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A LAYER-DECOMPOSITION WITH DEGREE METHOD
FOR SUBGRAPHS RECOGNITION PROBLEM

Yifan Xu

Abstract. For two planar undirected graphs G and H, the subgraphs
recognition problem (SRP) is to find and list all subgraphs of G which
are isomorphic to H. In this paper, we introduce the idea of layer-
decomposition with degree and present an algorithm based on this idea
for SRP. Since subgraphs isomorphic to each other contain their spanning
trees with the same decomposition, the SRP can be decomposed into
two subproblems: First, find subtrees of G which have the same layer-
decomposition as that of H. Then, test whether the induced subgraphs
generated by these subtrees are isomorphic to H. By this scheme, we
greatly decrease the complexity to O(n(∆ − 1)k−1k2), where ∆ is the
degree of G and n, k are the orders of G,H respectively.

1. INTRODUCTION

Let G be a planar undirected graph with order n and degree ∆ and let H
be another planar undirected graph with order k. The subgraph recognition
problem (SRP) is to recognize and list all subgraphs of G which are isomorphic
to H. This problem has a strong application background in VLSI circuit design
and structure analysis. In practice, we often need to track some functional
modules and determine their positions to investigate the structure of VLSI
circuit. Since the VLSI circuit and its functional modules can be represented
by a variety of specific graphs, the method for SRP can be taken as a tool for
VLSI circuit structure analysis. Hence, finding a way to effectively solve SRP
is an interesting and valuable task.

The trivial way to solve SRP requires O(k2nk) time. However, in a prac-
tical VLSI circuit, n can reach one million or more and k may be great than
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one hundred. Obviously it is beyond the ability of computer at present time.
Hence, previous work on SRP has always concentrated on recognizing special
families of subgraphs, such as short paths [4], cycles [2, 7, 8], cliques [5] and
regular subgraphs [11].

There are two results we must mention here which belong to Plehn and
Voigt [6] and Sundaram and Skiema [10] respectively. In 1990, Plehn and
Voigt [6] used the tree-decomposition technique to show that the SRP can be
determined in time O(k3knw+1), where w ≥ 1 is the tree-width of H. Several
years later, in 1995, Sundaram and Skiena [10] introduced the concept of flower
number and showed that if f is the flower number of graph H, then subgraphs
of G isomorphic to H can be recognized in O((k−f)3(k−f)nfm), where m is the
edge number of G. According to [10], a flower set of a graph is a set of nodes
whose removal reduces the graph to vertex disjoint paths. The flower number
of a graph H is the cardinality of the smallest flower set of H. The common
weakness of the two above methods is that the amount of computation is still
great, especially for n pretty large and k not very small. So, to construct an
algorithm such that it can deal with general SRP in a tolerable complexity is
a key step to analyze the VLSI circuit.

In our previous work on this topic [12], we investigate SRP with a new
idea, layer-decomposition. For a given planar graph, we select a spanning
tree for the graph and take a vertex of the graph as the root of the spanning
tree. We partition the vertices of the graph in the following way. Put all
vertices of the same distance to the root of the spanning tree into one set.
Denote the family of all such sets a layer-decomposition for the graph. The
complexity of our algorithm in [12] is O(n(∆− 1)k−1α(H)), where α(H) is a
variant with respect to the structure of H. In some practical applications such
as the VLSI circuit, since ∆ and k are small, the advantage of our method is
remarkable. However, in some special cases, α(H) could be large. This will
result in low efficiency of the algorithm. In order to improve the algorithm,
in this paper we pay attention to minimizing α(H). We introduce the idea of
layer-decomposition with degree, i.e., attaching a degree to each vertices in the
layer-decomposition and establish an algorithm for SRP. The computational
complexity of the algorithm is O(n(∆−1)k−1k2) which has nothing to do with
α(H).

