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ON THE IDENTITY h(z) = af(z) + g(x)b

Jui-Chi Chang

Abstract. A description of the generalized («, 3)-derivations f, g and
h of a prime ring R which satisfying h = af + gb is given.

Receently, Bresar [3] gave a description of derivations d, g and h of a prime
ring R satisfying d = ag+hb, where a and b are some fixed noncentral elements
of R. This results generalizes a theorem in Herstein’s paper [9]. Latter on, the
author [6] exteneded this result to (o, 3)-derivations, the result we obtained
generalizes several results simultaneously. In this note we will extend this re-
sult further to the so-called generalized (o, 3)-derivations which are motivated
by the same paper [3].

Throughout, R will be a prime ring with center Z, () will denote the two
sided Martindale quotient ring of R and C will be the extended centroid of R.
Also, o and (3 will be the automorphisms of R. Recall that an additive mapping
d : R — R is said to be an (a, §)-derivation if §(zy) = d(x)a(y) + B(x)d(y)
for all z,y € R. A typical («, 3)-derivation is so-called inner (a, 3)-derivation
defined by §(z) = aa(z) — B(x)a for all x € R, where a € R.

We begin with a definition.

Definition 1. Let R be a ring, a and 8 automorphisms of R and § an
(a, B)-derivation of R. An additive mapping f : R — R is said to be a right
generalized («, 3)-derivation of R associated with § if

(1) f(zy) = f(x)aly) + B(x)d(y) for all z,y € R

and f is said to be a left generalized («, 3)-derivation of R associated with §
if

(2) fzy) =é(z)a(y) + B(x) f(y) for all z,y € R
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f is said to be a generalized (o, 3)-derivation of R associated with ¢ if it is
both a left and right generalized («, (3)-derivation of R associated with 4.

Note that if R is a prime ring then any generalized («, 3)-derivation f of
R is associated with a unique (o, §)-derivation §. Also note that any («, 5)-
derivation of R is clearly a generalized («, 3)-derivation. The following ex-
ample gives us left(right) generalized («a, 3)-derivations other than generalized
(c, B)-derivations.

Example 1. Let a,b € R be such that one of them is not zero and let
a, 3 € Aut(R), the group of automorphisms of R. Define

f(z) = aa(z) + B(x)b for all z € R
Then for z,y € R, we have f(z +y) = f(x) + f(y) and

f(zy) = aa(xy) + B(zy)b
= aa(z)a(y) + B(z)B(y)b
= (aa(x) + B(x)b)a(y) + B(x)(—baly) — B(y)(—b))

That is, f is a right generalized (c, (3)-derivation associated with 41, where
01(x) = =ba(z) — B(z)(—Db) for all x € R. We also have

f(zy) = aa(zy) + B(zy)b
= aa(x)a(y) + B(z)B(y)b
= (aa(x) — B(x)b)a(y) + B(x)(ac(y) + B(y)b)

That is, f is also a left generalized («, (3)-derivation associated with d2, where
d2(x) = aa(x) — B(z)a for all z € R. In general, it may not be true that
91 = 4, that is, f may not be a generalized («, 3)-derivation associated with
01 or 2. However, we have the following

Lemma 1. Let R be a prime ring and let f be as in example 1. Then
f is a generalized («, 3)-derivation of R associated with 6 = &1 = o if and
only if either a +b = 0, or a + b is intertible in Q and a~'B(x) = (™ !(a +
b)) tza=t(a+b) for all v € R.

Proof. From example 1, it is easy to see that f is a generalized («, (3)-
derivation if and only if 4; = 2. The latter says that —ba(x) + B(x)b =
aa(x) — B(z)a for all z € R. Hence (a + b)a(x) = [(x)(a + b) and thus
ala+bzx = alBx)a"a+b) for all z € R. If a +b # 0, then by
[10;p.136], @' (a+b) and hence a+b is intertible in Q and a~'B(x) = a~(a+
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b)z(a~t(a + b))~! for all x € R. Conversely, if a +b = 0, then b = —a
and f(x) = aa(z) + B(z)b = aa(zr) — f(z)a is an (o, §)-derivation of R. If

a 18(x) = a Ya + b)z(a"t(a +b))7! for all z € R, then (a + b)a(z) =
B(z)(a +b) and 01(z) = —ba(x) — B(x)(—b) = aa(x) — B(z)a = d2(x) for all
x € R. Hence f is a generalized («, (3)-derivation associated with § = 01 = da.

