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SOBOLEV TYPE INTEGRODIFFERENTIAL EQUATION
WITH

NONLOCAL CONDITION IN BANACH SPACES

K. Balachandran and J. Y. Park

Abstract. In this paper we prove the existence of mild and strong
solutions of an integrodifferential equation of Sobolev type with nonlo-
cal condition. The results are obtained by using uniformly continuous
semigroups and the Schauder fixed point theorem.

1. INTRODUCTION

The problem of existence of solutions of evolution equations with nonlocal
conditions in Banach spaces has been studied first by Byszewski [8]. In that
paper he established the existence and uniqueness of mild, strong and classical
solutions of the following nonlocal Cauchy problem:

(1) u′(t) + Au(t) = f(t, u(t)), t ∈ (t0, t0 + b],

(2) u(t0) + g(t1, t2, ..., tp, u(.)) = u0

where −A is the infinitesimal generator of a C0 semigroup T (t), on a Banach
space X, 0 ≤ t0 < t1 < t2 < ... < tp ≤ t0 + b, b > 0, u0 ∈ X and f :
[t0, t0+b]×X → X, g : [t0, t0+b]p×X → X are given functions. Subsequently
several authors have investigated the same type of problem to different classes
of abstract differential equations in Banach spaces [1-4, 9, 12, 14, 15]. Brill [7]
and Showalter [17] established the existence of solutions of semilinear evolution
equations of Sobolev type in Banach spaces. Lightbourne and Rankin [13]
studied a partial functional differential equation of Sobolev type in a Banach
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space. This type of equations arise in various applications such as in the
flow of fluid through fissured rocks [6], the propagation of long waves of small
amplitudes [5], thermodynamics [10] and shear in second order fluids [11, 18].
The purpose of this paper is to prove the existence of mild and strong solutions
for an integrodifferential equation of Sobolev type with nonlocal condition of
the form

(3) (Bu(t))′ + Au(t) = f(t, u(t),
∫ t

0
a(t, s)k(s, u(s))ds), t ∈ (0, b],

(4) u(0) + g(t1, t2, ..., tp, u(t1), u(t2), ..., u(tp)) = u0,

where B and A are linear operators with domains contained in a Banach space
X and ranges contained in a Banach space Y and the nonlinear operators
f : I × X × X → Y, k : I × X → X, g : Ip × Xp → X and the function
a : I × I → R are given. Here u0 ∈ D(B) and I = [0, b].

2. PRELIMINARIES

In order to prove our main theorem we assume certain conditions on the
operators A and B. Let X and Y be Banach spaces with norm |.| and ‖.‖
respectively. The operators A : D(A) ⊂ X → Y and B : D(B) ⊂ X → Y
satisfy the following hypothesis:

(H1) A and B are closed linear operators,

(H2) D(B) ⊂ D(A) and B is bijective,

(H3) B−1 : Y → D(B) is compact.

From the above fact and the closed graph theorem imply the boundedness
of the linear operator AB−1 : Y → Y . Further −AB−1 generates a uniformly
continuous semigroup T (t), t ≥ 0 and so maxt∈I ‖T (t)‖ is finite. We denote
M = maxt∈I ‖T (t)‖, R = ‖B−1‖. Let Br = {x ∈ X : |x| ≤ r}.

Definition 2.1. [16] A continuous solution u of the integral equation

u(t) =B−1T (t)Bu0 −B−1T (t)Bg(t1, ..., tp, u(t1), ..., u(tp))

+
∫ t

0
B−1T (t− s)f(s, u(s),

∫ s

0
a(s, τ)k(τ, u(τ))dτ)ds, t ∈ I,

is said to be a mild solution of problem (3)-(4) on I.
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Definition 2.2. [16] A function u is said to be a strong solution of problem
(3)-(4) on I if u is differentiable almost everywhere on I, u′ ∈ L-1(I,X),

u(0) + g(t1, ..., tp, u(t1), ..., u(tp)) = u0,

and

(Bu(t))′ + Au(t) = f(t, u(t),
∫ t

0
a(t, s)k(s, u(s))ds), a.e.on I.