This paper is organized in this way. In section 2 we introduce the concept of
layer-decomposition with degree. In section 3 we state the algorithm for SRP
and in section 4 we analyze the computational complexity of the algorithm.
Then in section 5 we make the numerical test. Last in section 6, we give the
conclusion.

2. LAYER-DECOMPOSITION WITH DEGREE
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Let h0, h1, . . . , hk−1 be k vertices of graph H and T be a spanning tree of
graph H. For each vertex hj , (0 ≤ j ≤ k − 1), we denote by αj the degree
of vertex hj in the spanning tree T . Take one vertex, i.e., h0, as the root of
tree T . We define dj , (0 ≤ j ≤ k − 1), as the distance between vertex hj and
root h0 in spanning tree T . After selecting the spanning tree T and its root
h0 we obtain a triple (hj , dj , αj)(T,h0), or simply (hj , dj , αj), for each vertex
hj , (0 ≤ j ≤ k − 1) of graph H.

Definition 1. Given a spanning tree T of graph H with k vertices {h0, h1, · · · ,
hk−1} and a root h0. We define subset Ll = {(hj , dj , αj) : j ∈ Il}, where
Il = {j : dj = l, 0 ≤ j ≤ k − 1}, as the l-layer of tree T at root h0 and define
L(T,h0) = {Ll} the layer-decomposition with degree of T at root h0, or simply
layer-decomposition.

If the number of layers in layer-decomposition L(T,h0) is s and |Il|, the
number of vertices in the lth layer is kl for any 0 ≤ l ≤ s, then the distribution
of L(T,h0) is defined by

(1) {{αj}I0 ; {αj}I1 ; · · · ; {αj}Is}.

Clearly, |I0| = k0 = 1 and max{dj : 0 ≤ j ≤ k − 1} = s. About distribution
(1), we have

(2)

k = k0 + k1 + . . . + ks

= 2 +
∑

j∈I0∪I1∪···∪Is−1

(αj − 1).

We say two layer-decompositions are same if they have the same distri-
bution, i.e., the number of layers, the number of vertices in each layer and
degrees of vertices in each layer are all same.

3. ALGORITHM

In this section, we present the algorithm based on the layer-decomposition
for SRP.

We know that two graphs which are isomorphic to each other certainly
have their spanning trees isomorphic to each other, and furthermore, have the
same layer-decompositions for these spanning trees. In other words, if in one
graph there is no spanning tree isomorphic to one in another graph, or no tree
having the same layer-decomposition with that of a spanning tree in the other
graph, then these two graphs are not isomorphic. To our problem recognizing
whether graph G has subgraphs which are isomorphic to graph H, we only
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need to find those subtrees in G which are isomorphic to one spanning tree
of H, or furthermore, only need to find those subtrees in G which have the
same layer-decomposition with that of one spanning tree of H. Then, check
whether the induced subgraphs generated by those subtrees are isomorphic to
H. Based on this idea, we state our algorithm in follow.

Algorithm for SRP:
Given input planar graphs H, G with order k, n respectively.
1. Choose a spanning tree T of H and a root h0 of T . Make the layer-

decomposition L(T,h0) and obtain the distribution {{αj}I0 ; {αj}I1 ; · · · ; {αj}Is}.
2. Find subtrees in G with the same layer-decomposition L(T,h0).
3. If there are some, test whether induced subgraphs generated by these

subtrees are isomorphic to H.

4. COMPLEXITY ANALYSIS

Following theorem states the complexity of algorithm for SRP.

Theorem 1. Let k, n be orders of planar undirected graphs H, G respec-
tively and ∆ be the degree of G. Then we can find all subgraphs of G which
are isomorphic to H in time O(n(∆− 1)k−1k2).

Proof. The proof is constructive. In the first step of Algorithm, select
a spanning tree T of H and its root h0 and make the layer-decomposition
L(T,h0). These can be done in time O(k).

