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SOLVABILITY OF A NONLINEAR FOUR�POINT BOUNDARY VALUE
PROBLEM FOR A FOURTH ORDER DIFFERENTIAL EQUATION∗

Liu Yuji and Ge Weigao

Abstract. The authors consider four-point boundary value problem for a fourth
order ordinary differential equations of the form

(φp(u
00(t)))00 = a(t)f(u(t)), t ∈ (0, 1),(E)

with one of the following boundary conditions

u(0)− λu0(η) = u0(1) = 0, u000(0) = α1u000(ξ), u00(1) = β1u00(ξ),(B1)

or

u(1) + λu0(η) = u0(0) = 0, u000(0) = α1u000(ξ), u00(1) = β1u00(ξ).(B2)

They impose growth conditions on f which guarantee existence of at least two
positive solutions for the problems (E)− (B1) and (E)− (B2).

1. INTRODUCTION

In this paper, we are concerned with the existence of twin positive solutions
for the fourth-order boundary value problems (BVP for short) consisting of the
p-Laplacian differential equation

(φp(u
00(t)))00 − a(t)f(u(t)) = 0, t ∈ (0, 1),(1)

and one of the following boundary conditions

u(0)− λu0(η) = u0(1) = 0, u000(0) = α1u000(ξ), u00(1) = β1u00(ξ),(2)
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or

u(1) + λu0(η) = u0(0) = 0, u000(0) = α1u000(ξ), u00(1) = β1u00(ξ),(3)

where f : R → [0,+∞), a : (0, 1) → [0,+∞) are continuous functions. 0 < ξ,
η < 1, λ ≥ 0, p > 1, φp(z) = |z|p−2z, α1 < 1, β1 ∈ [0, 1).
Two-point boundary value problems for differential equations are used to de-

scribe a number of physical, biological, and chemical phenomena. And for addi-
tional background and results, we refer the reader to the monograph by Agawarl,
O�Regan and Wong [1] as well as the recent contributions by [2-5].
Recently, three point boundary value problems of the differential equations were

presented and studied by many authors, see [6-9] and the references therein. Three
point boundary value problems (1) � (2) or (1) � (3) have not received as much
attention in the literature as Lidstone condition boundary value problem½

u0000(t) = a(t)f(u(t)), t ∈ (0, 1),
u(0) = u(1) = u00(0) = u00(1) = 0,(4)

and as second order three point boundary value problem½
u00(t) + a(t)f(u(t)) = 0, t ∈ (0, 1),
u(0) = 0, u(1) = αu(η),

(5)

that were extensively considered, for example, in [3-5] and [7-10] respectively. The
results of existence of positive solutions of BVP (1) � (2) and (1) � (3) are relatively
scarce.
The motivation for the present work also originates from many recent investi-

gations. Recently, there is an increasing interest in obtaining twin positive solutions
for two point boundary value problems for both ordinary differential equations and
finite difference equations, for more details, we refer the reader to [11-15]. To the
best of our knowlege, existence results of multiple positive solutions for three point
BVP have not been found in literature. The purpose of this paper is to establish the
existence of at least two positive solutions of (1) � (2) and (1) � (3). Our arguments
involve the use of the concavity and integral representation of solutions and the
Avery-Henderson fixed point theorem, Theorem AH. We will impose growth condi-
tions on f which ensure the existence of at least two positive solutions of (1) � (2)
and (1) � (3).
For the remainder of the paper, we assume that

(i) 0 <
R 1
0 a(s)ds < +∞;

(ii) q satisfies 1p +
1
q = 1, and φq(z) = |z|q−2z.

We also present some background materials from the theory of cones in Banach
spaces.
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Definition 1. Let X be a real Banach space, a non-empty closed convex set
P ⊂ X is called a cone of X if it satisfies the following conditions :

(i) x ∈ P and λ ≥ 0 implies λx ∈ P ,
(ii) x ∈ P and −x ∈ P implies x = 0.

