TAIWANESE JOURNAL OF MATHEMATICS Vol. 8, No. 2, pp. 203-209, June 2004 This paper is available online at http://www.math.nthu.edu.tw/tjm/

FULL ELEMENTS IN REGULAR RINGS

Huanyin Chen

Abstract. In this paper we introduce full elements in regular rings, and show that every matrix over regular rings admits a diagonal reduction by full matrices. Also we get that a regular ring R is unit-regular if and only if $aR \cong bR$ with full elements $a; b \in R$ implies a = ubv for some units $u; v \in R$.

1. INTRODUCTION

A ring R is a regular ring provided that for every $x \in R$ there exists $y \in R$ such that x = xyx. We say that a ring R is unit-regular if for every $x \in R$, there exists a unit $u \in R$ such that x = xux. We refer the reader to [6] for the general theory of regular rings. It is well known that every matrix over unit-regular rings admits a diagonal reduction by invertible matrices (cf. [12, Theorem 3]). P. Ara et. al. have extended this result to separative regular rings (cf. [2, Theorem 2.5]). In this paper we introduce full elements in regular rings and observe that these result can be generalized to general regular rings by virtue of full elements. In [10, Theorem 2], D. Handelman proved that a regular ring R is unit-regular if and only if $eR \cong fR$ with idempotents $e; f \in R$ implies $e = ufu^{i-1}$ for a unit $u \in R$. We also characterize unit-regularity by full elements, and show that a regular ring R is unit-regular r

Throughout, all rings are associative with identity and all modules are right modules. The notation $I \leq R$ means that I is a two-sided ideal of R, and we use U(R) to denote the set of all units of R.

Definition 1. An element $x \in R$ is said to be full in case RxR = R. We denote the set of all full elements of R by Q(R).

Received June 16, 2002. revised October 17, 2002.

Communicated by P. -H. Lee.

²⁰⁰⁰ Mathematics Subject Classification: 16E50, 16U99.

Key words and phrases: Regular ring; full elements.

Huanyin Chen

Clearly, U(R) \subseteq Q(R) (R and Q(R) = R - S {I | I - R}. If R is either a local ring or a commutative ring, then Q(R) = U(R). Let D be a division ring and V a countably infinite dimensional vector space over D. We claim that Q(End_D(V)) \neq U(End_D(V)). Set I = {x \in End_D(V) | dim_D(xV) < ∞}. Then I is the only proper ideal of End_D(V) and so Q End_D(V) = End_D(V) - I. Since End_D(V) is not a local ring, Q End_D(V) \neq U End_D(V).

Theorem 2. Let R be a regular ring. Then aR + bR = R implies that there exists $y \in R$ such that a + by is a full element.

Proof. Suppose that aR + bR = R. Since R is regular, $aR \cap bR$ is a principal right ideal of R and so it is a direct summand of R. Therefore, by Modular Law, $bR = (aR \cap bR) \oplus cR$ and so $R = aR + bR = aR \oplus cR$. Hence there exist two orthogonal idempotents u; VR such that u + v = 1; aR = uR and cR = vR. Obviously, c = by for $y \in R$. We claim that a + c = a + by is a full element. Indeed, u(a + c) = a; v(a + c) = c and so $a; c \in R(a + c)R$. Therefore R = aR + cR = R(a + c)R, as required.

Corollary 3. A ring R is regular if and only if for every $x \in R$, there exists $a \in Q(R)$ such that $x = x \otimes x$.

Proof. One direction is obvious. Conversely, let $x \in R$. Then there exists $y \in R$ such that x = xyx and y = yxy. From yx + (1 - yx) = 1, we have a $z \in R$ such that $y + (1 - yx)z = w \in Q(R)$ by Theorem 2. Hence $x = xyx = x^{i}y + (1 - yx)z = xwx$.

Corollary 4. Let R be a regular ring. Then for every $X \in R$, there exist an idempotent $e \in R$ and $a \in Q(R)$ such that X = eW.

Proof. Given any $x \in R$, we have a $y \in R$ such that x = xyx and y = yxy. Since xy + (1 - xy) = 1, by virtue of Theorem 2, we can find a $z_{\emptyset} \in R$ such that $x + (1 - xy)z = w \in Q(R)$. So $x = xyx = xy^{T}x + (1 - xy)z = xyw$. Set e = xy. Then $e \in R$ is an idempotent and x = ew, as asserted.

Corollary 5. Let R be a regular ring and n a positive integer. If $1=2 \in R$, then for every $A \in M_n(R)$, there exist $U; V \in Q^{i}M_n(R)$ such that A = U + V.

