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SCHROEDER’S EQUATION IN SEVERAL VARIABLES∗

Carl C. Cowen† and Barbara D. MacCluer‡

Abstract. In 1884, Koenigs showed that when ϕ is an analytic self-map
of the unit disk fixing the origin, with 0 < |ϕ′(0)| < 1, then Schroeder’s
functional equation, f ◦ ϕ = ϕ′(0)f , can be solved for a unique analytic
function f in the disk with f ′(0) = 1. Here we consider a natural analogue
of Schroeder’s equation in the unit ball of CN for N > 1, namely, f ◦
ϕ = ϕ′(0)f where ϕ is an analytic self-map of the unit ball fixing the
origin and f is to be a CN -valued analytic map on the ball. Under some
natural hypotheses on ϕ, we give necessary and sufficient conditions for
the existence of a solution f satisfying f ′(0) = I and then describe all
analytic solutions in the ball. We also discuss various phenomena which
may occur in the several variable setting that do not occur when N = 1.

1. INTRODUCTION

When ϕ is an analytic map of the unit disk into itself, with ϕ(0) = 0 and
λ = ϕ′(0) satisfying 0 < |λ| < 1, work of Koenigs [9] in 1884 gives an essentially
unique solution f to Schroeder’s functional equation f ◦ϕ = λf that is analytic
in the disk. Koenigs realized f as the almost uniform limit of the sequence
of normalized iterates ϕn/λn of ϕ. When the Koenigs function f lies in an
appropriate space of functions analytic on the disk (e.g., the Hardy space
or the Bergman space), then f serves as an eigenvector for the composition
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operator Cϕ acting on this space. Thus, the solutions of Schroeder’s equation
play a basic role in the study of composition operators on spaces of functions
analytic on the disk.

The goal of this paper is to consider a natural several-variable version of
Schroeder’s equation, with the unit ball in CN replacing the unit disk. The
idea of solving such a multidimensional analogue of Schroeder’s equation for
ϕ by considering the almost uniform convergence of a sequence of normalized
iterates of ϕ (generalizing Koenig’s original proof in the disk) has a long his-
tory, which includes work by Poincare [13, 14], Bieberbach [2] and Picard [12]
(this latter is not completely correct in the case that certain special arithmetic
relationships hold on the eigenvalues of ϕ′(0); see [7] for a discussion of this
issue and for further details on the history of work in this area). More recently,
as part of an extensive study of holomorphic maps of CN to CN , Rosay and
Rudin [16] have shown that for a biholomorphic map ϕ of CN onto CN fixing
0, the iterates ϕ′(0)−nϕn converge almost uniformly on the “region attracted
to 0 by ϕ” under a hypothesis on the eigenvalues of ϕ′(0) which excludes the
possibility of these special eigenvalue relationships. They also give a proof
which shows in general how to conjugate ϕ to a “normal form”; this becomes
Schroeder’s equation when no eigenvalue relationships hold. Earlier work of
Reich [15] had claimed the same result, but there were problems with con-
vergence under certain conditions in his argument. We thank the referee for
pointing out the Rosay-Rudin reference to us.

Much of the previous work on Schroeder’s equation in several variables,
or related questions, such as the linearization of differential equations by a
suitable change of variable ([11, p. 335], [8], [20] and [1, Chapter 5]) has
focused on the existence of formal power series solutions or local analytic
solutions. For example, references [10], [18], [19], and [11, pp. 332-336] discuss
formal solutions or local analytic solutions and the obstruction that can arise
when there are certain arithmetic relations (called resonances in the differential
equations literature) among the eigenvalues of ϕ′(0).

In contrast, our approach constructs global analytic solutions in the ball,
without requiring any consideration of difficult issues of convergence of formal
power series, by using the theory of compact composition operators on certain
Hilbert spaces of functions analytic on the ball. This enables us to give nec-
essary and sufficient conditions, under mild hypotheses on ϕ, for the solution
of a natural form of Schroeder’s functional equation in the ball. In particu-
lar, the global solutions are found to exist under no less general conditions
than the formal power series solutions found by earlier researchers. With this
approach, we find that the more subtle issue of the existence of an analytic
solution in the ball that is locally univalent near the origin becomes a matter
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of the diagonalizability of certain matrices whose size depends on particular
arithmetic relationships among the eigenvalues of ϕ′(0); see Theorem 14.

We begin with a discussion of the desired form for a several-variable ana-
logue of Schroeder’s equation. If ϕ is an analytic map of the unit ball, BN , into
itself and f is a Cm-valued, analytic function on the ball, then f ◦ϕ is defined
and is also a Cm-valued, analytic function on the ball. If we were to proceed
by analogy with the one-variable case where the Koenigs’ function is obtained
as a limit of normalized iterates of the given map, since ϕ and its iterates are
CN -valued, we would expect the unknown function in Schroeder’s equation to
be CN -valued. The multiplier on the right-hand side of Schroeder’s equation is
a constant; in the several-variable context, this constant might be a scalar, but
it is more general to consider a constant matrix. Therefore, we are motivated
to seek a CN -valued analytic function f for which

(1) f ◦ ϕ = Af,

where A is some N × N matrix. As in the one-variable setting, we will also
assume ϕ(0) = 0. If, for a mapping f satisfying Equation (1), f ′(0) is invert-
ible, then f ′(ϕ(0))ϕ′(0) = Af ′(0), and it follows that A = f ′(0)ϕ′(0)f ′(0)−1.
Therefore, the equation g ◦ ϕ = ϕ′(0)g has the function g = f ′(0)−1f as a so-
lution. Notice that this substitution also gives g′(0) = I. Thus we will define
our analogue of Schroeder’s functional equation to be

(2) f ◦ ϕ = ϕ′(0)f

and a solution f of Equation (2) will be called a Schroeder map for ϕ. We will
be primarily concerned with seeking Schroeder maps that are locally univalent
near 0. By the above computation, the inverse function theorem, and its con-
verse (see, for example, [17]), this is equivalent to the existence of a Schroeder
map whose derivative at 0 is the identity.

Recall that “ϕ unitary on a slice” means that there exist ζ and η in ∂BN

with ϕ(λζ) = λη for all λ in the unit disk D. Since ϕ maps BN into itself
and ϕ(0) = 0, the Schwarz Lemma [17] implies |ϕ′(0)| ≤ 1. Strict inequality
occurs precisely when ϕ is not unitary on any slice. This can be seen by
considering the self-maps of the disk defined by g(λ) = 〈ϕ(λζ), η〉 for ζ and
η in ∂BN . Since g′(0) = 〈ϕ′(0)ζ, η〉, the one-variable Schwarz Lemma gives
the desired conclusion. To avoid certain pathologies, we will often assume
that ϕ is not unitary on any slice. In particular, ϕ not unitary on any slice
means |ϕ′(0)| < 1, which implies ϕ′(0) has no eigenvalue of modulus 1. As a
consequence, if ϕ is not unitary on any slice and f solves Equation (2), then
f(0) = 0.
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The organization of the rest of the paper is as follows. In the next section
we give some preliminary observations on Schroeder maps in several vari-
ables and then show how to build solutions to Schroeder’s equation from
eigenfunctions for the composition operator Cϕ when Cϕ is compact on some
weighted Hardy space, and conversely how to extract eigenfunctions for Cϕ

from Schroeder maps. In Section 3 we show that the hypotheses ϕ(0) = 0 and
ϕ not unitary on any slice imply that Cϕ will be compact on certain weighted
Hardy spaces which are weighted Bergman spaces defined for weight functions
that decay to 0 sufficiently rapidly. In Section 4 we give a number of examples
of maps ϕ which either do or do not have Schroeder maps f satisfying the
additional desired condition f ′(0) = I. In these examples certain arithmetic
relationships hold among the eigenvalues of ϕ′(0) which can potentially make
the existence of a locally univalent Schroeder map impossible. These examples
are put into context in Section 5 where the main results (Theorems 13 and 14)
give necessary and sufficient conditions for the existence of a Schroeder map
satisfying f ′(0) = I under natural hypotheses on ϕ. Roughly speaking, the
operative condition is the diagonalizability of a certain size upper-left corner
of the matrix for Cϕ with respect to the standard, nonnormalized orthogonal
basis for a weighted Hardy space. From these results we are able to give a
complete description of all Schroeder maps for ϕ.

