result, we deduce that a regular ring R is unit-regular if and only if whenever $a R \cong b R$ with full elements $a ; b \in R$, then $R=a R \cong R \Rightarrow b R$.

Theorem 14. Let R be a regular ring. Then the following hold:
(1) R is unit-regular.
(2) Whenever $\mathrm{aR} \cong \mathrm{bR}$ with full elements $\mathrm{a} ; \mathrm{b} \in \mathrm{R}$, there exist $\mathrm{u} ; \mathrm{v} \in U(\mathrm{R})$ such that $\mathrm{a}=\mathrm{ubv}$.
Proof. (1) \Rightarrow (2) Assume that $\tilde{A}: a R \cong b R$ with $a ; b \in R$. Since R is unitregular, a and bare both unit-regular; hence, $a=e u_{1}$ and $b=f v_{1}$ with idempotents $e ; f \in R$ and units $u_{1} ; v_{1} \in R$. Clearly, $e R=a R \cong b R=f R$. By [10, Theorem 2], we have $u \in U(R)$ such that $e=u f u^{i}{ }^{1}$. So $a=e u_{1}=u f u^{i}{ }^{1} u_{1}=u b v_{1}^{1} u^{i}{ }^{1} u_{1}$. Set $v=v_{1}^{i}{ }^{1} u^{1}{ }^{1} u_{1}$. Then there are $u ; v \in U(R)$ such that $a=u b v$.
(2) \Rightarrow (1) Given $\tilde{A}: e R \cong f R$ with idempotents $e ; f \in Q(R)$, then we have $u ; v \in U(R)$ such that $e=u f v$. Set $e^{0}=u f u^{i}{ }^{1}$. Obviously, $e R=e^{Q} R$ and so $(e-e)^{2}=0$. Therefore $w=1-e+e^{0} \in U(R)$ and $w^{1}=1+e-e^{0}$. Clearly, $w^{0}=e^{0}$ and $e^{Q} w^{11}=e$ Therefore $e=w^{1} Q_{w^{1}}{ }^{1}=(w u) f(w u)^{i 1}$ and so the result follows from Lemma 13.

Corollary 15. Let R be a regular ring, I an ideal of R . Then the following hold:
(1) R is unit-regular.
(2) Whenever $\mathrm{aR} \cong \mathrm{bR}$ with $\mathrm{a} ; \mathrm{b} \notin \mathrm{I}$, there exist $\mathrm{u} ; \mathrm{v} \in U(\mathrm{R})$ such that $\mathrm{a}=u \mathrm{u} v$.

Proof. (1) $\Rightarrow(2)$ is analogous to Theorem 14.
(2) \Rightarrow (1) Given $a R \cong b R$ with full elements $a ; b \in R$, then we have $a ; b \notin I$; hence, there exist $u ; v \in U(R)$ such that $a=u b v$. Therefore we complete the proof by Theorem 14 .

Acknowledgements

The author is grateful to the referee for his/her suggestions which led to the new version of Theorem 2 and Theorem 14, and helped me to improve the manuscript. This work was supported by the Natural Science Foundation of Zhejiang Province and the Ministry of Education of China ([2000] 65).

References

1. P. Ara, Strongly $1 / 4$ regular rings have stable range one, Proc. Amer. Math. Soc., 124 (1996), 3293-3298
2. P. Ara, K.R. Goodearl, K.C. O'Meara and E.Pardo, Diagonalization of matrices over regular rings, Linear Algebra Appl., 265 (1997), 147-163.
3. M. J. Canfell, Completion of diagrams by automorphisms and Bass' first stable range condition, J. Algebra, 176 (1995), 480-503.
4. H. Chen, Elements in one-sided unit regular rings, Comm. Algebra, 25 (1997), 2517-2529.
5. R. Guralnick and C. Lanski, Pesudosimilarity and cancellation of modules, Linear Algebra Appl., 47 (1982), 111-115.
6. K. R. Goodearl, Von Neumann Regular Rings, Pitman, London-San Francisco-Melbourne, 1979; 2nd ed., Krieger, Malabar, Fl., 1991.
7. K. R. Goodearl, Von Neumann regular rings and direct sum decomposition problems, In: Abelian Group and Modules, Kluwer, Dordrecht, 1995, pp. 249-255.
8. K. R. Goodearl and P. Menal, Stable range one for rings with many units, J. Pure Appl. Algebra, 541988), 261-287.
9. F. J. Hall, R. E. Hartwig, I. J. Katz and M. Newman, Pseudo-similarity and partial unit regularity, Czechoslovak Math. J., 33 (1983), 361-372.
10. D. Handelman, Perspectivity and cancellation in regular rings, J. Algebra, 48 (1977), 1-16.
11. R. E. Hartwig and J. Luh, A note on the group structure of unit regular ring elements, Pacific J. Math., 71 (1977), 449-461.
12. M. Henriksen, On a class of regular rings that are elementary divisor rings, Arch. Math., 24 (1973), 133-141.
13. M. Henriksen, Two classes of rings generated by their units, J. Algebra, 31 (1974), 182-193.
14. J. Hannah and K. C. O'Meara, Depth of idempotent-generated subsemigroups of a regular ring, Proc. Lond. Math. Soc., 59 (1989), 464-482.
15. L. N. Vaserstein, Bass's first stable range condition, J. Pure Appl. Algebra, 34 (1984), 319-330.
16. H. P. Yu, Stable range one for rings with many idempotents, Trans. Amer. Math. Soc., 347 (1995), 3141-3147.

Huanyin Chen

Department of Mathematics,
Zhejiang Normal University,
Jinhua, Zhejiang 321004,
People's Republic of China
E-mail: chyzxl@sparc2.hunnu.edu.cn

[^0]: Received June 16, 2002. revised October 17, 2002.
 Communicated by P. -H. Lee.
 2000 Mathematics Subject Classification: 16E50, 16U99.
 Key words and phrases: Regular ring; full elements.

