TAIWANESE JOURNAL OF MATHEMATICS Vol. 7, No. 1, pp. 103-113, March 2003 This paper is available online at http://www.math.nthu.edu.tw/tjm/

ON THE IDENTITY h(x) = af(x) + g(x)b

Jui-Chi Chang

Abstract. A description of the generalized (α, β) -derivations f, g and h of a prime ring R which satisfying h = af + gb is given.

Recently, Bresar [3] gave a description of derivations d, g and h of a prime ring R satisfying d = ag+hb, where a and b are some fixed noncentral elements of R. This results generalizes a theorem in Herstein's paper [9]. Latter on, the author [6] extended this result to (α, β) -derivations, the result we obtained generalizes several results simultaneously. In this note we will extend this result further to the so-called generalized (α, β) -derivations which are motivated by the same paper [3].

Throughout, R will be a prime ring with center Z, Q will denote the two sided Martindale quotient ring of R and C will be the extended centroid of R. Also, α and β will be the automorphisms of R. Recall that an additive mapping $\delta : R \to R$ is said to be an (α, β) -derivation if $\delta(xy) = \delta(x)\alpha(y) + \beta(x)\delta(y)$ for all $x, y \in R$. A typical (α, β) -derivation is so-called inner (α, β) -derivation defined by $\delta(x) = a\alpha(x) - \beta(x)a$ for all $x \in R$, where $a \in R$.

We begin with a definition.

Definition 1. Let R be a ring, α and β automorphisms of R and δ an (α, β) -derivation of R. An additive mapping $f : R \to R$ is said to be a right generalized (α, β) -derivation of R associated with δ if

(1)
$$f(xy) = f(x)\alpha(y) + \beta(x)\delta(y) \text{ for all } x, y \in R$$

and f is said to be a left generalized (α, β) -derivation of R associated with δ if

(2)
$$f(xy) = \delta(x)\alpha(y) + \beta(x)f(y) \text{ for all } x, y \in R$$

Received August 15, 1999; revised August 4, 2001.

Communicated by Pjek-Hwee Lee.

²⁰⁰⁰ Mathematics Subject Classification: 16W25, 16N60.

Key words and phrases: (α, β) -derivation, generalized (α, β) -derivation.

Jui-Chi Chang

f is said to be a generalized (α, β) -derivation of R associated with δ if it is both a left and right generalized (α, β) -derivation of R associated with δ .

Note that if R is a prime ring then any generalized (α, β) -derivation f of R is associated with a unique (α, β) -derivation δ . Also note that any (α, β) -derivation of R is clearly a generalized (α, β) -derivation. The following example gives us left(right) generalized (α, β) -derivations other than generalized (α, β) -derivations.

Example 1. Let $a, b \in R$ be such that one of them is not zero and let $\alpha, \beta \in Aut(R)$, the group of automorphisms of R. Define

$$f(x) = a\alpha(x) + \beta(x)b$$
 for all $x \in R$

Then for $x, y \in R$, we have f(x + y) = f(x) + f(y) and

$$\begin{split} f(xy) &= a\alpha(xy) + \beta(xy)b \\ &= a\alpha(x)\alpha(y) + \beta(x)\beta(y)b \\ &= (a\alpha(x) + \beta(x)b)\alpha(y) + \beta(x)(-b\alpha(y) - \beta(y)(-b)) \end{split}$$

That is, f is a right generalized (α, β) -derivation associated with δ_1 , where $\delta_1(x) = -b\alpha(x) - \beta(x)(-b)$ for all $x \in R$. We also have

$$\begin{aligned} f(xy) &= a\alpha(xy) + \beta(xy)b \\ &= a\alpha(x)\alpha(y) + \beta(x)\beta(y)b \\ &= (a\alpha(x) - \beta(x)b)\alpha(y) + \beta(x)(a\alpha(y) + \beta(y)b) \end{aligned}$$

That is, f is also a left generalized (α, β) -derivation associated with δ_2 , where $\delta_2(x) = a\alpha(x) - \beta(x)a$ for all $x \in R$. In general, it may not be true that $\delta_1 = \delta_2$, that is, f may not be a generalized (α, β) -derivation associated with δ_1 or δ_2 . However, we have the following

Lemma 1. Let R be a prime ring and let f be as in example 1. Then f is a generalized (α, β) -derivation of R associated with $\delta = \delta_1 = \delta_2$ if and only if either a + b = 0, or a + b is intertible in Q and $\alpha^{-1}\beta(x) = (\alpha^{-1}(a + b))^{-1}x\alpha^{-1}(a + b)$ for all $x \in R$.