2. SOLUTIONS TO SCHROEDER’S EQUATION

In one variable, the solutions to Schroeder’s equation are unique up to a
multiplicative constant, and, moreover, when ϕ is univalent in the disk, the
Schroeder map will be univalent also. Both of these results can fail when
N > 1. However, we do have the following restricted version of the latter
result.

Propposition 1. Let ϕ be an analytic map of BN into itself such that ϕ
is not unitary on any slice of BN , ϕ(0) = 0. and A = ϕ′(0) is invertible. If f
is an analytic map of BN into CN that solves Schroeder’s functional equation
f ◦ϕ = Af and f ′(0) is invertible, then f is univalent on BN if and only if ϕ
is univalent on BN .

Proof. Suppose first that ϕ is not univalent, that is, suppose that z and w
are distinct points of the ball for which ϕ(z) = ϕ(w). The functional equation
gives

Af(z) = f(ϕ(z)) = f(ϕ(w)) = Af(w).

Since A is an invertible matrix, we see f(z) = f(w) so that f is not univalent
either.
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Conversely, suppose f is not univalent on BN and z and w are distinct
points of the ball for which f(z) = f(w). Then, for every positive integer n,

f(ϕn(z)) = Anf(z) = Anf(w) = f(ϕn(w))

Since f ′(0) is invertible, there is a neighborhood of 0 on which f is univalent.
Since ϕ is not unitary on a slice, the iterates of ϕ tend to 0 and there is an
n large enough so that ϕn(z) and ϕn(w) are both in this neighborhood. This
means that ϕn(z) = ϕn(w). Since ϕ univalent on BN would imply ϕn is also
univalent, ϕ cannot be univalent on BN .

The linear fractional maps discussed in Section 4 show that the “only if”
direction can fail if A is not invertible. Example 1 in Section 4 shows that
without the hypothesis that f ′(0) be invertible, the “if” direction of the above
result need not hold.

In one variable the condition ϕ′(0) = 0 leads to a degenerate situation,
since if ϕ is not identically 0, the equation f ◦ ϕ = 0 has only the trivial
solution f = 0. In several variables we note the following consequence of a
zero eigenvalue for ϕ′(0):

Proposition 2. Let ϕ be a nonconstant map of BN into itself with ϕ(0) =
0 and suppose 0 is an eigenvalue of A = ϕ′(0). If f is a solution of Schroeder’s
functional equation f ◦ϕ = Af such that f is an analytic map of BN into CN

and f ′(0) is invertible, then there is a neighborhood Ω of 0 such that ϕ(Ω) is
contained in an (N − 1)-dimensional submanifold of BN .

Proof. Suppose that f is an analytic map of BN into CN with f ′(0)
invertible such that f ◦ ϕ = Af . Let v be an eigenvector of A∗ for the
eigenvalue 0. Then it follows that

〈f(ϕ(z)), v〉 = 〈Af(z), v〉 = 〈f,A∗v〉 = 〈f, 0〉 = 0.

This says that f maps the range of ϕ into the (N − 1)-dimensional subspace
orthogonal to v. Since f ′ is continuous and f ′(0) is invertible, there is a
neighborhood of 0 on which f ′ is invertible also. The inverse function theorem
then guarantees that f is one-to-one in some neighborhood of 0 and has an
analytic inverse g in a neighborhood U of f(0) = 0. Thus, if Ω = ϕ−1(g(U)),
then ϕ(Ω) is contained in the submanifold g(U ∩ [v]⊥).

We will see later a nontrivial example of a map ϕ for which 0 is an eigen-
value of ϕ′(0), yet for which there is a univalent f solving f ◦ ϕ = ϕ′(0)f .

Our approach to constructing solutions to Schroeder’s Equation (2) will be
through the theory of compact composition operators. A composition operator
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is defined from an analytic self-map ϕ of the ball by Cϕ(g) = g◦ϕ for g analytic
in BN . In general we will be considering composition operators acting on
weighted Hardy spaces H2

β(BN ) in the ball. By definition, these are Hilbert
spaces of analytic functions in BN for which the monomials zα, |α| ≥ 0, form
a complete orthogonal set of nonzero vectors satisfying

β(|α|) ≡ ‖zα‖
‖zα‖2

=
‖zα̃‖
‖zα̃‖2

whenever |α| = |α̃|, where ‖ · ‖ denotes the norm in H2
β(BN ) and ‖ · ‖2 denotes

the norm in L2(σN ), σN being the normalized Lebesgue measure on BN . Here
α is a multi-index (α1, α2, . . . , αN ), αj ≥ 0, and |α| = ∑

αj . If f =
∑∞

0 fs is
the homogeneous expansion of a function analytic in BN , then f is in H2

β(BN )
if and only if ‖f‖2 ≡ ∑∞

0 ‖fs‖2
2β(s)2 < ∞.

We will ordinarily write matrices for operators on H2
β(BN ) with respect to

the nonnormalized orthogonal basis 1, z1, z2, . . . , zN , z2
1 , . . . . This “standard

basis” is ordered in the usual way: zα precedes zγ where α = (α1, . . . , αN ) and
γ = (γ1, . . . , γN ) are multi-indices, if either |α| < |γ| or, in the case |α| = |γ|,
if there is a j0 so that αj = γj for j < j0 and αj0 > γj0 ; we write α < γ in
this case. If the jth monomial in this ordering is zα, then the jth column of
the matrix for Cϕ has as its entries the coefficients of ϕα with respect to this
standard basis. This matrix is related to the matrix of Cϕ with respect to the
corresponding normalized basis by a diagonal similarity, given by the diagonal
matrix with entries ‖zα‖.

It will sometimes be convenient to note that by a unitary change of vari-
ables we may assume that the matrix for Cϕ is lower triangular.

Lemma 3. Let ϕ : BN → BN be analytic with ϕ(0) = 0. There is a
map ψ : BN → BN with Cψ unitarily equivalent to Cϕ on any weighted Hardy
space H2

β(BN ), for which the matrix of Cψ with respect to the standard basis
is lower-triangular.

Proof. Set A = ϕ′(0). By the Schur theorem, there exists an N × N
unitary matrix U so that UAU−1 is upper triangular. Set ψ = UϕU−1, so
that ψ′(0) is the upper-triangular matrix UAU−1. Since the jkth entry of
ψ′(0) is Dkψj(0), this says that

ψj(z) = ajjzj + · · ·+ ajNzN + higher-order terms.

The upper-left corner of the matrix of Cψ is
(

1 0
0 ψ′(0)t

)
.
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In general, the description of the coordinate functions of ψ shows that if α >
β, for multi-indices α and β, then the coefficient of zβ in the power series
expansion of ψα is 0. Thus the matrix of Cψ is lower triangular. Moreover,
the map z 7→ Uz induces a bounded composition operator CU which is unitary
on H2

β(BN ) (see, e.g., [5, Lemma 8.1]) and Cψ = CU−1CϕCU = C−1
U CϕCU .