Let us examine the previous example f(z) = aa(x) + 5(z)b more closely.
We can rewrite f into the form f(z) = (a + b)a(z) + d1(x) = B(z)(a + b) +
02(x), where §1(z) = —ba(z) — f(x)(=b) and d2(x) = aa(x) — B(z)a. On
the other hand, since any automorphism of a prime ring R can be uniquely
extended to both left and right Martindale quotient rings of R, we see that
f(z) = aa(x) + B(x)b can also be uniquely extended to both left and right
Martindale quotient rings of R. Moreover, we have f(1) = a+ b and f(z) =

f(Da(x) + 01(x) = B(x) f(1) + d2(x). In general, we have

Lemma 2. Let R be a prime ring. If f is a left (right resp.) general-
ized (a, B)-derivation of R, then f can be uniquely extended to the left (right
resp.) Martindale quotient ring rF(Fg resp.) of R and f(x) = B(z)f(1)+4d(x)
(f(x) = f(Da(z) + 0(x) resp.) for all x € R, where 0 is an («, 5)-derivation
of R.

Proof. Assume that f is a left generalized (a,)-derivation associated
with §. Let T(x) = f(z) — §(x). Then T(xy) = f(zy) — d(zy) = d(x)a(y) +
B(x)f(y) — (6(x)aly) + B(x)d(y)) = B(z)(f(y) — d(y)) = B(x)T(y) for all z,
y € R. For s egF, there exists an ideal I; of R such that I;s € R. Then T
can be uniquely extended to rF by the rule T'(is) = ((i)T(s) for all ¢ € I;.
Since f(z) = T'(z) 4+ 0(z) for all x € R and § can be uniquely extended
to pF', we conclude that f can be uniquely extended to grF. Moreover, we
have f(z) = f(z-1) = §(x)a(1) + B(z) f(1)= B(x)f(1) + d(z) for all z € R.
Similarly, every right generalized (a, ()-derivation associated with § can be
uniquely extended to Fg and f(x) = f(1)a(z) + §(z) for all x € R.

Remark. (1) A left (right resp.) generalized («a, 3)-dervation f of a prime
ring R is associated with a unique (c, 3)-derivation d.

(2) A left (right resp.) generalized (a, 3)-derivation f of a prime ring R
can be extended to @ if and only if f(1) € Q.

We can sharpen the previous lemma little bit when f is a generalized
(c, B)-derivation associated with d.

Lemma 3. Let R be a prime ring. Then f is a generalized (v, 3)-
derivation of R associated with § if and only if one of the following holds:
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(i) f(x) =4d(x) for allz € R

(i) f(x) = f(D)a(z) + d(x) = B(x)f(1) + d(x) for all x € R, where f(1) is
invertible in Q and Ba~'(z) = f()zf(1)~! for all z € R.

Proof. If f is a generalized (o, 3)-derivation of R associated with §, then
as a right generalized («, 3)-derivationof R, we have f(x) = sa(x) 4+ §(z) for
all z € R, where s = f(1) € Fg. On the other hand, as a left generalized
(av, B)-derivation of R, we have f(zy) = d(x)a(y) + B(z)f(y) for all z,y €
R. Subsititute f(y) = sa(y) + d(y) and f(xy) = sa(xy) + d(zy) into the
last equation, we obtain sa(x)a(y) = ((z)sa(y)for all x,y € R. Therefore,
sa(x) = B(x)s for all z € R and hence s € Q. If s = 0, then f(x) = d(x) for all
r € R. If s # 0, then sz = B(a~!(z))s forall z € R. Hence B(a~!(z)) = sxs~!
for all x € R by [10; p136]. Since sa(z) = B(x)s for all z € R, we also have
f(z) =pB(x)s+d(z) = B(x)f(1) + (z) for all x € R.

The converse is obvious.

Definition 2. We say a generalized («, 3)-derivation of a prime ring R
association with ¢ is proper if f # 4.