Further assume that,

(H4) a : I × I → R and k : I ×Br → X are continuous,

(H5) f : I ×Br ×Br → Y is continuous in t on I and there exists a constant
L > 0 such that

‖f(t, u, v)‖ ≤ L for t ∈ I and u, v ∈ Br,

(H6) g : Ip × Bp
r → D(B) ⊂ X, Bg is continuous and there exists a constant

G > 0 such that

‖Bg(t1, t2, ..., tp, u(t1), ..., u(tp))‖ ≤ G, for ti ∈ I and u(ti) ∈ Br,

(H7) The set {u(0) : u ∈ C(I,X), ‖u‖ ≤ r, u(0)+g(t1, ..., tp; u(t1), ..., u(tp)) =
u0} where r = RM(‖Bu0‖+ G + Lb), is precompact in X.

3. MAIN RESULTS

Theorem 3.1. If the assumptions H1 ∼ H7 hold, then the problem (3)-(4)
has a mild solution on I.

Proof. Let E = C(I,X) and E0 = {u ∈ E : u(t) ∈ Br, t ∈ I}. Clearly, E0

is a bounded closed convex subset of E. We define a mapping F : E0 → E0

by

(Fu)(t) =B−1T (t)Bu0 −B−1T (t)Bg(t1, t2, ..., tp, u(t1), ..., u(tp))

+
∫ t

0
B−1T (t− s)f(s, u(s),

∫ s

0
a(s, τ)k(τ, u(τ))dτ)ds, t ∈ I.

Obviously F is continuous, since all the functions involved in the definition
of the operator are continuous. Further, from our assumptions, we have

‖(Fu)(t)‖≤ ‖B−1T (t)Bu0‖+ ‖B−1T (t)Bg(t1, t2, ..., tp, u(t1), ..., u(tp))‖

+
∫ t

0
‖B−1T (t− s)f(s, u(s),

∫ s

0
a(s, τ)k(τ, u(τ))dτ)‖ds

≤ RM‖Bu0‖+ RMG + RMLb = r,
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and therefore F maps E0 into E0. Moreover, F maps E0 into a precompact
subset of E0. To prove this, we first show that the set E0(t) = {(Fu)(t) : u ∈
E0} is precompact in X, for every fixed t ∈ I. This is clear for t = 0 by (H7).
Let t > 0 be fixed. For 0 < ε < t, take

(Fεu)(t) =B−1T (t)Bu0 −B−1T (t)Bg(t1, t2, ..., tp, u(t1), ..., u(tp))

+
∫ t−ε

0
B−1T (t− s)f(s, u(s),

∫ s

0
a(s, τ)k(τ, u(τ))dτ)ds, t ∈ I.

Since B−1 is compact and T (t) is uniformly continuous for every t > 0, the
set Eε(t) = {(Fεu)(t) : u ∈ E0} is precompact in X for every ε. Furthermore,
for u ∈ E0 we have

‖(Fu)(t)− (Fεu)(t)‖

≤
∫ t

t−ε
‖B−1T (t− s)f(s, u(s),

∫ s

0
a(s, τ)k(τ, u(τ))dτ)‖ds

≤ εRML

which implies that E0(t) is totally bounded, that is precompact in X. Now
we shall show that F (E0) = S = {Fu : u ∈ E0} is an equicontinuous family
of functions. For 0 < s < t, we have

‖(Fu)(t)− (Fu)(s)‖≤ ‖B−1(T (t)− T (s))Bu0‖

+‖B−1(T (t)− T (s))Bg(t1, ...., tp, u(t1), ..., u(tp))‖

+
∫ t

0
‖B−1‖ ‖T (t− θ)− T (s− θ)‖

‖f(θ, u(θ),
∫ θ

0
a(θ, τ)k(τ, u(τ))dτ)‖dθ

+
∫ t

s
‖B−1‖ ‖T (s− θ)‖

‖f(θ, u(θ)
∫ θ

0
a(θτ)k(τ, u(τ))dτ)‖dθ

≤ (R‖Bu0‖+ RG)‖T (t)− T (s)‖

+RL

∫ t

0
‖T (t− θ)− T (s− θ)‖dθ + RML|t− s|.