An important tool for constructing solutions to Schroeder’s equation will
be a result describing the spectra of compact composition operators on general
weighted Hardy spaces H2

β(BN ).

Theorem 4 [5]. Suppose ϕ : BN → BN with ϕ(0) = 0. If Cϕ is compact
on some weighted Hardy space H2

β(BN ), then the spectrum of Cϕ consists of
0, 1 and all possible products of the eigenvalues of ϕ′(0).

We will see in Section 3 that the hypotheses ϕ(0) = 0 and ϕ not unitary
on any slice are sufficient to guarantee that Cϕ is compact on certain weighted
Hardy spaces which are, in fact, weighted Bergman spaces. Thus, under these
assumptions on ϕ we will have, for each eigenvalue λj of ϕ′(0), an eigenfunction
ψj , analytic in BN , and satisfying ψj ◦ ϕ = λjψj . The next result shows how
to use these to build a solution to Schroeder’s equation.

Theorem 5. Let ϕ : BN → BN be analytic with ϕ(0) = 0. Suppose
A = ϕ′(0) is diagonalizable, with eigenvalues λ1, . . . , λN and corresponding
eigenvectors w1, . . . , wN . Suppose Cϕ is compact on some weighted Hardy
space H2

β, so that Cϕ has eigenfunctions ψ1, . . . , ψN corresponding to λ1, . . . ,
λN . Then

f(z) = ψ1(z)w1 + · · ·+ ψN (z)wN

is an analytic map of BN into CN satisfying f ◦ ϕ = Af .
Conversely, if f satisfies f ◦ϕ = Af and if v1, . . . , vN are eigenvectors for

A∗ with eigenvalues λ1, . . . , λN , then ψj(z) ≡ 〈f(z), vj〉 satisfies ψj ◦ ϕ =
λjψj(z).

Proof. Define f : BN → CN by f(z) = ψ1(z)w1 + · · · + ψN (z)wN , where
ψj is analytic in BN with ψj ◦ ϕ = λjψj and wj is in CN with Awj = λjwj .
Then

f ◦ ϕ= ψ1(ϕ(z))w1 + · · ·+ ψN (ϕ(z))wN

= λ1ψ1(z)w1 + · · ·+ λNψN (z)wN

while
ϕ′(0)f(z)= ϕ′(0)(ψ1(z)w1) + · · ·+ ϕ′(0)(ψN (z)wN )

= ψ1(z)λ1w1 + · · ·+ ψN (z)λNwN

= f ◦ ϕ.
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This gives the first part of the theorem.
For the converse, suppose f : BN → CN is analytic with f ◦ϕ = ϕ′(0)f and

let v1, · · · , vN be eigenvectors of A∗ = ϕ′(0)∗ corresponding to the eigenvalues
λ1, . . . , λN . Define ψj(z) = 〈f(z), vj〉. Then ψj is analytic on BN and

ψj(ϕ(z))= 〈f(ϕ(z)), vj〉 = 〈ϕ′(0)f(z), vj〉
= 〈f(z), A∗vj〉 = 〈f(z), λjvj〉 = λjψj .

The hypothesis that A = ϕ′(0) is diagonalizable in Theorem 5 is not nec-
essary. Without this assumption an analytic f solving Schroeder’s equation
can still be constructed from the (nonindependent) eigenvectors of A and the
eigenfunctions for Cϕ as before. However since our ultimate interest is in so-
lutions to Schroeder’s equation which are locally univalent near 0, this leads
us naturally to the additional requirement that ϕ′(0) be diagonalizable.

3. CCOMPACTNESS OF COMPOSITION OPERATORS

We show in this section that whenever ϕ : BN → BN is analytic with
ϕ(0) = 0 and ϕ not unitary on any slice, then Cϕ is Hilbert–Schmidt, and thus
compact, on the weighted Bergman space A2

G(BN ) defined from a weight func-
tion which decays to 0 sufficiently rapidly as r → 1, e.g., G(r) = exp(−q/(1−
r)), q > 0. For G(r) a positive, continuous, nonincreasing function on [0, 1),
the Bergman space A2

G(BN ) is the space of analytic functions f on BN for
which

‖f‖2
G =

∫

BN

|f |2G(|z|) dνN (z) < ∞,

where dνN is the volume measure on BN , normalized so that νN (BN ) = 1.
This is a weighted Hardy space H2

β(BN ), where

β(s) = β(|α|) =
‖zα‖G

‖zα‖2

for any multi-index α. It will be convenient to say that G(r) is a fast regular
weight if

lim
r→1

G(r)
(1− r)a

= 0

for every a > 0, and moreover this ratio is decreasing for r near 1 for all a > 0.
Though for our purposes it will be enough to find a specific positive, con-

tinuous, and nonincreasing weight function G so that Cϕ is compact on the
Bergman space A2

G(BN ), the next two lemmas are easily done in the context
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of a general weighted Bergman space A2
G(BN ). In the case N = 1, both of

these lemmas appear, with similar proofs, in [5].

Lemma 6. Cϕ is Hilbert–Schmidt on A2
G(BN ) if and only if

∫

BN

‖Kϕ(z)‖2G(|z|) dνN (z) < ∞,

where Kw denotes the kernel function for evaluation at w in A2
G(BN ).

Proof. Consider the orthonormal basis for A2
G(BN ) :

zα

‖zα‖G
=

zα

β(|α|)‖zα‖2
,

where α = (α1, . . . , αN ) is an multi-index and ‖zα‖2 denotes the L2(σN ) norm
of zα, given by

‖zα‖2
2 =

(N − 1)!α!
(N − 1 + |α|)! ,

where α! = α1! · · ·αN !. Thus Cϕ is Hilbert–Schmidt if and only if

∑
α

‖Cϕ(zα)‖2
G

(N − 1 + |α|)!
(β(|α|))2(N − 1)!α!

< ∞.

Now

(3)
∑
α

‖Cϕ(zα)‖2
G

(N − 1 + |α|)!
(β(|α|))2(N − 1)!α!

=
∞∑

s=0

(N − 1 + s)!
β(s)2(N − 1)!s!

∑

|α|=s

s!
α!
‖ϕα‖2

G,

where ϕα(z) denotes ϕ1(z)α1 · · ·ϕN (z)αN .
The inner sum has value

∑

|α|=s

s!
α!

∫

BN

|ϕα|2G(|z|) dνN (z)=
∫

BN

∑

|α|=s

s!
α!
|ϕα|2G(|z|) dνN (z)

=
∫

BN

〈ϕ(z), ϕ(z)〉sG(|z|) dνN (z)

=
∫

BN

|ϕ(z)|2sG(|z|) dνN (z)

by the multinomial theorem.
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Thus (3) is equal to

∞∑

s=0

(N − 1 + s)!
(N − 1)!β(s)2s!

∫

BN

|ϕ(z)|2sG(|z|) dνN (z)

=
∫

BN

( ∞∑

s=0

(N − 1 + s)!|ϕ(z)|2s

(N − 1)!β(s)2s!

)
G(|z|) dνN (z)

=
∫

BN

‖Kϕ(z)‖2G(|z|) dνN (z)

since

‖Kw‖2 =
∞∑

s=0

(N − 1 + s)!
(N − 1)!s!

|w|2s

β(s)2

(see, for example, [4]).

Lemma 7. Let G(r) be a positive, continuous, and nonincreasing function
on [0, 1). Fix b in (0, 1). Then for any z in BN ,

‖Kz‖2
G ≤ (1− b)−2N (1− |z|)−2N [G(1− b(1− |z|))]−1.