Proof. Since R is a regular ring, so is $M_n(R)$ by [6, Theorem 1.7]. Given any $A \in M_n(R)$, from Corollary 4, we can find an idempotent matrix E and a full matrix U such that A = EU. It is easy to verify that $E = \text{diag}(\frac{1}{2}; \dots; \frac{1}{2}) + \frac{1}{2} \frac{1}{4} 2E - \text{diag}(1; \dots; 1) \stackrel{e}{\underset{i=1}{4}} \text{Clearly}, \frac{1}{2} \frac{1}{2} 2E - \text{diag}(1; \dots; 1) \stackrel{e}{\underset{i=1}{4}} 4E - \text{diag}(2; \dots; 2) = \frac{1}{2} \frac{1}{4} 4E - \text{diag}(2; \dots; 2)$

204

diag
$$(\frac{1}{2}; \cdots; \frac{1}{2}); \frac{1}{2}$$
 i 2E - diag $(1; \cdots; 1)^{\mathbb{C}} \in \operatorname{GL}_{n}(\mathbb{R}):$

Therefore A = diag $(\frac{1}{2}; \dots; \frac{1}{2})U + \frac{1}{2}^{i}2E - diag(1; \dots; 1)^{U}U$, as desired.

Lemma 6. Let R be a regular ring. Then the following hold:

(1) Whenever aR = bR, there exists $a \le Q(R)$ such that $a = b \le Q(R)$.

(2) Whenever Ra = Rb, there exists $a \le Q(R)$ such that a = \$b.

Proof. Suppose that aR = bR with $a; b \in R$. Then we have $x; y \in R$ such that ax = b and a = by. Obviously, b = ax = byx. Since yx + (1 - yx) = 1, we have $az \in R$ such that $y + (1 - yx)z = w \in Q(R)$. Therefore $a = by = b^{1}y + (1 - yx)z = bw$, as required. The second statement is proved analogously.

Lemma 7. Let R be a regular ring. Whenever $aR \cong bR$, there exist $w_1; w_2 \in Q(R)$ such that $a = w_1 b w_2$.

Proof. Suppose that $\tilde{A} : aR \cong bR$. Since R is a regular ring, by [11, Lemma 1], we know that Ra = R $\tilde{A}(a)$ and $\tilde{A}(a)R = bR$. In view of Lemma 6, there exist $W_1; W_2 \in Q(R)$ such that $\tilde{A}(a) = W_1a$ and $b = \tilde{A}(a)W_2$. Therefore we conclude that $b = W_1aW_2$ with $W_1; W_2 \in Q(R)$.

Theorem 8. Let R be a regular ring and n be a positive integer. For any $A \in M_n(R)$, there exist full matrices $P; Q \in M_n(R)$ such that $PAQ = diag(e_1; \dots; e_n)$ for some idempotents $e_1; \dots; e_n \in R$.

Proof. Because R is a regular ring, so is $M_n(R)$ by [6, Theorem 1.7]. Given any $A \in M_n(R)$, there exists $E = E^2 \in M_n(R)$ such that $AM_n(R) = EM_n(R)$. Clearly, ER^n is a finitely generated projective right R-module. By virtue of [6, Proposition 2.6], we can find idempotents e_1 ; ...; $e_n \in R$ such that $ER^n \cong e_1R \oplus \cdots \oplus e_nR \cong diag(e_1$; ...; $e_n)R^n$ as right R-modules. Hence $ER^{n \le 1} \cong$ diag(e_1 ; ...; e_n) $R^{n \le 1}$, where $R^{n \le 1}$ consisting of all n-column vectors over R is a right R-module and a left $M_n(R)$ -module. Let $R^{1 \le n} = \{(x_1; \ldots; x_n) \mid x_i \in R\}$. Then $R^{1 \le n}$ is a left R-module and a right $M_n(R)$ -module. One easily checks that

$$(\mathsf{E}\mathsf{R}^{\mathsf{n}\texttt{E}\mathsf{1}}) \bigcap_{\mathsf{R}} \mathsf{R}^{\texttt{1}\texttt{E}\mathsf{n}} \cong {}^{\mathsf{i}} \mathsf{diag}(\mathsf{e}_1; \ldots; \mathsf{e}_{\mathsf{n}}) \mathsf{R}^{\mathsf{n}\texttt{E}\mathsf{1}} {}^{\mathsf{C}} \mathsf{O} \mathsf{R}^{\texttt{1}\texttt{E}\mathsf{n}};$$