The right hand side of the above inequality is independent of u ∈ E0 and
tends to zero as s → t as a consequence of the continuity of T (t) in the uniform
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operator topology for t > 0. It is also clear that S is bounded in E. Thus by
Arzela-Ascoli’s theorem, S is precompact. Hence by the Schauder fixed point
theorem, F has a fixed point in E0 and any fixed point of F is a mild solution
of (3)–(4) on I such that u(t) ∈ X for t ∈ I.

Next we prove that the problem (3)–(4) has a strong solution.

Theorem 3.2. Assume that

( i ) Conditions H1 ∼ H7 hold,

( ii ) Y is a reflexive Banach space with norm ‖.‖,
(iii) There exists a constant K > 0 such that

‖k(t, u)‖ ≤ K for t ∈ I and u ∈ Br,

( iv ) There exists a constant L1 > 0 such that

‖f(t, u1, u2)− f(s, v1, v2)‖ ≤L1[|t− s|+ ‖u1 − v1‖+ ‖u2 − v2‖],
s, t ∈ I, ui, vi ∈ Br

( v ) There exist constants L2 > 0, a0 > 0 such that

|a(t, τ)− a(s, τ)| ≤ L2|t− s|, for t, τ, s ∈ I,

|a(t, s)| ≤ a0 for s, t ∈ I,

( vi ) u is the unique mild solution of the problem (3)-(4),

(vii) Bu0 ∈ D(−AB−1) and Bg(t1, ...., tp, u(t1), ..., u(tp)) ∈ D(−AB−1).

Then u is a unique strong solution of the problem (3)–(4) on I.

Proof. Since all the assumptions of Theorem 3.1 are satisfied, then the
problem (3)–(4) has a mild solution belonging to C(I, Br). By the assumption
(vi), u is the unique mild solution of the problem (3)-(4). Now, we shall show
that u is a strong solution of problem (3)-(4) on I.

For any t ∈ I, we have
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u(t + h)− u(t)= B−1[T (t + h)− T (t)]Bu0

−B−1[T (t + h)− T (t)]Bg(t1, ...., tp, u(t1), ..., u(tp))

+
∫ h

0
B−1T (t + h− s)f(s, u(s),

∫ s

0
a(s, τ)k(τ, u(τ))dτ)ds

−
∫ t+h

h
B−1T (t + h− s)f(s, u(s),

∫ s

0
a(s, τ)k(τ, u(τ))dτ)ds

−
∫ t

0
B−1T (t− s)f(s, u(s),

∫ s

0
a(s, τ)k(τ, u(τ))dτ)ds

= B−1T (t)[T (h)− I]Bu0 −B−1T (t)[T (h)− I]

Bg(t1, ...., tp, u(t1), ..., u(tp))

+
∫ h

0
B−1T (t + h− s)f(s, u(s),

∫ s

0
a(s, τ)k(τ, u(τ))dτ)ds

+
∫ t

0
B−1T (t− s)[f(s + h, u(s + h),

∫ s+h

0
a(s + h, τ)k(τ, u(τ))dτ))

−f(s, u(s),
∫ s
0 a(s, τ)k(τ, u(τ))dτ)]ds.