Every cone P ⊂ X includes an ordering in X which is given by x ≤ y if and only
if y − x ∈ P .

Definition 2. A map ψ : P → [0,+∞) is called nonnegative continuous
concave functional provided ψ is nonnegative, continuous and satisfies

ψ(tx+ (1− t)y) ≥ tψ(x) + (1− t)ψ(y),

for all x, y ∈ P and t ∈ [0, 1]. Similarly, we say the map β is a nonnegative
continuous convex functional on a cone P of X if

β : P → [0,+∞)

is continuous and

β(tx+ (1− t)y) ≤ tβ(x) + (1− t)β(y),

for all x, y ∈ P and t ∈ [0, 1].

Definition 3. An operator is called completely continuous if it is continuous
and maps bounded sets into pre-compact sets.
Let

P (ψ, d) = {x ∈ P : ψ(x) < d}, ∂P (ψ, d) = {x ∈ P : ψ(x) = d},
P (ψ, d) = {x ∈ P : ψ(x) ≤ d}.

Theorem AH [15]. Suppose X is a real Banach space, and P is a cone of
X, γ,α are two nonnegative increasing continuous functionals, θ is a nonnegative
continuous functional and θ(0) = 0. There are positive numbers c and M such
that

γ(x) ≤ θ(x) ≤ α(x), ||x|| ≤Mγ(x) for x ∈ P (γ, c).
Again, assume T : P (γ, c) → P is completely continuous, and there are positive
numbers 0 < a < b < c such that

θ(µx) ≤ µθ(x), µ ∈ (0, 1], x ∈ ∂P (θ, b),

and
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(i) γ(Tx) > c for x ∈ ∂P (γ, c);
(ii) θ(Tx) < b for x ∈ ∂P (θ, b);
(iii) α(Tx) > a and P (α, a) 6= Ø for x ∈ ∂P (α, a).

Then T has at least two fixed points x1, x2 ∈ P (γ, c) that satisfy

a < α(x1), θ(x1) < b,

and
b < θ(x2), γ(x2) < c.

In section 2, we impose growth conditions on f which allow us to apply theorem
AH in obtaining two positive solutions of BVP (1) � (2) and (1) � (3).

2. TWIN POSITIVE SOLUTIONS OF (1) � (2) OR (1) � (3)

In this section, we impose growth conditions on f and apply theorem AH to
establish the existence of twin positive solutions (1) � (2) and (1) � (3).
In order to apply theorem AH, we must define an appropriate operator on a

Banach space. To that end we first note that if f ∈ C(R,R), then the unique
solution of the second order boundary value problem

−y00 = f(t), y0(0) = α1y0(ξ), y(1) = β1y(ξ),(6)

is

y(t) =

Z 1

0
G(t, s)f(s)ds, t ∈ [0, 1],

where M = (1− α1)(1− β1) 6= 0, and

G(t, s) =
1

M



1− β1ξ − t+ β1t, 0 ≤ s ≤ t < ξ < 1 or 0 ≤ s ≤ ξ ≤ t ≤ 1,
1− β1ξ + (1− β1)(α1s− s− α1t),

0 ≤ t ≤ s ≤ ξ < 1,
1− α1 − β1s+ α1β1s− t+ α1t+ β1t− α1β1t,

0 ≤ ξ ≤ s ≤ t ≤ 1,
(1− s)(1− α1), 0 < ξ ≤ t ≤ s ≤ 1 or 0 ≤ t < ξ ≤ s ≤ 1.