Let § # 0 be an («, §)-derivation of a prime R and let a € R. It is shown in
[5] that if ad(x) = 0 (d(x)a = 0) then a = 0. In the following lemma we show
that this is still true for any nonzero generalized («, (3)-derivation associated
with 9.

Lemma 4. Let f # 0 be a generalized («, 3)-derivation of a prime ring
R associated with § and let a € R.

(i) ifaf(x) =0 for all z € R, then a =0
(ii) if f(x)a =0 for all x € R, then a = 0.

Proof. (i) If af(z) = 0 for all € R, then 0 = af(zy) = a(f(z)a(y) +
B(x)d(y)) = afB(x)d(y) for all x,y € R. Assume on the contrary that a # 0.
Then since R is prime and 3 is an automorphism, §(y) = 0 for all y € R.
On the other hand, we also have 0 = af(xy) = a(d(x)aly) + B(z)f(y)) =
af(x)f(y) for all x,y € R. Hence f(y) =0 for all y € R which is contrary to
the hypothesis. This completes the proof of (i).

The proof of (ii) is similar.

Note that Lemma 4 does not hold for neither left nor right generalized
(c, B)-derivation. Indeed, we have the following examples.
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Example 3. Let R = My(F). Leta:<0 —1 ),b:s:<0 1>:

0 0 10
10 10 0 0
—1 —
s andc-(o 0>.Thenc(a+b)—<o 0><1 0)-0. Now, define

f(z) = ax + s~lasb for all z € R. Then f(z) = azx + bx = (a + b)z for all
x € R. Clearly, cf(z) = c(a 4+ b)z = 0 for all z € R. But, ¢ # 0. Similarly, if
let g(z) = bs~lzs + za for all z € R, then g(x) = x(a + b) for all z € R. Now

lete:<8 (1)).Thene;éObutg(x)ezOforalleR.

Now we come to our main theorem

Theorem 1. Let R be a prime ring, and let f,g and h be the generalized
(o, B)-derivations of R associated with ~y,6 and T respectively. Assume that
there exists a,b € Q \ C such that

(6) h(z) =af(x)+ g(z)b for all x € R.

If either f # 0 or g # 0, then there exists s € Q such that sa(z)s™ ' = [B(z)
for all x € R and one of the following holds:
(i) f(z) = sa(x), g(x) = sa(z) and h(z) = asa(z) + B(x)sb for all x € R,
where as + sb =5 or 0.
(i) f(z) = sb,a(@)],g9(x) = [a,B(x)]s and h(z) = s[s~"asb,a(z)] for all
z €R.

(iii) f(z) = sa(z) + nslb, ()], g(z) = sa(z) + nla, B(x)]s and h(zx) =
s[ns~tasb — b, a(x)] for all x € R, where as +sb=0,n € C.

(iv) f(z) = sa(z)+nsb, a(x)], g(z) = sa(z)+nla, B(x)]s and h(x) = sa(z)+
s[ns~tasb — b, a(z)] for all x € R, where as + sb=s,n € C.

Proof. If f and g are all («, §)-derivation, then (ii) holds by Theorem 1
in [6]. So we may assume that either f or g is a proper generalized («, [3)-
derivation.

Substituting zy for x into (6), we have af(x)a(y)+ab(z)y(y)+g(x)a(y)b+
B(x)d(y)b = h(zx)aly) + B(x)7(y) = af (z)a(z) + g(z)ba(y) + B(z)7(y). Hence

(7) la, B(x)]v(y) + g(z)[e(y), b] = B(z)(T(y) — ay(y) — 0(y)b) for all z,y € R.

Using Lemma 3 and the hypothesis h = af + gb, we can rewrite (7) into the
following form

(8) [a, B(x)1y(y) + 6(x)[e(y), b] = B(z)Aa(y) for all 2,y € R.
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where A is one of the values in {as + sb — s, as + sb,as — s, sb — s, as, sb, —s}.
Substituting yz for y into (8), the left hand side of (8) becomes

[a; B()](y2) + 6(x)[a(y2), b]

= [a, B@)(v(y)a(z) + B(y)(2)) + d(x)|a(y)a(2), b]

= [a, B(2)V(y)e(2) + [a, B(2)]B(y)(2) + (w)[a(y),b]a(?«’) d(z)a(y)e(2), b]
(la, B(@)]v(y) + 0(x)[e(y), b)a(z) + [a, B(x)]B(y)

Bx)Aa(y)a(z) + [a, B(2)]B(y)v(2) — 6(x)aly)[b, alz)].