Proof. Fix z in BN and let δ = (1 − b)(1 − |z|). Consider the ball Bδ(z)
centered at z with radius δ. Since νN (Bδ) = δ2N , we have, by the sub-mean
value property,

|Kz(z)|≤ 1
δ2N

∫

Bδ(z)
|Kz(w)| dνN (w)

=
1

δ2N

1√
G(|z|+ δ)

∫

Bδ(z)
|Kz(w)|

√
G(|z|+ δ) dνN (w)

≤ 1
δ2N

1√
G(|z|+ δ)

∫

Bδ(z)
|Kz(w)|

√
G(|w|) dνN (w)

since G is nonincreasing. Now dνN (w)/δ2N is a probability measure on Bδ(z),
so

(∫

Bδ(z)
|Kz(w)|

√
G(|w|) dνN (w)

δ2N

)2

≤
∫

Bδ(z)
|Kz(w)|2G(|w|) dνN (w)

δ2N

≤ 1
δ2N

‖Kz‖2
G,

which gives

|Kz(z)|2 = ‖Kz‖4
G ≤

1
G(|z|+ δ)

1
δ2N

‖Kz‖2
G
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or
‖Kz‖2

G ≤ (1− b)−2N (1− |z|)−2N [G(1− b(1− |z|))]−1

by the definition of δ.

Theorem 8. If ϕ : BN → BN is analytic with ϕ(0) = 0 and ϕ is not uni-
tary on any slice, then Cϕ is Hilbert–Schmidt on any Bergman space A2

G(BN )
for which G is continuous, positive, and nonincreasing on [0, 1) satisfying

G(r)
(1− r)2NG(1− ρ(1− r))

is bounded near 1 for any ρ > 1. In particular, Cϕ is Hilbert–Schmidt on the
Bergman space A2

G(BN ) for G(r) = exp(−q/(1− r)), q > 0.

Proof. Since ϕ is not unitary on any slice, there exists r0 < 1 and R > 1
so that

1− |ϕ(z)|
1− |z| ≥ R

if r0 ≤ |z| < 1 [4]. We will show that ‖Kϕ(z)‖2G(|z|) is bounded in r0 ≤ |z| < 1,
and hence in BN ; from this and Lemma 6 the result follows.

Choose b < 1 close enough to 1 so that bR > 1. For |z| ≥ r0 we have
1− |ϕ(z)| ≥ R−R|z| and thus

‖Kϕ(z)‖2
G = ‖K|ϕ(z)|‖2

G ≤ ‖K1−R(1−|z|)‖2
G

since ‖Kw‖ increases with |w|. By Lemma 7, this is bounded above by

(1− b)−2N (1− (1−R(1− |z|)))−2N

G(1− b(1− (1−R(1− |z|)))) ,

which is equal to
(1− b)−2NR−2N (1− |z|)−2N

G(1− bR(1− |z|))
so that

‖Kϕ(z)‖2G(|z|) ≤ G(|z|)
(1− b)2NR2N (1− |z|)2NG(1− bR(1− |z|)) .

The hypothesis on G(r)/((1 − r)2NG(1 − ρ(1 − r))) guarantees that this
is bounded for r0 ≤ |z| < 1. Using G(|z|) = exp(−q/(1 − |z|)), q > 0, a
computation shows that this hypothesis on G(r) is satisfied.
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4. EXAMPLES

We consider in this section some examples which show some of the com-
plications that can arise in several variables, but are never present in one
variable.

Example 1. Let ϕ(z1, z2) = (1
2z1,

1
4z2 + 1

2z2
1). Clearly, ϕ maps B2 into

B2 and is univalent. In the notation of Theorem 5, we set

A =
(

1/2 0
0 1/4

)
, λ1 =

1
2
, λ2 =

1
4
, w1 = (1, 0)t, w2 = (0, 1)t.

We seek eigenfunctions ψ1(z) and ψ2(z) for Cϕ corresponding to λ1 and λ2.
Setting ψ1(z) =

∑
γ cγzγ , we seek to solve

(4) ψ1 ◦ ϕ =
1
2
ψ1

in a neighborhood of 0. Note that since ϕ(0) = 0, we must have ψ1(0) = 0.
Order the multi-indices γ as previously described. By comparing the power
series expansions of the left- and right-hand sides of Equation (4) we will show
that the only solutions to this equation are ψ1(z) = cz1. To this end, suppose
that ψ1 is a different solution and let α be the least multi-index greater than
(1, 0) for which cα is nonzero in the power series for ψ1. Now

ψ1 ◦ ϕ =
∑

γ

cγϕγ =
∑

γ=(γ1,γ2)

cγ

(1
2
z1

)γ1
(1

4
z2 +

1
2
z2
1

)γ2

.

We examine the multi-indices γ for which the expansion of cγ(1
2z1)γ1(1

4z2 +
1
2z2

1)
γ2 will contribute a nonzero term of the form kzα. When |γ| > |α|, a

comparison of the total order in the terms of cγ(1
2z1)γ1(1

4z2 + 1
2z2

1)
γ2 shows

that none are of the desired form. When |γ| < |α|, the hypothesis that cγ = 0
for (1, 0) < γ < α yields no contribution of the form kzα, k 6= 0.

When |γ| = |α| we note that

cγ

(1
2
z1

)γ1
(1

4
z2 +

1
2
z2
1

)γ2

= cγ
1
2

γ1

zγ1
1

∑

β1+β2=γ2

c(β1, β2)
(1

4
z2

)β1
(1

2
z2
1

)β2

.

In order that any term in this is of the form kzα we must have

• γ1 + 2β2 = α1,

• β1 = α2,

• γ1 + γ2 = α1 + α2,
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• β1 + β2 = γ2,

which together imply α1 = γ1 and α2 = γ2. In other words, the only term kzα

arising from cγϕγ for |γ| = |α| occurs when γ = α and will be cα
1
2

α1 1
4

α2zα.
Then Equation (4) implies that

(1
2

)α1
(1

4

)α2

=
1
2

since our assumption is that cα 6= 0. This is impossible, since α > (1, 0). This
contradiction shows that the only solutions to Equation (4) are ψ1(z) = cz1.

A similar analysis is possible in finding solutions to

(5) ψ2 ◦ ϕ =
1
4
ψ2.

Set ψ2 =
∑

γ bγzγ and note first that ψ2(0) = 0. Comparing the coefficients
of z1 and z2

1 on the left- and right-hand sides of Equation (5) yields bγ = 0 for
γ = (1, 0) and (0, 1). Assume, for a contradiction, that there is a solution ψ2

with a nonzero coefficient bγ for some multi-index γ > (2, 0); let α denote the
least such multi-index.

Again we determine for which γ, bγzγ will contribute a nonzero term of the
form kzα. As before, a comparison of total orders shows that there is no such
contribution when |γ| > |α|. If |γ| < |α|, recall that bγ = 0 for γ = (1, 0), (0, 1)
or (2, 0) < γ < α. Thus we can only have |γ| < |α| and bγ 6= 0 if γ = (2, 0). In
this case, bγϕγ = bγ(1

2z1)2 and by our choice of α this is not of the form kzα.
Finally, if |γ| = |α|, consider

bγ

(1
2
z1

)γ1
(1

4
z2 +

1
2
z2
1

)γ2

,

where (1
4
z2 +

1
2
z2
1

)γ2

=
∑

β1+β2=γ2

c(β1, β2)
(1

4
z2

)β1
(1

2
z2
1

)β2

.