In addition, $\mathbb{R}^{n \ge 1} \stackrel{\mathsf{N}}{\mathbb{R}} \mathbb{R}^{1 \ge n} \cong \mathcal{M}_{n}(\mathbb{R})$ as right $\mathcal{M}_{n}(\mathbb{R})$ -modules. Hence $\mathcal{A}\mathcal{M}_{n}(\mathbb{R}) = \mathbb{E}\mathcal{M}_{n}(\mathbb{R}) \cong \operatorname{diag}(e_{1}; \ldots; e_{n})\mathcal{M}_{n}(\mathbb{R})$. According to Lemma 7, we can find $\mathbb{P}; \mathbb{Q} \in \mathbb{Q}^{1}\mathcal{M}_{n}(\mathbb{R})$ such that $\mathbb{P}\mathcal{A}\mathbb{Q} = \operatorname{diag}(e_{1}; \ldots; e_{n})$, as asserted.

Ţ

Let R be a regular ring. Analogously to Theorem 8, we prove that if $A \in M_n(R)$, there exist $P; Q \in Q^{\dagger}M_n(R)$ such that $A = Pdiag(e_1; \dots; e_n)Q$ for some idempotents $e_1; \dots; e_n \in R$. Thus, by [13, Lemma 1], we conclude that if $A \in M_n(R)(n \ge 2)$ then there exist $P; Q; W \in Q^{\dagger}M_n(R)$ such that A = (P + Q)W.

Recall that a is pseudo-similar to b in R provided that there exist x; y; $z \in R$ such that xay = b; zbx = a and xyx = xzx = x. We denote it by $a \overline{\sim} b$. [5, Theorem] showed that a regular ring R is unit-regular if and only if whenever $a\overline{\sim}b$, there exists a unit $u \in R$ such that $a = ubu^{i-1}$. In [H. Chen, On Exchange QB-rings, Comm. Algebra, to appear], the author observed the following simple fact.

Lemma 9. Let R be an associative ring with $a; b \in R$. Then the following are equivalent:

(1) a≂b.

(2) There exist some $x; y \in R$ such that a = xby; b = yax; x = xyx and y = yxy.

Proof. $(1) \Rightarrow (2)$ is trivial.

 $(2) \Rightarrow (1)$ Inasmuch as $a \neg b$, there are x; y; $z \in R$ such that b = xay; zbx = a and x = xyx = xzx. Indeed, xa(yxy) = xzbx(yxy) = xzb(xyx)y = xzbxy = xay = b. Analogously, (zxz)by = a. By replacing y with yxy and z with zxz, we can assume y = yxy and z = zxz. Further, we directly check that xazxy = xzbxzxy = xzbxz = xzbxy = xay = b; zxybx = zxyxayx = zxayx = zbx = a; zxy = zxyxzxy and x = xzxyx, thus yielding the result.

Theorem 10. Let R be a regular ring. Whenever $a \overline{\sim} b$, there exist full elements $W_1; W_2 \in R$ such that $a = W_1 b W_2$.

Proof. Suppose that a and b are pseudo-similar in R. According to Lemma 9, there exist $x; y \in R$ such that a = xby; b = yax; x = xyx and y = yxy. By Corollary 3, we can find a $v \in Q(R)$ such that y = yvy. Let $w_1 = (1 - xy - vy)v(1 - yx - yv)$. It is easy to verify that $(1 - xy - vy)^2 = 1 = (1 - yx - yv)^2$. hence $w_1 \in Q(R)$. In addition, we have $aw_1 = a(1 - xy - vy)v(1 - yx - yv) = -av(1 - yx - yv) = -av + ax + av = ax$. Similarly, we see that $xb = w_1b$. From yx + (1 - yx) = 1, there is a $z_c \in R$ such that $y + (1 - yx)z = w_2 \in Q(R)$, whence y = yxy = yx $y + (1 - yx)z = yxw_2$. Therefore $a = xby = xbyxw_2 = axw_2 = w_1bw_2$, as desired.

Recall that $a \in R$ is said to be strongly 4-regular if there exist $n \ge 1$ and $x \in R$ such that $a^n = a^{n+1}x$; ax = xa and x = xax. Clearly, the solution $x \in R$ is unique, and we say that x is the Drazin inverse a^d of a.

Corollary 11. Let R be a regular ring. Whenever ab; $ba \in R$ are strongly $\frac{1}{4}$ -regular, there exist W_1 ; $W_2 \in Q(R)$ such that $(ab)^d = W_1(ba)^d W_2$.