Also the right hand side of (8) becomes ((z)Aa(y)a(z). Therefore, we have

(9) [a, B(x)]B(y)v(2) = d(z)a(y)[b, a(z)] for all z,y,z € R.

Form (9), it is easy to see that v = 0 if and only if § = 0. So, if g =0
then § = 0 and hence v = 0. But, by the hypothesis f # 0, hence f = sa by
Lemma 3. By (7), we have f(x)7(y) = 0 for all 2,y € R. Therefore, 7(x) =0
and h(z) = af(z) = asa(z) for all x € R. By Lemma 3, we have as = s,
which is not the case. So g # 0. Similiarly, using an analogue of (7), we can
show that f # 0. Therefore, f # 0 and g # 0.

The last paragraph tells us that either both f and g have zero (a,3)-
derivations or both f and g have nonzero («, 3)-derivations. Suppose both f
and g having zero («, 3)-derivations, then f = s = g and sae = 3s by Lemma
3. Therefore h = af 4+ gb = asa + sab = asa + [Bsb. Since h is a generalized
(a, B)-derivations, we must have as + sb = s or 0 by Lemma 1 and Lemma 3.
Hence (i) holds. Now suppose that f and g have nonzero («a, 3)-derivations.
Applying a~! on each term of (9), we have

a~a, Bx))a ' By)a v (2)

(10)

=a 16(z)yat([b,a(z)]) for all z,y,z € R.
Since either f or g is a proper generalized (a, 3)-derivations, a~!'3 is Q-inner
by Lemma 3. In fact, a~!3(x) = tat~! for all x € R, where t = a~1(s) and
sa = fs. Substituting this into (10), we have

aH([a, Byt e y(2)

) = a t(x)ya=([a, a(2)]) for all 2,9,z € R.

By a similar argument as we did before (e.g. [6]), there exists A € C' such that
a16(x) = daY([a, B(z)])t and t~ta~ty(2) = Aa"L([b,a(2)]) for all z, 2z € R.
Therefore 6(x) = [a, B(x)|ns, v(x) = ns[b, a(z)] for all x € R, where n = a(\).
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Subsituting v(y) = nslb,a(y)] and 6(z) = [a,[(x)]ns into (8), we have
B(x)Aa(y) =0 for all x,y € R and hence A = 0. Since A must be one of the
values in {as + sb — s,as + sb,as — s, sb — s,as, sb, —s}, it follows that either
as+sb—s =0oras+sb=0. If as+sb—s =0, then f(z) = sa(z)+ns[b, a(z)],
g(x) = sa(x) + [a,B(x)]ns and h(z) = asa(x) + sa(x)b + ans[b, a(z)] +
[a, B(x)]nsb = sa(x) — sba(x) + sa(x)b + nasb, a(z)] + n[s tas, a(z)]b =
sa(z) — slb, a(x)] + ns[stash, a(z)] = sa(x) + s[ns~tasb — b,a(z)] for all
x € R. If as+ sb = 0, then f(z) = sa(z) + nslb, a(z)], g(x) = sa(z) +
nla, B(z)]s and h(z) = asa(x)+sa(z)b+naslb, a(z)]+nla, 5(z)]sb = —sba(x)+
sa(z)b+nss tas[b, a(x)] +ns[s~tas, a(z)]b = —s[b, a(x)] + s[ns tash, a(z)] =
s[ns~lasb — b,a(x)] for all x € R. Therefore, either (iii) or (iv) holds. This
completes the proof of Theorem 1.

One should note that if there exists s € Q such that sa(z)s™! = 3(z) for
all z € R and one of (i), (ii), (iii), (iv) holds, then h(z) = af(x)+ g(x)b for all
r € R.