Proof. From example 1, it is easy to see that f is a generalized (α, β) derivation if and only if $\delta_1 = \delta_2$. The latter says that $-b\alpha(x) + \beta(x)b = a\alpha(x) - \beta(x)a$ for all $x \in R$. Hence $(a + b)\alpha(x) = \beta(x)(a + b)$ and thus $\alpha^{-1}(a + b)x = \alpha^{-1}\beta(x)\alpha^{-1}(a + b)$ for all $x \in R$. If $a + b \neq 0$, then by [10;p.136], $\alpha^{-1}(a+b)$ and hence a+b is intertible in Q and $\alpha^{-1}\beta(x) = \alpha^{-1}(a + b)$ $b)x(\alpha^{-1}(a+b))^{-1}$ for all $x \in R$. Conversely, if a+b=0, then b=-aand $f(x) = a\alpha(x) + \beta(x)b = a\alpha(x) - \beta(x)a$ is an (α,β) -derivation of R. If $\alpha^{-1}\beta(x) = \alpha^{-1}(a+b)x(\alpha^{-1}(a+b))^{-1}$ for all $x \in R$, then $(a+b)\alpha(x) = \beta(x)(a+b)$ and $\delta_1(x) = -b\alpha(x) - \beta(x)(-b) = a\alpha(x) - \beta(x)\alpha = \delta_2(x)$ for all $x \in R$. Hence f is a generalized (α,β) -derivation associated with $\delta = \delta_1 = \delta_2$.

Let us examine the previous example $f(x) = a\alpha(x) + \beta(x)b$ more closely. We can rewrite f into the form $f(x) = (a + b)\alpha(x) + \delta_1(x) = \beta(x)(a + b) + \delta_2(x)$, where $\delta_1(x) = -b\alpha(x) - \beta(x)(-b)$ and $\delta_2(x) = a\alpha(x) - \beta(x)a$. On the other hand, since any automorphism of a prime ring R can be uniquely extended to both left and right Martindale quotient rings of R, we see that $f(x) = a\alpha(x) + \beta(x)b$ can also be uniquely extended to both left and right Martindale quotient rings of R and $f(x) = f(1)\alpha(x) + \delta_1(x) = \beta(x)f(1) + \delta_2(x)$. In general, we have

Lemma 2. Let R be a prime ring. If f is a left (right resp.) generalized (α, β) -derivation of R, then f can be uniquely extended to the left (right resp.) Martindale quotient ring $_{R}F(F_{R} \text{ resp.})$ of R and $f(x) = \beta(x)f(1) + \delta(x)$ $(f(x) = f(1)\alpha(x) + \delta(x) \text{ resp.})$ for all $x \in R$, where δ is an (α, β) -derivation of R.

Proof. Assume that f is a left generalized (α, β) -derivation associated with δ . Let $T(x) = f(x) - \delta(x)$. Then $T(xy) = f(xy) - \delta(xy) = \delta(x)\alpha(y) + \beta(x)f(y) - (\delta(x)\alpha(y) + \beta(x)\delta(y)) = \beta(x)(f(y) - \delta(y)) = \beta(x)T(y)$ for all x, $y \in R$. For $s \in_R F$, there exists an ideal I_s of R such that $I_s s \in R$. Then Tcan be uniquely extended to $_R F$ by the rule $T(is) = \beta(i)T(s)$ for all $i \in I_s$. Since $f(x) = T(x) + \delta(x)$ for all $x \in R$ and δ can be uniquely extended to $_R F$, we conclude that f can be uniquely extended to $_R F$. Moreover, we have $f(x) = f(x \cdot 1) = \delta(x)\alpha(1) + \beta(x)f(1) = \beta(x)f(1) + \delta(x)$ for all $x \in R$. Similarly, every right generalized (α, β) -derivation associated with δ can be uniquely extended to F_R and $f(x) = f(1)\alpha(x) + \delta(x)$ for all $x \in R$.

Remark. (1) A left (right resp.) generalized (α, β) -dervation f of a prime ring R is associated with a unique (α, β) -derivation δ .