206

Proof. As ab and $ba \in R$ are strongly 4-regular, we have $k \ge 1$ such that $(ab)^k = (ab)^{k+1}(ab)^d$; $(ab)(ab)^d = (ab)^d(ab)$ and $(ab)^d = (ab)^d(ab)(ab)^d$. It is easy to verify that

$$(ab)^{k+2}a(ba)^{d}(ba)^{d}b = (ab)a(ba)^{k+1}(ba)^{d}(ba)^{d}b = (ab)a(ba)^{k}(ba)^{d}b$$

= $a(ba)^{k+1}(ba)^{d}b = a(ba)^{k}b = (ab)^{k+1};$
 $(ab)(a(ba)^{d}(ba)^{d}b) = a(ba)^{d}(ba)^{d}(ba)b$
= $a(ba)^{d}b = (a(ba)^{d}(ba)^{d}b)(ab);$

 $(a(ba)^d(ba)^db)(ab)(a(ba)^d(ba)^db) = a(ba)^d(ba)^db$: So $(ab)^d = a(ba)^d(ba)^db$; so $(ab)^d = a(ba)^d(ba)^db$. In addition, we check that $(ba)^d = (ba)^d(ba)(ba)^d = (ba)^d(ba)^da^d$ = $(ba)^db(ab)^da$: Clearly, $(ba)^dba(ba)^db = (ba)^db$; hence, $(ab)^d = (ba)^d$. We see from Theorem 10 that $(ab)^d = w_1(ba)^dw_2$ for $w_1; w_2 \in Q(\mathbb{R})$.

Lemma 12. Let R be a regular ring. Then the following are equivalent:

(1) R is unit-regular.

(2) Every full element of R is unit-regular.

Proof. (1) \Rightarrow (2) is trivial.

(2) \Rightarrow (1) Given aR + bR = R, then ax + by = 1 for $x; y \in R$. By Theorem 2, we have $z \in R$ such that $a + bz \in Q(R)$. Since every full element in R is unit-regular, there exist an idempotent $e \in R$ and a unit $u \in R$ such that a + bz = eu. Hence (a + bz)x + b(y - zx) = 1, and then eux + b(y - zx) = 1. Thus, we must have eux(1 - e) + b(y - zx)(1 - e) = 1 - e, whence $a + b^{i}z + (y - zx)(1 - e)u = eu + b(y - zx)(1 - e)u = i1 - eux(1 - e)u = i1 - eu$

By [14, Proposition 3.3], if R is a regular ring then an idempotent $e \in Q(R)$ if and only if there exist nilpotent n_1 ; $n_2 \in R$ such that $e = 1 + n_1n_2$. Now we investigate unit-regularity by virtue of full idempotents.

Lemma 13. Let R be a regular ring. Then the following are equivalent:

- (1) R is unit-regular.
- (2) Whenever $eR \cong fR$ with full idempotents $e; f \in R$, there exists $u \in U(R)$ such that $e = ufu^{i-1}$.
- (3) Whenever $eR \cong fR$ with full idempotents $e; f \in R$, $(1 e)R \cong (1 f)R$.

Proof. (1) \Rightarrow (2) and (2) \Rightarrow (3) are clear by [10, Theorem 2].

(3) \Rightarrow (1) Given any $x \in Q(R)$, then there exists a $y \in R$ such that x = xyx. Since xy and yx are both idempotents of R, we have right R-module decompositions $R = yxR \oplus (1 - yx)R = xyR \oplus (1 - xy)R$. Clearly, $\tilde{A} : yxR = yR \cong xyR$ given Huanyin Chen

by $yr \to x(yr)$ for any $r \in R$. If $yx \notin Q(R)$, then there exists an ideal I = R such that $yx \in I$; hence, $x = xyx \in I$. So $x \notin Q(R)$, a contradiction. Thus, $yx \in Q(R)$. Likewise, $xy \in Q(R)$. By the hypothesis, we have $A : (1 - yx)R \cong (1 - xy)R$. Define $u \in End_R(R)$ so that u restricts to $\tilde{A}^{i-1} : xR = xyR \to yxR$ and u restricts to $A^{i-1} : (1 - xy)R \to (1 - yx)R$. One easily checks that x = xu(1)x and $u(1) \in U(R)$. That is, every full elements in R is unit-regular. Therefore we get the result by Lemma 12.

As a result, we deduce that a regular ring R is unit-regular if and only if whenever $aR \cong bR$ with full elements $a; b \in R$, then $R=aR \cong R=bR$.

Theorem 14. Let R be a regular ring. Then the following hold:

- (1) R is unit-regular.
- (2) Whenever $aR \cong bR$ with full elements $a; b \in R$, there exist $u; v \in U(R)$ such that a = ubv.