As before, the expansion of this contributes a term of the form kzα only if
• γ1 + 2β2 = α1,

• β1 = α2,

• γ1 + γ2 = α1 + α2,

• β1 + β2 = γ2,

which together imply α1 = γ1 and α2 = γ2. Thus the only term in
∑

bγϕγ of
the form kzα comes from γ = α and is

bα

(1
2

)α1
(1

4

)α2

zα.



142 Carl C. Cowen and Barbara D. MacCluer

For Equation (5) to hold we must have

1
2

α1 1
4

α2

=
1
4
.

But α > (2, 0) so either α1 > 2, or α2 ≥ 2, or α1 and α2 are both positive.
Thus we have a contradiction.

Thus the only solutions to ψ2 ◦ ϕ = 1
4ψ2 are ψ2(z) = bz2

1 .
By Theorem 5, we have solutions to Schroeder’s equation of the form

f(z1, z2) = (az1, bz
2
1). The second part of Theorem 5 guarantees that this

is a complete list of all solutions; in particular, there are no solutions f of
Schroeder’s equation with f ′(0) = I.

Example 2. Let ϕ(z1, z2) = (c1z1, c
3
1z2 + c2z

2
1) for nonzero values of c1, c2

that are small enough that ϕ maps B2 into itself. Note that ϕ is univalent in
B2 and ϕ′(0) = diag(c1, c

3
1). Furthermore, ψ1(z) = z1 is an eigenfunction of

Cϕ with eigenvalue c1 and both ψ2(z) = z3
1 and ψ3(z) = z2 + c2z

2
1/(c3

1 − c2
1)

are eigenfunctions of Cϕ corresponding to c3
1. Thus Schroeder’s equation has

both a nonunivalent solution

f(z1, z2) = (z1, z
3
1)

and a univalent solution

f(z1, z2) =
(

z1, z2 +
c2z

2
1

c3
1 − c2

1

)
.

One can show by direct computation that this example also provides an
instance in which the “normalized iterates” ϕ′(0)−nϕn fail to converge in any
neighborhood of 0; also see [16, p. 74], where a similar example with this
observation is given.

Example 3: Linear Fractional Maps. Let ϕ be a linear fractional map
of BN into itself. This means ϕ can be written as

ϕ(z) =
Az

〈z, C〉+ 1
,

where A is an N × N matrix, C and z are (column) vectors in CN , and
〈·, ·〉 denotes the usual Euclidean inner product. Note that ϕ′(0) = A. The
requirement that ϕ(BN ) ⊂ BN implies that |C| < 1. The case C = 0 is
uninteresting, so we assume C 6= 0. In [6], we showed that when A has no
eigenvalue of modulus 1, there is a CN -valued f defined and univalent on BN

with f ◦ ϕ = ϕ′(0)f . Specifically,

f(z) =
z

〈z, P 〉+ 1
,
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where P = (I −A∗)−1C.
Note that for linear fractional maps ϕ, we always get a univalent solution to

Schroeder’s equation, regardless of the invertibility of ϕ′(0) or the univalence
of ϕ.

5. CODIFYING THE EXAMPLES

In this section we give some general results which explain the examples in
the previous sections. We begin with several lemmas.

Lemma 9. Let T be an operator with block matrix

T =
(

X Y
0 Z

)

with respect to an orthogonal decomposition of a Hilbert space. If λ is an eigen-
value of T and |λ| > ‖Z‖, then λ is an eigenvalue of X, and the multiplicity
of λ as an eigenvalue of X is the same as its multiplicity as an eigenvalue of
T .

Proof. If (
X Y
0 Z

)(
u
v

)
= λ

(
u
v

)
,

we must have Xu + Y v = λu and Zv = λv. Now if |λ| > ‖Z‖, then v = 0 and
thus Xu = λu as desired. Moreover, if

wj =
(

uj

vj

)

are linearly independent eigenvectors for T corresponding to λ, then by the
above calculation vj = 0 for each j and the uj ’s are linearly independent
eigenvectors for X. Conversely, given linearly independent eigenvectors uj for
X, we have (

uj

0

)

are linearly independent eigenvectors for T . This gives the statement on mul-
tiplicities.

Lemma 10. Suppose A is an n× n lower-triangular matrix and suppose
i = j1, j2, · · · , jk are the indices such that aii = 0. If the rank of A is n − k,
then there are vectors v1, v2, · · · , vk that are orthogonal to the columns of A
such that vi(ji) = 1 and vi(`) = 0 for ` > ji.
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Proof. We will construct, inductively, a basis w1, w2, · · · , wn for Cn

consisting of columns of A and vectors orthogonal to the columns of A so that
the vectors vi = wji satisfy the conclusion of the theorem.

We assume, without loss of generality, that 1 ≤ j1 < j2 < · · · < jk ≤ n.
Let Ai denote the ith column of A. Since the rank of A is n− k, the columns
{A` : ` 6= jq, 1 ≤ q ≤ k} are a basis for the range of A. If v is a vector in Cn,
let [v]q be the vector in Cq such that [v]q(i) = v(i) for 1 ≤ i ≤ q.

If j1 = 1, that is, if a11 = 0, let w1 = (1, 0, · · · , 0)t, but if j1 > 1, that is,
if a11 6= 0, let w1 = A1. Then [w1]1 is a basis for C1.

Now suppose w1, w2, · · · , wp−1 have been chosen so that [w1]p−1, [w2]p−1, · · · ,
[wp−1]p−1 form a basis for Cp−1, and for i ≤ p − 1, wi = Ai if aii 6= 0, but if
aii = 0, then wi is orthogonal to the columns {A` : ` 6= jq, 1 ≤ q ≤ k}, hence
all the columns of A, wi(i) = 1, and wi(`) = 0 for ` > i.

If p = n + 1, then the vectors vi = wji for i ≤ k satisfy the conclusion of
the theorem. On the other hand, suppose p ≤ n. If app 6= 0, let wp = Ap. By
the induction hypothesis, [w1]p−1, · · · , [wp−1]p−1 is a basis for Cp−1. Since A
is lower triangular, [Ap]p−1 = 0 and it follows that [w1]p, · · · , [wp−1]p, [wp]p
are linearly independent. That is, they form a basis for Cp and the conclusion
holds for p.

Now suppose app = 0 so that [Ap]p = 0. By the induction hypothesis,
[w1]p−1, · · · , [wp−1]p−1 is a basis for Cp−1. This means that [w1]p, · · · , [wp−1]p
span a (p− 1)-dimensional subspace of Cp. Now let u be a nonzero vector in
Cp that is orthogonal to each of [w1]p, · · · , [wp−1]p. In particular, [w1]p, · · · ,
[wp−1]p, u form a basis for Cp. If u(p) = 0, then the vector [u]p−1 is orthogonal
to each of [w1]p−1, · · · , [wp−1]p−1. This would mean that [u]p−1 = 0 and that
u = 0. This contradiction implies u(p) 6= 0 and we may suppose that u(p) = 1.
Then, we take wp to be the vector in Cn such that [wp]p = u and wp(i) = 0
for i > p. By construction, wp is orthogonal to {A` : ` < p and ` 6= jq,
1 ≤ q ≤ k}. Moreover, because the first p components of Ai are 0 for i ≥ p,
wp is also orthogonal to Ap, · · · , An. Thus, the conclusion holds for p in this
case as well.

By induction, then, the conclusion of the lemma holds.

Although we do not need the extra information, it is clear from the con-
struction that the vectors vi are orthogonal to each other. We will use the
lemma to prove the existence of a nice basis for the nullspace of certain upper-
triangular matrices.

Corollary 11. Suppose B is an n×n upper-triangular matrix and suppose
i = j1, j2, · · · , jk are the indices such that bii = 0. If the nullity of B is k,
then there is a basis, v1, v2, · · · , vk, for the nullspace of B such that vi(ji) = 1



Schroeder’s Equation in Several Variables 145

and vi(`) = 0 for ` > ji.