(2) A left (right resp.) generalized (α, β) -derivation f of a prime ring R can be extended to Q if and only if $f(1) \in Q$.

We can sharpen the previous lemma little bit when f is a generalized (α, β) -derivation associated with δ .

Lemma 3. Let R be a prime ring. Then f is a generalized (α, β) -derivation of R associated with δ if and only if one of the following holds:

Jui-Chi Chang

- (i) $f(x) = \delta(x)$ for all $x \in R$
- (ii) $f(x) = f(1)\alpha(x) + \delta(x) = \beta(x)f(1) + \delta(x)$ for all $x \in R$, where f(1) is invertible in Q and $\beta \alpha^{-1}(x) = f(1)xf(1)^{-1}$ for all $x \in R$.

Proof. If f is a generalized (α, β) -derivation of R associated with δ , then as a right generalized (α, β) -derivation R, we have $f(x) = s\alpha(x) + \delta(x)$ for all $x \in R$, where $s = f(1) \in F_R$. On the other hand, as a left generalized (α, β) -derivation of R, we have $f(xy) = \delta(x)\alpha(y) + \beta(x)f(y)$ for all $x, y \in$ R. Substitute $f(y) = s\alpha(y) + \delta(y)$ and $f(xy) = s\alpha(xy) + \delta(xy)$ into the last equation, we obtain $s\alpha(x)\alpha(y) = \beta(x)s\alpha(y)$ for all $x, y \in R$. Therefore, $s\alpha(x) = \beta(x)s$ for all $x \in R$ and hence $s \in Q$. If s = 0, then $f(x) = \delta(x)$ for all $x \in R$. If $s \neq 0$, then $sx = \beta(\alpha^{-1}(x))s$ for all $x \in R$. Hence $\beta(\alpha^{-1}(x)) = sxs^{-1}$ for all $x \in R$ by [10; p136]. Since $s\alpha(x) = \beta(x)s$ for all $x \in R$, we also have $f(x) = \beta(x)s + \delta(x) = \beta(x)f(1) + \delta(x)$ for all $x \in R$.

The converse is obvious.

Definition 2. We say a generalized (α, β) -derivation of a prime ring R association with δ is proper if $f \neq \delta$.

Let $\delta \neq 0$ be an (α, β) -derivation of a prime R and let $a \in R$. It is shown in [5] that if $a\delta(x) = 0$ ($\delta(x)a = 0$) then a = 0. In the following lemma we show that this is still true for any nonzero generalized (α, β) -derivation associated with δ .

Lemma 4. Let $f \neq 0$ be a generalized (α, β) -derivation of a prime ring R associated with δ and let $a \in R$.

- (i) if af(x) = 0 for all $x \in R$, then a = 0
- (ii) if f(x)a = 0 for all $x \in R$, then a = 0.

Proof. (i) If af(x) = 0 for all $x \in R$, then $0 = af(xy) = a(f(x)\alpha(y) + \beta(x)\delta(y)) = \alpha\beta(x)\delta(y)$ for all $x, y \in R$. Assume on the contrary that $a \neq 0$. Then since R is prime and β is an automorphism, $\delta(y) = 0$ for all $y \in R$. On the other hand, we also have $0 = af(xy) = a(\delta(x)\alpha(y) + \beta(x)f(y)) = \alpha\beta(x)f(y)$ for all $x, y \in R$. Hence f(y) = 0 for all $y \in R$ which is contrary to the hypothesis. This completes the proof of (i).

The proof of (ii) is similar.

Note that Lemma 4 does not hold for neither left nor right generalized (α, β) -derivation. Indeed, we have the following examples.

106

On the Identity h(x) = af(x) + g(x)b

Example 3. Let $R = M_2(F)$. Let $a = \begin{pmatrix} 0 & -1 \\ 0 & 0 \end{pmatrix}$, $b = s = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = s^{-1}$ and $c = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$. Then $c(a+b) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = 0$. Now, define $f(x) = ax + s^{-1}xsb$ for all $x \in R$. Then f(x) = ax + bx = (a+b)x for all $x \in R$. Clearly, cf(x) = c(a+b)x = 0 for all $x \in R$. But, $c \neq 0$. Similarly, if let $g(x) = bs^{-1}xs + xa$ for all $x \in R$, then g(x) = x(a+b) for all $x \in R$. Now let $e = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$. Then $e \neq 0$ but g(x)e = 0 for all $x \in R$.