In fact, if y(t) is a solution of (6), then we suppose that

y(t) = −
Z t

0
(t− s)f(s)ds+At+B, t ∈ [0, 1],
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by the boundary condition (6), we get

A = −α1
Z ξ

0
f(s)ds+ α1A,

and

−
Z 1

0
(1− s)f(s)ds+A+B = −β1

Z ξ

0
(ξ − s)f(s)ds+ β1ξA+ β1B,

hence

y(t)= −
Z t

0
(t− s)f(s)ds− α1t

1− α1

Z ξ

0
f(s)ds+

1

1− β1

Z 1

0
(1− s)f(s)ds

− 1

(1− α1)(1− β1)
Z ξ

0
(β1ξ − β1s+ α1β1s− α1)f(s)ds

=

Z 1

0
G(t, s)f(s)ds.

On the other hand, it is easy to know that if α1 < 1, β1 ∈ [0, 1) then G(t, s) ≥ 0
for (t, s) ∈ [0, 1] × [0, 1] (boundary conditions (6) was proposed in [9], however,
the explicit formulation of Green�s function had not been found).
If u(t) is solution of problem (1) � (2), by (1) � (2), we then have

φp(u
00(t)) = −

Z 1

0
G(t, s)a(s)f(u(s))ds.

Thus

u00(t) = −φq
³Z 1

0
G(t, s)a(s)f(u(s))ds

´
.(7)

Now, for boundary conditions (2), using (7), we have

−u0(t) = −
Z 1

t
φq

³Z 1

0
G(s, τ)a(τ)f(u(τ))dτ

´
ds.(8)

and

u(t)− u(0) =
Z t

0

Z 1

s
φq

³Z 1

0
G(r, τ)a(τ)f(u(τ))dτ

´
drds,(9)
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Hence (8) � (9) imply

u(t) =λ

Z 1

η
φq

³Z 1

0
G(s, r)a(r)f(u(r))dr

´
ds

+t

Z 1

t
φq

³Z 1

0
G(s, r)a(r)f(u(r))dr

´
ds

+

Z t

0
sφq

³Z 1

0
G(s, r)a(r)f(u(r))dr

´
ds.

(10)

Similarly, if u(t) is a solution of (1)�(3), we have

u(t) =λ

Z η

0
φq

³Z 1

0
G(s, r)a(r)f(u(r))dr

´
ds

+

Z 1

0
φq

³Z 1

0
G(s, r)a(r)f(u(r))dr

´
ds

−t
Z t

0
φq

³Z 1

0
G(s, r)a(r)f(u(r))dr

´
ds

−
Z 1

t
sφq

³Z 1

0
G(s, r)a(r)f(u(r))dr

´
ds.

(11)

Now, let the classical Banach space X = C([0, 1]) be endowed with the norm
||x|| = max0≤t≤1 |x(t)|, and choose the cone P1, P2 defined by

P1 = {u ∈ X : u(t) ≥ 0, u(t) is concave and increasing on [0, 1],
u(0)− λu0(η) = u0(1) = 0},

(12)

P2 = {u ∈ X : u(t) ≥ 0, u(t) is concave and decreasing on [0, 1],
u(1) + λu0(η) = u0(0) = 0}.

(13)

2.1. Twin Positive Solutions of (1) � (2)

We choose r ∈ (η, 1) and define the nonnegative, increasing, continuous func-
tionals γ, θ, and α by

γ(u) = min
t∈[η,r]

u(t) = u(η),

θ(u) = max
t∈[0,η]

u(t) = u(η),

α(u) = max
t∈[0,r]

u(t) = u(r).

We observe, for each u ∈ P1, since u00(t) ≤ 0, one has
u(η)− u(1)
η − 1 ≤ u(0)− u(1)

0− 1 , λ
u(η)− u(1)
η − 1 ≤ λu0(η) = u(0).
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Then u(η) ≥ (1 − η)u(0) + ηu(1), and u(0) ≥ λ
η−1(u(η) − u(1)), hence u(η) ≥

−λ(u(η)− u(1)) + ηu(1). Thus

γ(u) = u(η) ≥ λ+ η

λ+ 1
||u||,

and hence

||u|| ≤ 1 + λ

η + λ
γ(u), u ∈ P1.

Finally, we also note that

θ(µu) = µθ(u), 0 ≤ µ ≤ 1, u ∈ P1.

We now state the growth conditions on f so that (1) � (2) has at least two positive
solutions.