Proof. Apply Lemma 10 to the matrix B∗ which is lower-triangular. The
lemma asserts the existence of the vectors v1, v2, · · · , vk, such that vi(ji) = 1
and vi(`) = 0 for ` > ji and such that v1, v2, · · · , vk are orthogonal to the
range of B∗. Since the orthogonal complement of the range of B∗ is the
nullspace of B, these vectors are in the nullspace of B. Since the vectors are
clearly linearly independent and the nullity of B is k, they form a basis for
the nullspace of B.

The proof of Lemma 10, which deals with lower-triangular matrices, starts
at the upper-left corner of the matrix and works down to the lower-right
corner. It is clear that an analogous result is true for upper-triangular matrices
with an analogous proof starting at the lower-right corner of the matrix and
working up to the upper-left corner. Using this result and duality as in the
above corollary, we get the following corollary on constructing bases for the
nullspaces of certain lower-triangular matrices.

Corollary 12. Suppose B is an n×n lower triangular matrix and suppose
i = j1, j2, · · · , jk are the indices such that bii = 0. If the nullity of B is k,
then there is a basis, v1, v2, · · · , vk, for the nullspace of B such that vi(ji) = 1
and vi(`) = 0 for ` < ji.

In the proofs of Theorems 13 and 14 we will let Pk denote the orthogonal
projection of H2

β(BN ) onto the subspace span{zα : |α| ≤ k} for k any positive
integer. Let Hk denote the abstract vector space spanned by the set {zα :
|α| ≤ k}. If we equip Hk with the inner product arising from H2

β(BN ), then
Hk is isometrically isomorphic to PkH

2
β(BN ) and we denote by P the map

from PkH
2
β(BN ) onto Hk that identifies polynomials; P is unitary if Hk is

regarded as a Hilbert space as above, and an isomorphism of vector spaces if
it is regarded as an abstract vector space.

Now suppose ϕ : BN 7→ BN , ϕ(0) = 0, and A = ϕ′(0) is upper-triangular.
By Lemma 3, when A is upper-triangular, the matrix for Cϕ on H2

β(BN )
is lower-triangular with respect to the standard orthogonal basis {zα} for
H2

β(BN ) for any β. Since C∗ϕ has span{zα : |α| ≤ k} as an invariant subspace,
we have

PkC
∗
ϕPk = C∗ϕPk.

Taking adjoints gives
PkCϕPk = PkCϕ.

From this we get the useful observation that if f is in the nullspace of Cϕ−λI,
then Pkf is in the nullspace of PkCϕPk − λI, and if X is the matrix in the
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upper-left-hand corner of the matrix for Cϕ with dimensions K × K where
K = dimHk, then PPkf is in the nullspace of X−λI. Similar results apply if
we fix a multi-index τ and let Pτ denote the orthogonal projection of H2

β(BN )
onto span{zα : α ≤ τ}, and choose the size of X to correspond to the position
of τ in the standard ordering.

For the next result, recall that there is no loss of generality in assuming
that A = ϕ′(0) is upper-triangular, since Schroeder’s equation for ϕ has a
locally univalent solution if and only if Schroeder’s equation for UϕU−1 for U
unitary has a locally univalent solution.

Theorem 13. Suppose ϕ is an analytic map of BN into BN with ϕ(0) = 0
and A = ϕ′(0) is upper-triangular and diagonalizable, with diagonal entries
λ1, λ2, . . . , λN such that 0 < |λj | < 1. Assume further that ϕ is not unitary on
any slice. Let X be any size square upper-left corner of the matrix for Cϕ with
respect to the standard (nonnormalized) basis for any weighted Hardy space
H2

β(BN ), ordered in the usual way.
If Schroeder’s equation has a solution f on BN , where f ◦ ϕ = Af and

f ′(0) = I, then X is diagonalizable.

Proof. Suppose X is of size Q×Q. Find m ≥ 1 so that M ≡ dimHm ≥ Q.
If f ◦ ϕ = Af where f ′(0) = I, write f = (f1, f2, · · · , fN ). We may find a
fast regular weight Ĝ(r) with the property that Ĝ(|z|)|fj(z)| ≤ 1 for all z in
BN and j = 1, 2, · · · , N . Set G(r) = (Ĝ(r) exp (−1/(1− r)))2m. A calculation
shows that G(r) satisfies the hypothesis of Theorem 8 (Exercise 5.2.2 of [5] is
relevant here). Thus Cϕ is Hilbert-Schmidt, and hence compact, on A2

G(BN ).
Using Corollary 11, we may choose a basis of eigenvectors vj , with eigen-

values λj , for the diagonalizable upper-triangular matrix A∗ with vj(j) = 1
and vj(k) = 0 for k > j. By Theorem 5, ψj(z) ≡ 〈f(z), vj〉 is an eigenfunction
for Cϕ with eigenvalue λj . Since by the choice of Ĝ, each fk is in A2

G(BN ), and
the ψj ’s are linear combinations of the fk’s, we have ψj in A2

G(BN ). Moreover,
any product of at most m functions from the set {ψ1, ψ2, · · · , ψN} will also be
in A2

G(BN ).
By assumption, f ′(0) = I, so the homogeneous expansion of fj is

fj(z) = zj + higher-order terms,

where “higher-order terms” means terms of order greater than or equal to 2.
Using this and the special form of the eigenvectors vj we see that

ψj(z) = aj
1z1 + aj

2z2 + · · ·+ aj
j−1zj−1 + zj + terms of order at least 2.
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Notice that the ψj ’s are linearly independent, since if

(6)
N∑

j=1

cjψj = 0,

we must have cN = 0, since only ψN contains a nonzero zN term. From this
it follows that cN−1 = 0 since only ψN−1 and ψN could contain nonzero zN−1

terms. Continuing in this matter we see that each coefficient cj is 0.
Now let τ be the Qth multi-index for CN , with respect to the usual or-

dering. Consider the collection of all products ψγ = ψγ1
1 · · ·ψγn

N , where γ ≤ τ .
Notice that each of these is a product of not more than m of the ψj ’s, counting
repetitions, so that each of the products ψγ , γ ≤ τ , is in the collection

(7) ψ1, ψ2, · · · , ψN , ψ2
1, ψ1ψ2, · · · , ψ2

N , ψ3
1, · · · , ψm

N

of at most m-fold products of the ψj ’s. These functions lie in A2
G(BN ), Cϕ is

compact on A2
G(BN ), and any such product

ΠN
1 ψ

kj

j with kj ≥ 0 and
∑

kj ≤ m

is an eigenfunction for Cϕ with eigenvalue

ΠN
1 λ

kj

j .

We claim that this collection (7) of at most m-fold products is linearly inde-
pendent. Suppose

(8)
∑

c(α)ψα = 0,

where ψα = ψα1
1 ψα2

2 · · ·ψαN
n ,

∑
αj ≤ m, αj ≥ 0. If |α| ≥ 2 then from the form

of the ψj ’s we see that ψα contains no first-order terms, so by comparing the
coefficients of the first-order terms in Equation (8) we see that

∑

|α|=1

c(α)ψα = 0.

Since ψ1, ψ2, · · · , ψN are linearly independent, c(α) = 0 for all |α| = 1. Since
this implies that only the terms with |α| = 2 can contribute any second-order
terms, we must have ∑

|α|=2

c(α)ψα = 0.