Now we come to our main theorem

Theorem 1. Let R be a prime ring, and let f, g and h be the generalized (α, β) -derivations of R associated with γ, δ and τ respectively. Assume that there exists $a, b \in Q \setminus C$ such that

(6)
$$h(x) = af(x) + g(x)b \text{ for all } x \in R.$$

If either $f \neq 0$ or $g \neq 0$, then there exists $s \in Q$ such that $s\alpha(x)s^{-1} = \beta(x)$ for all $x \in R$ and one of the following holds:

- (i) $f(x) = s\alpha(x), g(x) = s\alpha(x)$ and $h(x) = as\alpha(x) + \beta(x)sb$ for all $x \in R$, where as + sb = s or 0.
- (ii) $f(x) = s[b, \alpha(x)], g(x) = [a, \beta(x)]s$ and $h(x) = s[s^{-1}asb, \alpha(x)]$ for all $x \in R$.
- (iii) $f(x) = s\alpha(x) + \eta s[b, \alpha(x)], g(x) = s\alpha(x) + \eta[a, \beta(x)]s \text{ and } h(x) = s[\eta s^{-1}asb b, \alpha(x)] \text{ for all } x \in R, \text{ where } as + sb = 0, \eta \in C.$
- (iv) $f(x) = s\alpha(x) + \eta s[b, \alpha(x)], g(x) = s\alpha(x) + \eta[a, \beta(x)]s \text{ and } h(x) = s\alpha(x) + s[\eta s^{-1}asb b, \alpha(x)] \text{ for all } x \in R, \text{ where } as + sb = s, \eta \in C.$

Proof. If f and g are all (α, β) -derivation, then (ii) holds by Theorem 1 in [6]. So we may assume that either f or g is a proper generalized (α, β) -derivation.

Substituting
$$xy$$
 for x into (6), we have $af(x)\alpha(y) + a\beta(x)\gamma(y) + g(x)\alpha(y)b + \beta(x)\delta(y)b = h(x)\alpha(y) + \beta(x)\tau(y) = af(x)\alpha(x) + g(x)b\alpha(y) + \beta(x)\tau(y)$. Hence
(7) $[a,\beta(x)]\gamma(y) + g(x)[\alpha(y),b] = \beta(x)(\tau(y) - a\gamma(y) - \delta(y)b)$ for all $x, y \in R$.

Using Lemma 3 and the hypothesis h = af + gb, we can rewrite (7) into the following form

(8)
$$[a,\beta(x)]\gamma(y) + \delta(x)[\alpha(y),b] = \beta(x)A\alpha(y) \text{ for all } x, y \in R.$$

where A is one of the values in $\{as + sb - s, as + sb, as - s, sb - s, as, sb, -s\}$. Substituting yz for y into (8), the left hand side of (8) becomes

$$\begin{split} &[a,\beta(x)]\gamma(yz) + \delta(x)[\alpha(yz),b] \\ &= [a,\beta(x)](\gamma(y)\alpha(z) + \beta(y)\gamma(z)) + \delta(x)[\alpha(y)\alpha(z),b] \\ &= [a,\beta(x)]\gamma(y)\alpha(z) + [a,\beta(x)]\beta(y)\gamma(z) + \delta(x)[\alpha(y),b]\alpha(z) + \delta(x)\alpha(y)[\alpha(z),b] \\ &= ([a,\beta(x)]\gamma(y) + \delta(x)[\alpha(y),b])\alpha(z) + [a,\beta(x)]\beta(y)\gamma(z) + \delta(x)\alpha(y)[\alpha(z),b] \\ &= \beta(x)A\alpha(y)\alpha(z) + [a,\beta(x)]\beta(y)\gamma(z) - \delta(x)\alpha(y)[b,\alpha(z)]. \end{split}$$

Also the right hand side of (8) becomes $\beta(x)A\alpha(y)\alpha(z)$. Therefore, we have

(9)
$$[a,\beta(x)]\beta(y)\gamma(z) = \delta(x)\alpha(y)[b,\alpha(z)] \text{ for all } x,y,z \in R.$$

Form (9), it is easy to see that $\gamma = 0$ if and only if $\delta = 0$. So, if g = 0 then $\delta = 0$ and hence $\gamma = 0$. But, by the hypothesis $f \neq 0$, hence $f = s\alpha$ by Lemma 3. By (7), we have $\beta(x)\tau(y) = 0$ for all $x, y \in R$. Therefore, $\tau(x) = 0$ and $h(x) = af(x) = as\alpha(x)$ for all $x \in R$. By Lemma 3, we have as = s, which is not the case. So $g \neq 0$. Similarly, using an analogue of (7), we can show that $f \neq 0$. Therefore, $f \neq 0$ and $g \neq 0$.