Theorem 2.1. Suppose that there are positive numbers a, b, c such that

0 < a <
L

N
b <

L

N

η + λ

1 + λ
c,

and f(w) satisfies following conditions :

(14) f(w) > φp

³ c
M

´
, c ≤ w ≤ 1 + λ

η + λ
c;

(15) f(w) < φp

³ b
N

´
, 0 ≤ w ≤ 1 + α

η + α
b;

(16) f(w) > φp

³ a
L

´
, 0 ≤ w ≤ a.

Then BVP (1)�(2) has at least two positive solutions u1, u2 such that

a < max
t∈[0,r]

u1(t) = u1(r) with u1(η) = max
t∈[0,η]

u1(t) < b,(17)

b < max
t∈[0,η]

u2(t) = u2(η) with u2(η) = min
t∈[η,r]

u2(t) < c,(18)
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where L,M,N are defined as follows

M =(λ+ η)

Z 1

η
φq

³Z 1

η
G(s, r)a(r)f(u(r))dr

´
ds

+

Z η

0
sφq

³Z 1

η
G(s, r)a(r)f(u(r))dr

´
ds,

N =(λ+ η)

Z 1

η
φq

³Z 1

0
G(s, r)a(r)f(u(r))dr

´
ds

+

Z η

0
sφq

³Z 1

0
G(s, r)a(r)f(u(r))dr

´
ds,

L =λ

Z 1

η
φq

³Z r

0
G(s, r)a(r)f(u(r))dr

´
ds

+r

Z 1

r
φq

³Z r

0
G(s, r)a(r)f(u(r))dr

´
ds

+

Z r

0
sφq

³Z r

0
G(s, r)a(r)f(u(r))dr

´
ds.

Proof. We begin by defining the completely continuous integral operator T :
P1 → X by

Tu(t) =λ

Z 1

η
φq

³Z 1

0
G(s, r)a(r)f(u(r))dr

´
ds

+t

Z 1

t
φq

³Z 1

0
G(s, r)a(r)f(u(r))dr

´
ds

+

Z t

0
sφq

³Z 1

0
G(s, r)a(r)f(u(r))dr

´
ds.

(19)

It is well known that solutions of (1) � (2) are fixed points of T and conversely.
We proceed to show that the conditions of theorem AH are satisfied.

Firstly, let u ∈ P1(γ, c). By the nonnegativity of f and G, for t ∈ [0, 1],
we have Tu(t) ≥ 0. In addition, (Tu)00(t) = −φq(

R 1
0 G(t, s)a(s)f(u(s))ds ≤ 0,

Tu(0) − λ(Tu)0(η) = 0, (Tu)0(1) = 0. Consequently, Tu ∈ P1, and conclude
T : P1(γ, c)→ P1.

We now turn to property (i) of theorem AH. Choose u ∈ ∂P1(γ, c), then γ(u) =
u(η) = c. Since u ∈ P1, u(t) ≥ c for t ∈ [η, 1], we recall that ||u|| ≤ 1+λ

η+λγ(u) =
1+λ
η+λc, we have

c ≤ u(t) ≤ 1 + λ

η + λ
c, η ≤ t ≤ 1,
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and as a consequence of assumption (14),

f(u(t)) > φp

³ c
M

´
, η ≤ t ≤ 1.

Also, Tu ∈ P1, and so
γ(Tu)= Tu(η)

= λ

Z 1

η
φq

³Z 1

0
G(s, r)a(r)f(u(r))dr

´
ds

+η

Z 1

η
φq

³Z 1

0
G(s, r)a(r)f(u(r))dr

´
ds

+

Z η

0
sφq

³Z 1

0
G(s, r)a(r)f(u(r))dr

´
ds

≥ (λ+ η)
Z 1

η
φq

³Z 1

η
G(s, r)a(r)f(u(r))dr

´
ds

+

Z η

0
sφq

³Z 1

η
G(s, r)a(r)f(u(r))dr

´
ds

> (λ+ η)

Z 1

η
φq

³Z 1

η
G(s, r)a(r)φp

³ c
M

´
dr
´
ds

+

Z η

0
sφq

³Z 1

η
G(s, r)a(r)φp

³ c
M

´
dr
´
ds

= (λ+ η)
c

M

h Z 1

η
φq

³Z 1

η
G(s, r)a(r)dr

´
ds

+

Z η

0
sφq

³Z 1

η
G(s, r)a(r)dr

´
ds
i

= c.