As a corollary, we have

Corollary 1. Let R be a prime ring, f and g generalized (o, 3)-derivations
of R associated with vy and § respectively. Assume that there exists a,b € Q\C
such that af(x)+ g(x)b =0 for all x € R. If either f # 0 or g # 0, then there
exists s € Q such that sa(z)s~! = B(z) for all x € R and one of the following
holds:

(i) f(z) = sb,a(x)], g(z) = [a,B(z)]s for all z € R and s 'asb € C
(B~ (a)a™ (b) € C).

(i) f(x) = sa(z) + nsb, a(x)], g(x) = sa(x) + nla, B(x)]s for all x € R,
as + sb =0 and nsas~1b—b € C(AB~ (a)a"1(b) — b€ O).

Proof. This is a consequence of Theorem 1.

Corollary 2. Let R be a prime ring, f a nonzero generalized (v, 3)-
deriwations of R associated with 0. Let a € Q\ C be such that [a, f(x)] = 0 for
all z € R. Then there exists s € Q such that sa(x)s™t = B(z) for all z € R
and one of the following holds:

(i) f(x) = [a,B(z)]s for allz € R, a + sas™* € C and s 'asa € C.
(ii) Char R = 2, f(x) = sa(x) + nsla, a(z)] for all x € R, [a,s] = 0 and
na®+a € C.

Proof. We can appeal to corollary 1 with b = —a and g = f. If Corollary 1
(i) holds, then f(z) = [a, B(x)]s = s[—a, a(x)] = [-sas~ !, B(x)]s for all z € R
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since sa(x)s! = B(z) for all x € R. Therefore, [a + sas™!, 3(x)] = 0 for all
r € R. Hence a + sas™! € C. Also, s 'asa € C.

If Corollary 1 (ii) holds, then f(z) = sa(x) + ns[—a,a(z)] = sa(z) +
ns[s~tas,a(x)] for all z € R since sa(z)s™! = B(z) for all x € R. Therefore
[a + s7tas,a(z)] = 0 for all x € R, and hence a + s 'as € C. On the
other hand, we also have as — sa = 0 by Corollary 1 (ii). Hence 2a € C.
If Char R # 2, then a € C which is not the case. So Char R = 2. Since
nsas 'a+a € C and since as = sa, we have, na’ 4+ a € C. This completes the
proof.

Sharpen Corollary 2, we have

Corollary 3. Let R be a prime ring of characteristic not two and let f
be a nonzero proper generalized (o, 3)-derivations of R. If a € R is such that

[a, f(x)] =0 for all x € R, then a € Z.

Note that Corollary 3 is no longer true if f is just merely a left (right)
generalized («, 3)-derivation of R. In fact, we have the following example.

Example 4. Let R = My(F), where F' is a field with Char F # 2. Let

01
a—b—c—(o 0).

Define f(xz) = ax + xb for all z € R. Then f(z) = (a + b)x + [z,b]
is not a generalized (1,1)-derivation since (a + b) is a nonzero divisor in R.
However, f is a right generalized (1, 1)-derivation associated with d_j;, where
d_p(x) = [-b,z]. Clearly, ¢ ¢ Z and [c, f(z)] =0 for all z € R.

For the next result, we need a lemma.

Lemma 5. Let f be a nonzero proper generalized (v, 3)-derivation of a
prime ring R with ceter Z. If f(x) € Z for all x € R, then R is commutative.

Proof. For x € R and z € Z, we have f(zz) = f(x)a(z) + B(z)d(2).
Since f(z) € Z for all x € R, we have 3(z)d(z) € Z for all z € R and for
all z € Z. Therefore, yo(z) € Z. If §(z) # 0 for some z € Z, then R is
commutative and we are done. So, we may assume that §(Z) = 0. By Lemma
3, f(x) = sa(x) + 6(x) for all x € R. Therefore, f(z) = sa(z) € Z for all
z € Z. In particular, s € C' and a = (.

If 6 = 0, then f(z) = sa(z) € Z for all x € R and hence R is commutative.
So we have assume that § # 0. Commute f(z) with a(z), we get [0(x), a(z)] =
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0 for all z € R and hence [a~(§(x)),z] = 0 for z € R. Since a = 3, a6 is
a derivation. By [13], R is commutative.
Note that Lemma 5 still holds for left (right) generalized («, 3)-derivations,
but its proof is little bit harder than that of Lemma 5. We will prove it latter.
Combine Corollary 3 and Lemma 5, we have

Corollary 4. Let R be a prime ring of characteristic not two and let f
be a nonzero proper generalized (o, 3)-derivation of R. If [f(x), f(y)] =0 for
all z,y € R, then R is commutative.