The last paragraph tells us that either both f and g have zero (α, β) derivations or both f and g have nonzero (α, β) -derivations. Suppose both fand g having zero (α, β) -derivations, then $f = s\alpha = g$ and $s\alpha = \beta s$ by Lemma 3. Therefore $h = af + gb = as\alpha + s\alpha b = as\alpha + \beta sb$. Since h is a generalized (α, β) -derivations, we must have as + sb = s or 0 by Lemma 1 and Lemma 3. Hence (i) holds. Now suppose that f and g have nonzero (α, β) -derivations. Applying α^{-1} on each term of (9), we have

(10)
$$\begin{aligned} \alpha^{-1}([a,\beta(x)])\alpha^{-1}\beta(y)\alpha^{-1}\gamma(z) \\ &= \alpha^{-1}\delta(x)y\alpha^{-1}([b,\alpha(z)]) \text{ for all } x, y, z \in R \end{aligned}$$

Since either f or g is a proper generalized (α, β) -derivations, $\alpha^{-1}\beta$ is Q-inner by Lemma 3. In fact, $\alpha^{-1}\beta(x) = txt^{-1}$ for all $x \in R$, where $t = \alpha^{-1}(s)$ and $s\alpha = \beta s$. Substituting this into (10), we have

(11)
$$\alpha^{-1}([a,\beta(x)])tyt^{-1}\alpha^{-1}\gamma(z)$$
$$= \alpha^{-1}\delta(x)y\alpha^{-1}([a,\alpha(z)]) \text{ for all } x, y, z \in R$$

By a similar argument as we did before (e.g. [6]), there exists $\lambda \in C$ such that $\alpha^{-1}\delta(x) = \lambda \alpha^{-1}([a, \beta(x)])t$ and $t^{-1}\alpha^{-1}\gamma(z) = \lambda \alpha^{-1}([b, \alpha(z)])$ for all $x, z \in R$. Therefore $\delta(x) = [a, \beta(x)]\eta s$, $\gamma(x) = \eta s[b, \alpha(x)]$ for all $x \in R$, where $\eta = \alpha(\lambda)$. Substituting $\gamma(y) = \eta s[b, \alpha(y)]$ and $\delta(x) = [a, \beta(x)]\eta s$ into (8), we have $\beta(x)A\alpha(y) = 0$ for all $x, y \in R$ and hence A = 0. Since A must be one of the values in $\{as + sb - s, as + sb, as - s, sb - s, as, sb, -s\}$, it follows that either as + sb - s = 0 or as + sb = 0. If as + sb - s = 0, then $f(x) = s\alpha(x) + \eta s[b, \alpha(x)]$, $g(x) = s\alpha(x) + [a, \beta(x)]\eta s$ and $h(x) = as\alpha(x) + s\alpha(x)b + a\eta s[b, \alpha(x)] + [a, \beta(x)]\eta sb = s\alpha(x) - sb\alpha(x) + s\alpha(x)b + \eta as[b, \alpha(x)] + \eta[s^{-1}as, \alpha(x)]b = s\alpha(x) - s[b, \alpha(x)] + \eta s[s^{-1}asb, \alpha(x)] = s\alpha(x) + s[\eta s^{-1}asb - b, \alpha(x)]$ for all $x \in R$. If as + sb = 0, then $f(x) = s\alpha(x) + \eta s[b, \alpha(x)]$, $g(x) = s\alpha(x) + \eta[a, \beta(x)]s$ and $h(x) = as\alpha(x) + s\alpha(x)b + \eta as[b, \alpha(x)]$, $g(x) = s\alpha(x) + \eta[a, \beta(x)]s$ and $h(x) = as\alpha(x) + s\alpha(x)b + \eta as[b, \alpha(x)] + \eta[a, \beta(x)]sb = -sb\alpha(x) + s\alpha(x)b + \eta as[b, \alpha(x)] + \eta[s^{-1}asb, \alpha(x)] = s[\eta s^{-1}asb - b, \alpha(x)]$ for all $x \in R$. Therefore, either (iii) or (iv) holds. This completes the proof of Theorem 1.