In step 3, the complexity of checking whether two planar graphs with order
k are isomorphic is O(k2) by [3].

Now we consider the complexity in step 2 to find subtrees with layer-
decomposition L(T,h0) in G. Suppose the distribution of L(T,h0) be {{αj}I0 , {αj}I1 ,
· · · , {αj}Is}. By definition, the tree with layer-decomposition L(T,h0) can be
generated layer by layer from its root gradually. In layer 0, there is only one
vertex, the root with degree α0. In layer 1, there are k1 = α0 vertices which
are incident with the root and the distribution in layer 1 is {αj}I1 . In layer
2, there are k2 =

∑
j∈I1

(αj − 1) vertices and each vertex is incident with one
of k1 vertices in layer 1. The distribution in layer 2 is {αj}I2 . In general, for
any 1 ≤ l ≤ s, there are kl =

∑
j∈Il−1

(αj − 1) vertices in layer l and each
vertex in layer l is incident with one of vertices in layer l − 1. The distri-
bution in layer l is {αj}Il

. Hence, for any subtree with layer-decomposition
L(T,h0) and distribution {{αj}I0 ; {αj}I1 ; · · · ; {αj}Is}, we have, in G, at most
n choices to produce its root, at most Aα0

∆ choices to produce its 1st layer, at
most

∏
j∈I1

A
αj−1
∆−1 choices to produce its 2nd layer, generally for 1 ≤ l ≤ s, at

most
∏

j∈Il−1
A

αj−1
∆−1 choices to produce its lth layer. So, the total complexity
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to pick out all subtrees in G with distribution {{αj}I0 ; {αj}I1 ; · · · ; {αj}Is},
denoted by Ω, is that:
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Ω ≤ nAα0
∆

∏

j∈I1

A
αj−1
∆−1

∏

j∈I2

A
αj−1
∆−1 · · ·

∏

j∈Is−1

A
αj−1
∆−1

≤ n∆α0

∏

j∈I1

(∆− 1)αj−1
∏

j∈I2

(∆− 1)αj−1 · · ·
∏

j∈Is−1

(∆− 1)αj−1

≤ n

(
∆

∆− 1

)∆

(∆− 1)[1+
P

j∈I0∪I1∪···∪Is−1
(αj−1)]

= O(n(∆− 1)k−1),

where the last equality holds is from (2). We complete the proof.

Remark: In practical applications such as the VLSI circuit structure
analysis, the ∆ may be great occasionally. However, there are few vertices
whose degrees are ∆ or so. In the algorithm for SRP, The mean degree of G,
∆̄, instead of ∆ being used is more reasonable.

5. NUMERICAL TEST

In order to check the efficiency of the Algorithm, we make the numerical
test on the computer with Pentium MMX-166 processor and 40MB RAM. We
set ∆ ≤ 10 and select random G and H with various sizes. We list the result
in the following table. In the table, No. is the serial number we make test,
n is the order of G, k is the order of H and CPUtime(second) is the total
seconds CPU spending at finding and listing all subgraphs within G which are
isomorphic to H.
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No. n k CPU time (second)

1 5004 44 878
2 4002 45 634
3 3000 52 227
4 2002 66 462
5 2002 51 233
6 1004 64 175
7 750 54 120
8 501 54 81
9 501 36 33
10 261 51 34
11 261 36 14
12 173 35 12
13 173 21 4

6. CONCLUSION

In this paper, we propose the idea of layer-decomposition with degree and
establish an algorithm to detect subgraphs of graph G isomorphic to another
graph H. Theorem 1 and numerical test show that the algorithm is very
effective in case the degree of G and the order of graph H are not so large.
The biggest advantage of the algorithm is that the complexity of the algorithm
is linear w.r.t. the order of G and the method does not depend on how the
layer-decomposition is taken. However, when the order of H is large the
complexity of the algorithm would be very high. How to construct a method
to handle this case, we leave it as a open problem.
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