As usual, we can extend Corollary 3 and Corollary 4 in the following way.

Theorem 2. Let R be a prime ring of characteristic not two and let f
be a nonzero proper generalized («, 3)-derivation of R. If a € R is such that
la, f(z)] € Z for allx € R, thena € Z.

Proof. Assume that f is a nonzero proper generalized (o, 3)-derivation
associated with 6. By Lemma 3, f(z) = sa(x) 4+ d(x) for all x € R. If § = 0,
then f(x) = sa(x) for all x € R. By the hypothesis, [a,sa(x)] € Z for all
x € R. But since sa(R) is an ideal of R, so a € Z. So we may assume
that 6 # 0. Since a~!'f(z) = tat~! for all x € R, it follows easily that
a~16(z) = td(z) for all x € R, where d is a derivation of Q and d(I) C R for
some nonzero ideal I of R. Hence a~!f(z) = tx + td(z) for all x € R. By
hypothesis, we have

(12) [[b,tz + td(x)],y] =0 for all x,y € R

where b = a~!(a). If d is Q-inner, that is, there exists ¢ € @ such that
d(x) = cx —xc for all z € @, then by Theorem 2 in [1], we have from (12) that

[[b,tx + t(cx — xc)],y] =0

for all z,y € Q. So without loss of generality, we may assume that t,c € R, ¢
is invertible in R and

(13) [[b,tx + t(cx — zc)],y] =0 for all x,y € R.

Substitute 0 # = = z € Z into (13), we have [b,t] € Z. Substitute z = cz
into (13), where 0 # z € Z, then we have [b,tc] € Z. Since [t, [b,tc]] = 0 and
[te, [t,b]] = 0, we also have [b,t[c,t]] = [b,[tc,t]] = 0. Now substitute x =t
into (13), then we have [b, 2] = t[b,t] + [b,t]t = 2t[b,t] € Z. Hence [b,t] = 0
since Char R # 2. Therefore, t[b,x + (cx — zc)] € Z for all z € R. Substitute
x = ¢ into (13), then we have [b, tc?] = [b, tc|e+te[b, | = c[b, tc]+tet L[, tc] =
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(c+tet=1)[b,tc] € Z and hence we have either c+tct™! € Z or [b,tc] = 0 since
[btc] € Z. If c+tct™' € Z, then 0 = [b,c + tet™1] = t71[b, tc] + [b,tc|t ™t =
2t71[b,tc]. Since Char R # 2, we have [b,tc] = 0. So we can conclude that
[b,tc] = 0. Now replace x by cz in (13), we get [b, tcx + te(cr — xc)| = te[b, x +
(cx—xc)] € Z forall x € R. Since tet—1[b, v+ (cx—xc)] = telb, z+(cx—zc)] € Z
for all z € R and since t[b,x 4+ (cx — xzc)] € Z for all x € R, we have either
tet™1 € Z or tlb, x+(cx—zc)] = [b,ta+t(cx—zc)] = 0. Iftet ™! € Z, thenc € Z
and hence d(z) = 0 for all z € R. Therefore, §(x) = 0 for all x € R which is
not the case. If [b,tx +t(cx — zc)] = 0 for all x € R, then [a, sa(z) +d(x)] =0
for all x € R and hence a € Z by Corollary 3. So we may assume that d
is Q-outer. In this case, we have [[b,tx + td(x)],y] = 0 for all z,y € @ by
[12, Remark; p.14] and by [7, Theorem 1]. By a result of Kharchenko [11],
[[b, tx + tw],y] = 0 for all z,w,y € R. In particular, [b,z] € C for all z € Q.
Hence again a = «a(b) € Z.

As a Corollary, we have

Corollary 5. Let R be a prime ring of characteristic not two and let f
be a nonzero proper generalized (v, 3)-derivation of R. If [f(x), f(y)] € Z for
all z,y € R, then R is commutative.
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