One should note that if there exists $s \in Q$ such that $s\alpha(x)s^{-1} = \beta(x)$ for all $x \in R$ and one of (i), (ii), (iii), (iv) holds, then h(x) = af(x) + g(x)b for all $x \in R$.

As a corollary, we have

Corollary 1. Let R be a prime ring, f and g generalized (α, β) -derivations of R associated with γ and δ respectively. Assume that there exists $a, b \in Q \setminus C$ such that af(x) + g(x)b = 0 for all $x \in R$. If either $f \neq 0$ or $g \neq 0$, then there exists $s \in Q$ such that $s\alpha(x)s^{-1} = \beta(x)$ for all $x \in R$ and one of the following holds:

- (i) $f(x) = s[b, \alpha(x)], g(x) = [a, \beta(x)]s$ for all $x \in R$ and $s^{-1}asb \in C$ $(\beta^{-1}(a)\alpha^{-1}(b) \in C).$
- (ii) $f(x) = s\alpha(x) + \eta s[b, \alpha(x)], g(x) = s\alpha(x) + \eta[a, \beta(x)]s \text{ for all } x \in R, as + sb = 0 \text{ and } \eta sas^{-1}b b \in C(\lambda\beta^{-1}(a)\alpha^{-1}(b) b \in C).$

Proof. This is a consequence of Theorem 1.

Corollary 2. Let R be a prime ring, f a nonzero generalized (α, β) derivations of R associated with δ . Let $a \in Q \setminus C$ be such that [a, f(x)] = 0 for all $x \in R$. Then there exists $s \in Q$ such that $s\alpha(x)s^{-1} = \beta(x)$ for all $x \in R$ and one of the following holds:

- (i) $f(x) = [a, \beta(x)]s$ for all $x \in R$, $a + sas^{-1} \in C$ and $s^{-1}asa \in C$.
- (ii) Char R = 2, $f(x) = s\alpha(x) + \eta s[a, \alpha(x)]$ for all $x \in R$, [a, s] = 0 and $\eta a^2 + a \in C$.

Proof. We can appeal to corollary 1 with b = -a and g = f. If Corollary 1 (i) holds, then $f(x) = [a, \beta(x)]s = s[-a, \alpha(x)] = [-sas^{-1}, \beta(x)]s$ for all $x \in R$

since $s\alpha(x)s^{-1} = \beta(x)$ for all $x \in R$. Therefore, $[a + sas^{-1}, \beta(x)] = 0$ for all $x \in R$. Hence $a + sas^{-1} \in C$. Also, $s^{-1}asa \in C$.

If Corollary 1 (ii) holds, then $f(x) = s\alpha(x) + \eta s[-a, \alpha(x)] = s\alpha(x) + \eta s[s^{-1}as, \alpha(x)]$ for all $x \in R$ since $s\alpha(x)s^{-1} = \beta(x)$ for all $x \in R$. Therefore $[a + s^{-1}as, \alpha(x)] = 0$ for all $x \in R$, and hence $a + s^{-1}as \in C$. On the other hand, we also have as - sa = 0 by Corollary 1 (ii). Hence $2a \in C$. If Char $R \neq 2$, then $a \in C$ which is not the case. So Char R = 2. Since $\eta sas^{-1}a + a \in C$ and since as = sa, we have, $\eta a^2 + a \in C$. This completes the proof.

Sharpen Corollary 2, we have

Corollary 3. Let R be a prime ring of characteristic not two and let f be a nonzero proper generalized (α, β) -derivations of R. If $a \in R$ is such that [a, f(x)] = 0 for all $x \in R$, then $a \in Z$.

Note that Corollary 3 is no longer true if f is just merely a left (right) generalized (α, β) -derivation of R. In fact, we have the following example.

Example 4. Let $R = M_2(F)$, where F is a field with Char $F \neq 2$. Let

$$a = b = c = \left(\begin{array}{cc} 0 & 1\\ 0 & 0 \end{array}\right).$$

Define f(x) = ax + xb for all $x \in R$. Then f(x) = (a + b)x + [x, b]is not a generalized (1, 1)-derivation since (a + b) is a nonzero divisor in R. However, f is a right generalized (1, 1)-derivation associated with d_{-b} , where $d_{-b}(x) = [-b, x]$. Clearly, $c \notin Z$ and [c, f(x)] = 0 for all $x \in R$.