We conclude that (i) of Theorem AH is satisfied.
We next address (ii) of theorem AH. Let us choose u ∈ ∂P1(θ, b), then θ(u) =

u(η) = b, and this implies 0 ≤ u(t) ≤ b for 0 ≤ t ≤ η. And since u ∈ P1, we also
have b ≤ u(t) ≤ ||u|| = u(1) for t ∈ [η, 1]. Moreover,

||u|| ≤ 1 + λ

η + λ
γ(u) ≤ 1 + λ

η + λ
θ(u) =

1 + λ

η + λ
b,
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and so

0 ≤ u(t) ≤ 1 + λ

η + λ
b, 0 ≤ t ≤ 1.

From assumption (15), we get

f(u(t)) < φp

³ b
N

´
, 0 ≤ t ≤ 1.

Similarly, Tu ∈ P1 and so

θ(Tu)= Tu(η)

= (λ+ η)

Z 1

η
φq

³Z 1

0
G(s, r)a(r)f(u(r))dr

´
ds

+

Z η

0
sφq

³Z 1

η
G(s, r)a(r)f(u(r))dr

´
ds

< (λ+ η)

Z 1

η
φq

³Z 1

0
G(s, r)a(r)φp

³ b
N

´
dr
´
ds

+

Z η

0
sφq

³Z 1

0
G(s, r)a(r)φp

³ b
N

´
dr
´
ds

= (λ+ η)
b

N

h Z 1

η
φq

³Z 1

0
G(s, r)a(r)dr

´
ds

+

Z η

0
sφq

³Z 1

0
G(s, r)a(r)dr

´
ds
i

= b.

In particular, (ii) of Theorem AH holds.
For the final part, we turn to (iii) of Theorem AH. For this part, if we first

define u(t) = a
2 for t ∈ [0, 1]. Then α(u) = a

2 < a, and P1(α, a) 6= Ø.
Now, let us choose u ∈ ∂P1(α, a). Then α(u) = u(r) = a. This implies

0 ≤ u(t) ≤ a, for 0 ≤ t ≤ r. From the assumption (16),

f(u(t)) > φp(
a

L
), 0 ≤ t ≤ r.

As before, Tu ∈ P1 and also
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α(Tu)= Tu(r)

= λ

Z 1

η
φq

³Z 1

0
G(s, r)a(r)f(u(r))dr

´
ds

+r

Z 1

r
φq

³Z 1

0
G(s, r)a(r)f(u(r))dr

´
ds

+

Z r

0
sφq

³Z 1

0
G(s, r)a(r)f(u(r))dr

´
ds

≥ λ
Z 1

η
φq

³Z r

0
G(s, r)a(r)f(u(r))dr

´
ds

+r

Z 1

r
sφq

³Z r

0
G(s, r)a(r)f(u(r))dr

´
ds

+

Z r

0
sφq

³Z r

0
G(s, r)a(r)f(u(r))dr

´
ds
i

> λ

Z 1

η
φq

³Z r

0
G(s, r)a(r)φp

³ a
L
)dr
´
ds

+r

Z 1

r
φq

³Z r

0
G(s, r)a(r)φp

³ a
L

´
dr
´
ds

+

Z r

0
sφq

³Z r

0
G(s, r)a(r)φp

³ a
L

´
dr
´
ds

=
a

L

h
λ

Z 1

η
φq

³Z r

0
G(s, r)a(r)dr

´
ds

+r

Z 1

r
φq

³Z r

0
G(s, r)a(r)dr

´
ds

+

Z r

0
sφq

³Z r

0
G(s, r)a(r)dr

´
ds
i

= a.