Proof. (1) \Rightarrow (2) Assume that $\tilde{A} : aR \cong bR$ with $a; b \in R$. Since R is unitregular, a and b are both unit-regular; hence, $a = eu_1$ and $b = fv_1$ with idempotents $e; f \in R$ and units $u_1; v_1 \in R$. Clearly, $eR = aR \cong bR = fR$. By [10, Theorem 2], we have $u \in U(R)$ such that $e = ufu^{i-1}$. So $a = eu_1 = ufu^{i-1}u_1 = ubv_1^{i-1}u^{i-1}u_1$. Set $v = v_1^{i-1}u^{i-1}u_1$. Then there are $u; v \in U(R)$ such that a = ubv.

(2) \Rightarrow (1) Given $\tilde{A} : eR \cong fR$ with idempotents $e; f \in Q(R)$, then we have $u; v \in U(R)$ such that e = ufv. Set $e^{0} = ufu^{i-1}$. Obviously, $eR = e^{0}R$ and so $(e - e^{0})^{2} = 0$. Therefore $w = 1 - e + e^{0} \in U(R)$ and $w^{i-1} = 1 + e - e^{0}$. Clearly, $we^{0} = e^{0}$ and $e^{0}w^{i-1} = e$. Therefore $e = we^{0}w^{i-1} = (wu)f(wu)^{i-1}$ and so the result follows from Lemma 13.

Corollary 15. Let R be a regular ring, I an ideal of R. Then the following hold:

(1) R is unit-regular.

(2) Whenever $aR \cong bR$ with $a; b \notin I$, there exist $u; v \in U(R)$ such that a = ubv.

Proof. (1) \Rightarrow (2) is analogous to Theorem 14.

(2) \Rightarrow (1) Given aR \cong bR with full elements a; b \in R, then we have a; b \notin I; hence, there exist u; v \in U(R) such that a = ubv. Therefore we complete the proof by Theorem 14.

ACKNOWLEDGEMENTS

The author is grateful to the referee for his/her suggestions which led to the new version of Theorem 2 and Theorem 14, and helped me to improve the manuscript. This work was supported by the Natural Science Foundation of Zhejiang Province and the Ministry of Education of China ([2000] 65).

References

- 1. P. Ara, Strongly ¼-regular rings have stable range one, *Proc. Amer. Math. Soc.*, **124** (1996), 3293-3298
- P. Ara, K.R. Goodearl, K.C. O'Meara and E.Pardo, Diagonalization of matrices over regular rings, *Linear Algebra Appl.*, 265 (1997), 147-163.
- 3. M. J. Canfell, Completion of diagrams by automorphisms and Bass' first stable range condition, *J. Algebra*, **176** (1995), 480-503.
- 4. H. Chen, Elements in one-sided unit regular rings, *Comm. Algebra*, **25** (1997), 2517-2529.
- 5. R. Guralnick and C. Lanski, Pesudosimilarity and cancellation of modules, *Linear Algebra Appl.*, **47** (1982), 111-115.
- K. R. Goodearl, *Von Neumann Regular Rings*, Pitman, London-San Francisco-Melbourne, 1979; 2nd ed., Krieger, Malabar, Fl., 1991.
- K. R. Goodearl, Von Neumann regular rings and direct sum decomposition problems, In: *Abelian Group and Modules*, Kluwer, Dordrecht, 1995, pp. 249-255.
- 8. K. R. Goodearl and P. Menal, Stable range one for rings with many units, J. Pure Appl. Algebra, 541988), 261-287.
- 9. F. J. Hall, R. E. Hartwig, I. J. Katz and M. Newman, Pseudo-similarity and partial unit regularity, *Czechoslovak Math. J.*, **33** (1983), 361-372.
- D. Handelman, Perspectivity and cancellation in regular rings, J. Algebra, 48 (1977), 1-16.
- 11. R. E. Hartwig and J. Luh, A note on the group structure of unit regular ring elements, *Pacific J. Math.*, **71** (1977), 449-461.
- 12. M. Henriksen, On a class of regular rings that are elementary divisor rings, *Arch. Math.*, **24** (1973), 133-141.
- 13. M. Henriksen, Two classes of rings generated by their units, *J. Algebra*, **31** (1974), 182-193.
- 14. J. Hannah and K. C. O'Meara, Depth of idempotent-generated subsemigroups of a regular ring, *Proc. Lond. Math. Soc.*, **59** (1989), 464-482.
- 15. L. N. Vaserstein, Bass's first stable range condition, J. Pure Appl. Algebra, 34 (1984), 319-330.
- 16. H. P. Yu, Stable range one for rings with many idempotents, *Trans. Amer. Math. Soc.*, **347** (1995), 3141-3147.

Huanyin Chen Department of Mathematics, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China E-mail: chyzxl@sparc2.hunnu.edu.cn