For the next result, we need a lemma.

Lemma 5. Let f be a nonzero proper generalized (α, β) -derivation of a prime ring R with ceter Z. If $f(x) \in Z$ for all $x \in R$, then R is commutative.

Proof. For $x \in R$ and $z \in Z$, we have $f(xz) = f(x)\alpha(z) + \beta(x)\delta(z)$. Since $f(x) \in Z$ for all $x \in R$, we have $\beta(x)\delta(z) \in Z$ for all $x \in R$ and for all $z \in Z$. Therefore, $y\delta(z) \in Z$. If $\delta(z) \neq 0$ for some $z \in Z$, then R is commutative and we are done. So, we may assume that $\delta(Z) = 0$. By Lemma 3, $f(x) = s\alpha(x) + \delta(x)$ for all $x \in R$. Therefore, $f(z) = s\alpha(z) \in Z$ for all $z \in Z$. In particular, $s \in C$ and $\alpha = \beta$.

If $\delta = 0$, then $f(x) = s\alpha(x) \in Z$ for all $x \in R$ and hence R is commutative. So we have assume that $\delta \neq 0$. Commute f(x) with $\alpha(x)$, we get $[\delta(x), \alpha(x)] =$ 0 for all $x \in R$ and hence $[\alpha^{-1}(\delta(x)), x] = 0$ for $x \in R$. Since $\alpha = \beta$, $\alpha^{-1}\delta$ is a derivation. By [13], R is commutative.

Note that Lemma 5 still holds for left (right) generalized (α, β) -derivations, but its proof is little bit harder than that of Lemma 5. We will prove it latter.

Combine Corollary 3 and Lemma 5, we have

Corollary 4. Let R be a prime ring of characteristic not two and let f be a nonzero proper generalized (α, β) -derivation of R. If [f(x), f(y)] = 0 for all $x, y \in R$, then R is commutative.

As usual, we can extend Corollary 3 and Corollary 4 in the following way.

Theorem 2. Let R be a prime ring of characteristic not two and let f be a nonzero proper generalized (α, β) -derivation of R. If $a \in R$ is such that $[a, f(x)] \in Z$ for all $x \in R$, then $a \in Z$.

Proof. Assume that f is a nonzero proper generalized (α, β) -derivation associated with δ . By Lemma 3, $f(x) = s\alpha(x) + \delta(x)$ for all $x \in R$. If $\delta = 0$, then $f(x) = s\alpha(x)$ for all $x \in R$. By the hypothesis, $[a, s\alpha(x)] \in Z$ for all $x \in R$. But since $s\alpha(R)$ is an ideal of R, so $a \in Z$. So we may assume that $\delta \neq 0$. Since $\alpha^{-1}\beta(x) = txt^{-1}$ for all $x \in R$, it follows easily that $\alpha^{-1}\delta(x) = td(x)$ for all $x \in R$, where d is a derivation of Q and $d(I) \subset R$ for some nonzero ideal I of R. Hence $\alpha^{-1}f(x) = tx + td(x)$ for all $x \in R$. By hypothesis, we have

(12)
$$[[b, tx + td(x)], y] = 0 \text{ for all } x, y \in R$$

where $b = \alpha^{-1}(a)$. If d is Q-inner, that is, there exists $c \in Q$ such that d(x) = cx - xc for all $x \in Q$, then by Theorem 2 in [1], we have from (12) that

$$[[b, tx + t(cx - xc)], y] = 0$$

for all $x, y \in Q$. So without loss of generality, we may assume that $t, c \in R, t$ is invertible in R and

(13)
$$[[b, tx + t(cx - xc)], y] = 0 \text{ for all } x, y \in R.$$

Substitute $0 \neq x = z \in Z$ into (13), we have $[b, t] \in Z$. Substitute x = cz into (13), where $0 \neq z \in Z$, then we have $[b, tc] \in Z$. Since [t, [b, tc]] = 0 and [tc, [t, b]] = 0, we also have [b, t[c, t]] = [b, [tc, t]] = 0. Now substitute x = t into (13), then we have $[b, t^2] = t[b, t] + [b, t]t = 2t[b, t] \in Z$. Hence [b, t] = 0 since Char $R \neq 2$. Therefore, $t[b, x + (cx - xc)] \in Z$ for all $x \in R$. Substitute $x = c^2$ into (13), then we have $[b, tc^2] = [b, tc]c+tc[b, c] = c[b, tc]+tct^{-1}[b, tc] = 0$