Therefore, (iii) of Theorem AH is satisfied. Hence there exist at least two fixed
points of T which are positive solutions u1, u2 of the boundary value problem (1)
� (2) such that

a < α(u1) = u1(r) with u1(η) = θ(u1) < b,

b < θ(u2) = u2(η) with u2(η)γ(u2) < c.

The proof is complete.
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2.2. Twin Positive Solutions of (1) � (3)

Similar to that of the section 2.1, we choose r ∈ (0, η) and define the nonneg-
ative, increasing, continuous functionals γ, θ, and α by

γ(u)= min
t∈[γ,η]

u(t) = u(η),

θ(u)= max
t∈[η,1]

u(t) = u(η),

α(u)= max
t∈[r,1]

u(t) = u(r).

We observe, for each u ∈ P2,
||u|| ≤ 1 + λ

λ+ 1− ηγ(u), u ∈ P2,

since u00(t) ≤ 0. Finally, we also note that

θ(µu) = µθ(u), 0 ≤ µ ≤ 1, u ∈ P2.

We now state the growth conditions on f so that (1) � (3) has at least two positive
solutions.

Theorem 2.2. Suppose that there are positive numbers a, b, c such that

0 < a <
L1
N1
b <

L1
N1

1 + α− η
1 + α

c,

and f(w) satisfies following conditions :

f(w) > φp

³ c

M1

´
, c ≤ w ≤ 1 + λ

1− η + λc;(20)

f(w) < φp

³ b
N1

´
, 0 ≤ w ≤ 1 + λ

1− η + λb;(21)

f(w) > φp

³ a
L1

´
, 0 ≤ w ≤ a.(22)

Then BVP (1) � (3) has at least two positive solutions u1, u2 such that

a < max
t∈[r,1]

u1(t) = u1(r), with u1(η) = max
t∈[η,1]

u1(t) < b,(23)

b < max
t∈[η,1]

u2(t) = u2(η), with u2(η) = min
t∈[r,η]

u2(t) < c,(24)

where L1,M1, N1 are defined as follows
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M1= (λ+ 1− η)
Z η

0
φq

³Z 1

0
G(s, r)a(r)f(u(r))dr

´
ds

+

Z 1

η
(1− s)φq

³Z 1

0
G(s, r)a(r)f(u(r))dr

´
ds
i
,

N1 = (λ+ 1− η)
Z η

0
φq

³Z η

0
G(s, r)a(r)f(u(r))dr

´
ds

+

Z 1

η
(1− s)φq

³Z η

0
G(s, r)a(r)f(u(r))dr

´
ds
i
,

L1 = λ

Z η

0
φq

³Z 1

r
G(s, r)a(r)f(u(r))dr

´
ds

+(1− r)
Z r

0
φq

³Z 1

r
G(s, r)a(r)f(u(r))dr

´
ds

+

Z 1

r
(1− s)φq

³Z 1

r
G(s, r)a(r)f(u(r))dr

´
ds
i
.

Proof. We define a completely continuous integral operator T : P2 → X by

Tu(t) =λ

Z η

0
φq

³Z 1

0
G(s, r)a(r)f(u(r))dr

´
ds

+

Z 1

0
φq

³Z 1

0
G(s, r)a(r)f(u(r))dr

´
ds

−t
Z t

0
φq

³Z 1

0
G(s, r)a(r)f(u(r))dr

´
ds

−
Z 1

t
sφq

³Z 1

0
G(s, r)a(r)f(u(r))dr

´
ds.

i.e.

Tu(t) =λ

Z η

0
φq

³Z 1

0
G(s, r)a(r)f(u(r))dr

´
ds

+

Z t

0
(1− t)φq

³Z 1

0
G(s, r)a(r)f(u(r))dr

´
ds

+

Z 1

t
(1− s)φq

³Z 1

0
G(s, r)a(r)f(u(r))dr

´
ds.

(25)

The remainder of the proof is similar to that of Theorem 2.1 and hence omitted.
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