Using our assumptions we observe that

‖u(t + h)− u(t)‖≤ R‖Bu0‖Mh‖AB−1‖+ MRGh‖AB−1‖

+hRML + RM

∫ t

0
L1[h + ‖u(s + h)− u(s)‖

[ ∫ s

0
|a(s + h, τ)− a(s, τ)|‖k(τ, u(τ)‖dτ

+
∫ s+h

s
|a(s + h, τ)|dτ‖k(τ, u(τ)‖]ds

≤ R‖Bu0‖Mh‖AB−1‖+ MRGh‖AB−1‖

+hRML + RML1

∫ t

0
[h + ‖u(s + h)− u(s)‖]ds

+RML1bh(a0K + L2Kb)

≤ Ph + Q

∫ t

0
‖u(s + h)− u(s)‖ds,
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where P = R‖Bu0‖M‖AB−1‖+MRG‖AB−1‖+RML+Qb(1+Ka0 +L2Kb)
and Q = RML1.

By Gronwall’s inequality

‖u(t + h)− u(t)‖ ≤ PheQb, for t ∈ I.

Therefore, u is Lipschitz continuous on I. The Lipschitz continuity of u on I
combined with (iv) and (v) imply that

t → f(t, u(t),
∫ t

0
a(t, s)k(s, u(s))ds)

is Lipschitz continuous on I. Using the Corollary 2.11 in Section 4.2 of [16] and
the definition of strong solution we observe that the linear Cauchy problem:

(Bv(t))′ + Av(t) = f(t, u(t),
∫ t

0
a(t, s)k(s, u(s))ds), t ∈ (0, b],

v(0) = u0 − g(t1, ..., tp, u(t1), ..., u(tp)),

has a unique strong solution v satisfying the equation

v(t)= B−1T (t)Bu0 −B−1T (t)Bg(t1, ..., tp, u(t1), ..., u(tp))

+
∫ t

0
B−1T (t− s)f(s, u(s),

∫ s

0
a(s, τ)k(τ, u(τ))dτ)ds, t ∈ I,

= u(t).

Consequently, u is a strong solution of problem (3)–(4) on I.

4. EXAMPLE

Consider the following partial integrodifferential equation

(5)
∂

∂t
(z(t, x)− zxx(t, x))− zxx(t, x) =µ(t, z(t, x),

∫ t

0
η(t, s)z(s, x)ds)

x ∈ [0, π], t ∈ I,

(6)

z(t, 0) = z(t, π) = 0, t ∈ I,

z(0, x) + c

∫ a

0
z(s, x)ds = z0(x), 0 < a ≤ b, c > 0, x ∈ [0, π].

Let us take X = Y = L2[0, π]. Define the operators A : D(A) ⊂ X →
Y, B : D(B) ⊂ X → Y by

Az = −zxx,

Bz = z − zxx,
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where D(A) = D(B) = {z ∈ X : z, zx are absolutely continuous, zxx ∈ X,
z(0) = z(π) = 0}. Define the operators f : I×X×X → Y , k : I× I×X → X
by

f(t, z, (kz)(t))(x) = µ(t, z(t, x), (kz)(t, x)), (kz)(t, x) =
∫ t

0
η(t, s)z(s, x)ds

and satisfy the conditions (H5) and (H6) on a bounded closed set Br ⊂ X for
some r > 0. Then the above problem (5) can be formulated abstractly as

(Bz(t))′ + Az(t) = f(t, z(t),
∫ t

0
a(t, s)k(s, z(s))ds), t ∈ I.

Note that −AB−1 generates a uniformly continuous semigroup T (t) on Y and
it is given by [13]

T (t)z =
∞∑

n=1

e
−n2

(1+n2)
t
< z, zn > zn

where zn(x) =
√

2
π sinnx, n = 1, 2, ..., is an orthogonal set of eigenfunctions.

Further, T (t) is compact and ‖T (t)‖ ≤ e−t for each t > 0. Hence by Theorem
3.1 the equation (5) with nonlocal condition (6) has a mild solution on I.
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