Note that among all multi-indices of total order 2, only for α = (0, 0, · · · , 0, 2)
does ψα contain a nonzero z2

N term, so the corresponding coefficient c(α) is
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0. By considering next the zN−1zN terms we see that the coefficient c(α) for
α = (0, · · · , 0, 1, 1) must also be 0. Continuing in this manner we conclude
that c(α) = 0 for all α of total order 2, and hence Equation (8) becomes

∑

|α|≥3

c(α)ψα = 0.

Proceeding in the same manner we see that all coefficients c(α) are 0 as desired.
Suppose λ appears exactly ` times on the diagonal of X. Then λ can be

written in ` ways as a product ΠN
1 λ

kj

j , where kj ≥ 0 and the multi-index
(k1, k2, . . . , kN ) ≤ τ . We have produced in the above argument ` linearly
independent eigenfunctions ΠN

1 ψ
kj

j for Cϕ with eigenvalue λ. Consider the

projections PPτ (ΠN
1 ψ

kj

j ), where Pτ denotes the projection of H2
β(BN ) onto

span{zγ : γ ≤ τ} and P is the map from PτH
2
β(BN ) to this span (equipped

with the inner product from H2
β(BN )) which identifies polynomials. The pro-

jections PPτ (ΠN
1 ψ

kj

j ) are still linearly independent polynomials of degree Q,
since the above independence argument only makes use of the terms of the
functions ΠN

1 ψ
kj

j corresponding to multi-indices ≤ τ , and these terms are still

present in PPτ (ΠN
1 ψ

kj

j ). Thus when λ appears ` times on the diagonal of X we
have exhibited ` linearly independent eigenvectors in CQ for X corresponding
to the eigenvalue λ. This shows that X is diagonalizable.

Compare this result with Example 1 in the previous section, where ϕ(z1, z2) =
(1
2z1,

1
4z2 + 1

2z2
1). The eigenvalues there are λ1 = 1/2 and λ2 = 1/4. If X is

the upper-left 4 × 4 corner of the matrix for Cϕ, X has diagonal entries 1,
1/2, 1/4, 1/4 and one nonzero off-diagonal entry; namely a 1/2 in the (4, 3)
position. This matrix is not diagonalizable, and by Theorem 13 there cannot
exist an analytic f : B2 → C2 with f ◦ ϕ = ϕ′(0)f and f ′(0) = I. This agrees
with our previous calculations in Example 1.

The hypothesis in Theorem 13 that A = ϕ′(0) is diagonalizable cannot be
omitted. For example, consider the linear fractional map

ϕ(z) =
Az

〈z, C〉+ 1
,

where

A =
(

λ a
0 λ

)
,

where 0 < |λ| < 1, a 6= 0, and λ and |C| 6= 0 are chosen sufficiently small so
that ϕ maps B2 into itself. When a 6= 0, A is not diagonalizable. We know
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that there is a univalent solution to Schroeder’s equation of the form

f(z) =
z

〈z, P 〉+ 1
,

where P = (I − A∗)−1C. However the upper-left 3 × 3 corner of the matrix
for Cϕ is clearly not diagonalizable.

The main result of this section is a converse to Theorem 13 with a particular
choice for X.

Theorem 14. Suppose that ϕ is an analytic map of BN into BN with
ϕ(0) = 0 and A = ϕ′(0) an upper-triangular diagonalizable matrix with diago-
nal entries λ1, λ2, . . . , λN such that 0 < |λj | < 1. Assume further that ϕ is not
unitary on any slice. Suppose that λj = λk1

1 · · ·λkN
N is the longest expression

(maximal
∑

ki) for one eigenvalue of A as a product of any number of the
eigenvalues of A. Set m = k1 + · · ·+kN and M = the number of multi-indices
for CN of total order less than or equal to m, equivalently, the dimension of
Hm. Let M be the upper-left M ×M corner of the matrix for Cϕ with respect
to the standard (non-normalized) basis for any weighted Hardy space H2

β(BN ),
ordered in the usual way. If M is diagonalizable, then Schroeder’s equation
has a solution F with F ′(0) invertible.

Note that we always have m ≥ 1, since the relation λ1 = λ1 (for example)
always holds, and that when m = 1 either all of the eigenvalues of ϕ′(0)
are distinct and none is a product of any number of the other eigenvalues,
or some eigenvalues are repeated (λi = λj for some i 6= j), but none is a
product of more than 1 of the other eigenvalues. When m = 1, M = N + 1
and the requirement that M be diagonalizable is automatically satisfied by
virtue of the hypothesis that ϕ′(0) is diagonalizable. So the existence of a
Schroeder map which is univalent in a neighborhood of 0 is guaranteed in
this case. Notice also that in the case that m = 1 and all eigenvalues of
ϕ′(0) are distinct, the hypothesis in Theorem 14 on the diagonalizability of
ϕ′(0) is automatically satisfied. On the other hand, one can construct linear
fractional maps ϕ with ϕ′(0) not diagonalizable and yet ϕ has a Schroeder
map with invertible derivative at the origin.

Proof. Since ϕ is not unitary on any slice, Cϕ is compact on H2
β(BN ) =

A2
G(BN ) for G(r) = exp(−1/(1− r)) by Theorem 8. Let λ be any eigenvalue

of ϕ′(0). Suppose λ appears j times on the diagonal of the lower-triangular
matrix for Cϕ. By our choice of M, all j of these diagonal entries lie on the
diagonal of M. Choose M ′ ≥ M so that

C∗ϕs ∼
(

X Y
0 Z

)
,
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where X is of size M ′ ×M ′ and ‖Z‖ < |λk| for k = 1, 2, . . . , N .
Now the multiplicity of λ as an eigenvalue of C∗ϕ is the same as its multi-

plicity as an eigenvalue of X by Lemma 9. Since M∗ is diagonalizable and λ
appears j times on the diagonal of M∗, there must be j linearly independent
eigenvectors forM∗ corresponding to λ. Since X is upper-triangular withM∗
in the upper-left corner, these give rise to j linearly independent eigenvectors
for X. Thus the multiplicity of λ as an eigenvalue of C∗ϕ is at least j. Since
λ appears j times on the diagonal of X, the multiplicity of λ as an eigenvalue
of X is no more than j and we have dim ker(C∗ϕ − λ) = j; by compactness of
Cϕ on A2

G(BN ) we have dim ker(Cϕ − λ) = j.
Now suppose λ occurs in positions p1, p2, · · · , pj along the diagonal. Let

f1, f2, · · · , fj be j linearly independent eigenfunctions for Cϕ acting on A2
G(BN ),

with eigenvalue λ. There is a q ≥ m sufficiently large so that Pqf1, Pqf2, · · · , Pqfj

are linearly independent vectors. Let Q be the number of multi-indices for CN

of total order less than or equal to q and let X ′ be the upper-left Q × Q
corner of the matrix for Cϕ. Then PPqf1, PPqf2, · · · , PPqfj are a basis for
ker(X ′ − λ). By Corollary 12, we have a basis v1, v2, · · · , vj for ker(X ′ − λ)
with vl(pl) = 1 and vl(r) = 0 for r < pl. Write vl = bl

1PPqf1 + · · ·+ bl
jPPqfj

and set
gλ
l = bl

1f1 + · · ·+ bl
jfj ,

so that gλ
l is an eigenfunction for Cϕ in A2

G(BN ) with eigenvalue λ, and
PPq(gλ

l ) = vl has its first nonzero entry a 1 in the plth position (since the
eigenfunctions are all 0 at 0, we count so that the “1st” position corresponds
to the coefficient of z1).