Jui-Chi Chang

 $(c+tct^{-1})[b,tc] \in Z$ and hence we have either $c+tct^{-1} \in Z$ or [b,tc] = 0 since $[b,tc] \in Z$. If $c+tct^{-1} \in Z$, then $0 = [b,c+tct^{-1}] = t^{-1}[b,tc] + [b,tc]t^{-1} = 2t^{-1}[b,tc]$. Since Char $R \neq 2$, we have [b,tc] = 0. So we can conclude that [b,tc] = 0. Now replace x by cx in (13), we get $[b,tcx+tc(cx-xc)] = tc[b,x+(cx-xc)] \in Z$ for all $x \in R$. Since $tct^{-1}[b,x+(cx-xc)] = tc[b,x+(cx-xc)] \in Z$ for all $x \in R$ and since $t[b,x+(cx-xc)] \in Z$ for all $x \in R$, we have either $tct^{-1} \in Z$ or $t[b,x+(cx-xc)] = [b,tx+t(cx-xc)] \in Z$ for all $x \in R$, we have either $tct^{-1} \in Z$ or t[b,x+(cx-xc)] = [b,tx+t(cx-xc)] = 0. If $tct^{-1} \in Z$, then $c \in Z$ and hence d(x) = 0 for all $x \in R$. Therefore, $\delta(x) = 0$ for all $x \in R$ which is not the case. If [b,tx+t(cx-xc)] = 0 for all $x \in R$, then $[a,s\alpha(x)+\delta(x)] = 0$ for all $x \in R$ and hence $a \in Z$ by Corollary 3. So we may assume that d is Q-outer. In this case, we have [[b,tx+td(x)],y] = 0 for all $x, y \in Q$ by [12, Remark; p.14] and by [7, Theorem 1]. By a result of Kharchenko [11], [[b,tx+tw],y] = 0 for all $x, w, y \in R$. In particular, $[b,x] \in C$ for all $x \in Q$. Hence again $a = \alpha(b) \in Z$.

As a Corollary, we have

Corollary 5. Let R be a prime ring of characteristic not two and let f be a nonzero proper generalized (α, β) -derivation of R. If $[f(x), f(y)] \in Z$ for all $x, y \in R$, then R is commutative.

Acknowledgement

The author wishes to thank the referee for his valuable suggestions.

References

- K. I. Beider, Rings with generalized identities III, Vesten. Mosk. Gos. Univ. 4 (1978), 66-73.
- M. Brešar, Semiderivations of prime rings, proc. Amer. Soc. 108 (1990), 859-860.
- M. Brešar, Centralizing mappings and derivations in prime rings, J. Algebra 156 (1993), 358-394.
- J. C. Chang, On semi-derivations of prime rings, *Chinese J. of Math.* Vol. 12, No. 4 (1984), 255-262.
- J. C. Chang, A note on (α, β)-derivations, *Chinese J. of Math.* Vol. 19, No. 3 (1991), 277-285.
- J. C. Chang, A special identity of (α, β)-derivations and its consequences, Taiwanese J. of Math. Vol. 1, No. 1 (1997), 21-30.

- C. L. Chuang, On compositions of derivations of prime rings, Proc. Amer. Math. Soc. 108 (1990), 647-652.
- 8. I. N. Herstein, Rings with involution, Univ. of Chicago Press, Chicago, 1976.
- 9. I. N. Herstein, A note on derivation II, Canad. Math. Bull. 22 (1979), 509-511.
- V. K. Kharchenko, Generalized identities with automorphisms, *Algebra i Logika* 14 (1973), 132-148.
- V. K. Kharchenko, Differential identities of prime rings, Algebra i Logika 17 (1978), 155-167 (English translation).
- V. K. Kharchenko, Differential identities of semiprime rings, Algebra i Logika 18 (1979), 58-80 (English translation).
- E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093-1100.

Department of Mathematics, National Taiwan University Taipei, Taiwan 106, R.O.C. E-mail: jcchang@math.ntu.edu.tw