By hypothesis, ϕ′(0) is diagonalizable. Let W1,W2, . . . , WN be a basis
of eigenvectors for ϕ′(0) corresponding to the eigenvalues λ1, λ2, . . . , λN and
write Wi = (Wi(1), Wi(2), · · · ,Wi(N))t. Let W be the N × N matrix whose
ith column is Wi.

We construct a CN -valued analytic function F . First choose N functions
G1, G2, . . . , GN as follows. For 1 ≤ k ≤ N , if the kth diagonal entry of ϕ′(0) is
the lth occurrence of λ on the diagonal of ϕ′(0), let Gk be gλ

l . By construction,
Gk has leading term 1 in the kth position, i.e.,

Gk(z) = zk + ak,k+1zk+1 + · · ·+ ak,NzN + higher-order terms.

For notational convenience, define am,n = 0 if 1 ≤ n < m ≤ N and am,m = 1
for 1 ≤ m ≤ N . Our desired analytic function F is defined as

F (z) = G1(z)W1 + G2(z)W2 + · · ·+ GN (z)WN .

By Theorem 5, F satisfies F ◦ ϕ = ϕ′(0)F .
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We need only verify that F ′(0) is invertible. A computation shows that the
first column of F ′(0) is W1, the second column is a12W1 + W2 and in general
the ith column is a1iW1 + a2iW2+ · · · +aNiWN = a1iW1 + a2iW2 + · · ·+ Wi

since aki = 0 if k > i and aii = 1.
Denote the rows of F ′(0) generically by R1, R2, . . . , RN and suppose some

linear combination of the rows is 0, say,

c1R1 + c2R2 + · · ·+ cNRN = 0.

Looking at the first entry of each row, this yields

(9) c1W1(1) + c2W1(2) + · · ·+ cNW1(N) = 0.

Using Equation (9) and considering next the second entry of each row gives

a12(c1W1(1)+c2W1(2)+· · ·+cNW1(N))+c1W2(1)+c2W2(2)+· · ·+cNW2(N),

so that

(10) c1W2(1) + c2W2(2) + · · ·+ cNW2(N) = 0.

Similarly, Equations (9) and (10) together with the description of F ′(0) yield,
by consideration of the third entries in each row,

c1W3(1) + c2W3(2) + · · ·+ cNW3(N) = 0.

Continuing, we see that if some linear combination of the rows of F ′(0) is
zero, the same linear combination of the rows of the matrix W is zero. By
hypothesis, W is invertible, so we must have c1 = c2 = · · · = cN = 0, which
says that F ′(0) is invertible as desired.

An examination of the proof of the theorem above also gives the following
corollary.

Corollary 15. Suppose ϕ is an analytic map of BN into BN with ϕ(0) = 0
and A = ϕ′(0) an upper-triangular diagonalizable matrix. Assume further that
ϕ is not unitary on any slice. If f ◦ϕ = ϕ′(0)f has a locally univalent solution,
then for each number λ, the dimension of ker(Cϕ−λI) is the number of times λ
occurs on the diagonal of the matrix for Cϕ. Conversely, if for each number λ
the dimension of ker(M−λI) is the number of times λ occurs on the diagonal
of M, then f ◦ ϕ = ϕ′(0)f has a locally univalent solution.

As we noted in Section 1, the existence of a solution to Schroeder’s equation
with invertible derivative at 0 is equivalent to the existence of a solution with
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derivative equal to the identity. Thus when the hypotheses of Theorem 14
hold, Theorem 13 implies that every upper-left corner of the matrix for Cϕ

must be diagonalizable.
Theorem 14 explains the second example of Section 4. The eigenvalues are

c1 and c3
1, so m = 3 and M = 10. The upper-left 10 × 10 corner of the matrix

for Cϕ can be seen to be diagonalizable, consistent with our observation in
Section 4 that a Schroeder map with invertible derivative at 0 exists.

Corollary 16. Suppose the hypotheses of Theorem 14 hold and that
in addition A = ϕ′(0) is diagonal. Then all solutions to Schroeder’s equa-
tion can be described as f = g ◦ F, where F is the Schroeder map, uni-
valent in a neighborhood of 0, which was constructed in Theorem 14 and
g = (g1, g2, · · · , gN ) is a mapping on CN with polynomial coordinate func-
tions. Moreover, if gk =

∑
c(γ)zγ , then the coefficients c(γ) are 0 unless

λk = λγ1
1 λγ2

2 · · ·λγN
N , in which case c(γ) can be chosen arbitrarily. If λk ap-

pears K times on the diagonal of the matrix of Cϕ, then in gk all but K of the
coefficients of gk must be 0.

If A = ϕ′(0) is merely diagonalizable, let S be any matrix which diagonal-
izes A, i.e., SAS−1 = diag(λ1, λ2, . . . , λN ). Then an arbitrary Schroeder map
has the form S−1 ◦ g ◦ S ◦ F with F and g as just described.

Proof. First suppose that ϕ′(0) is diagonal. Let F : BN → CN be the
Schroeder map constructed in Theorem 14 with F ′(0) invertible. Suppose
f : BN → CN is an arbitrary solution to f ◦ ϕ = ϕ′(0)f . Since F ′(0) is
invertible, F is a univalent map of some neighborhood V of 0 onto some
neighborhood W of 0, with analytic inverse in W . Hence, for each z near 0,
ϕ′(0)z = F (ϕ(F−1(z))) and we have

(f ◦ F−1)(ϕ′(0)z)= f(F−1(ϕ′(0)z)) = f(F−1(F (ϕ(F−1(z)))))

= f(ϕ(F−1(z))) = ϕ′(0)(f ◦ F−1)(z),

so that f ◦ F−1 commutes with multiplication by the diagonal matrix A =
ϕ′(0) = diag(λ1, λ2, · · · , λN ). Let g = f ◦ F−1, a CN -valued analytic map in
some neighborhood of 0. From the equation gA = Ag we see that

g(λ1z1, · · · , λNzN ) = (λ1g1(z), · · · , λNgn(z)),

so that for k = 1, 2 · · · , N,

gk(λ1z1, · · · , λNzN ) = λkgk(z).

Writing gk in terms of its homogeneous expansion we see that the coeffi-
cient of zγ in gk is 0 if λk 6= λγ1

1 · · ·λγN
N and the coefficient is arbitrary
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if λk = λγ1
1 · · ·λγN

N . Since the diagonal entries of the matrix for Cϕ are
1, λ1, λ2, · · · , λN , λ2

1, λ1λ2, · · · , λ2
N , λ3

1, · · · , the coefficients of gk must be zero
except for the multi-indices corresponding to the diagonal entries which are
equal to λk. This gives the desired form for an arbitrary Schroeder map when
ϕ′(0) is diagonal, and it is easy to see that any mapping in this form will be
a Schroeder map for ϕ.

Now suppose that A = ϕ′(0) is not diagonal, but is diagonalizable, with
SAS−1 = ∆ ≡ diag(λ1, λ2, · · · , λN ), and that the other hypotheses of Theo-
rem 14 hold. We observe that SfF−1S−1 must commute with ∆ on a neigh-
borhood of 0 whenever f ◦ ϕ = Af :

(SfF−1S−1)∆= SfF−1S−1(SAS−1)

= SfF−1AS−1 = SfF−1(FϕF−1)S−1

= SfϕF−1S−1 = SAfF−1S−1

= ∆(SfF−1S−1).

The calculations above show that SfF−1S−1 = g, where gk is a polynomial
with the coefficient of zγ = 0 if λk 6= λγ1

1 · · ·λγN
N and arbitrary otherwise. So

any Schroeder map f for ϕ has the form f = S−1gSF for a polynomial map-
ping g as described. Conversely, a calculation shows that any such mapping
S−1gSF is a Schroeder map for ϕ.
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