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ON THE IDENTITY h(x) = af(x) + g(x)b

Jui-Chi Chang

Abstract. A description of the generalized (α, β)-derivations f , g and
h of a prime ring R which satisfying h = af + gb is given.

Receently, Bresar [3] gave a description of derivations d, g and h of a prime
ring R satisfying d = ag+hb, where a and b are some fixed noncentral elements
of R. This results generalizes a theorem in Herstein’s paper [9]. Latter on, the
author [6] exteneded this result to (α, β)-derivations, the result we obtained
generalizes several results simultaneously. In this note we will extend this re-
sult further to the so-called generalized (α, β)-derivations which are motivated
by the same paper [3].

Throughout, R will be a prime ring with center Z, Q will denote the two
sided Martindale quotient ring of R and C will be the extended centroid of R.
Also, α and β will be the automorphisms of R. Recall that an additive mapping
δ : R → R is said to be an (α, β)-derivation if δ(xy) = δ(x)α(y) + β(x)δ(y)
for all x, y ∈ R. A typical (α, β)-derivation is so-called inner (α, β)-derivation
defined by δ(x) = aα(x)− β(x)a for all x ∈ R, where a ∈ R.

We begin with a definition.

Definition 1. Let R be a ring, α and β automorphisms of R and δ an
(α, β)-derivation of R. An additive mapping f : R → R is said to be a right
generalized (α, β)-derivation of R associated with δ if

(1) f(xy) = f(x)α(y) + β(x)δ(y) for all x, y ∈ R

and f is said to be a left generalized (α, β)-derivation of R associated with δ
if

(2) f(xy) = δ(x)α(y) + β(x)f(y) for all x, y ∈ R
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f is said to be a generalized (α, β)-derivation of R associated with δ if it is
both a left and right generalized (α, β)-derivation of R associated with δ.

Note that if R is a prime ring then any generalized (α, β)-derivation f of
R is associated with a unique (α, β)-derivation δ. Also note that any (α, β)-
derivation of R is clearly a generalized (α, β)-derivation. The following ex-
ample gives us left(right) generalized (α, β)-derivations other than generalized
(α, β)-derivations.

Example 1. Let a, b ∈ R be such that one of them is not zero and let
α, β ∈ Aut(R), the group of automorphisms of R. Define

f(x) = aα(x) + β(x)b for all x ∈ R

Then for x, y ∈ R, we have f(x + y) = f(x) + f(y) and

f(xy)= aα(xy) + β(xy)b

= aα(x)α(y) + β(x)β(y)b

= (aα(x) + β(x)b)α(y) + β(x)(−bα(y)− β(y)(−b))

That is, f is a right generalized (α, β)-derivation associated with δ1, where
δ1(x) = −bα(x)− β(x)(−b) for all x ∈ R. We also have

f(xy)= aα(xy) + β(xy)b

= aα(x)α(y) + β(x)β(y)b

= (aα(x)− β(x)b)α(y) + β(x)(aα(y) + β(y)b)

That is, f is also a left generalized (α, β)-derivation associated with δ2, where
δ2(x) = aα(x) − β(x)a for all x ∈ R. In general, it may not be true that
δ1 = δ2, that is, f may not be a generalized (α, β)-derivation associated with
δ1 or δ2. However, we have the following

Lemma 1. Let R be a prime ring and let f be as in example 1. Then
f is a generalized (α, β)-derivation of R associated with δ = δ1 = δ2 if and
only if either a + b = 0, or a + b is intertible in Q and α−1β(x) = (α−1(a +
b))−1xα−1(a + b) for all x ∈ R.

Proof. From example 1, it is easy to see that f is a generalized (α, β)-
derivation if and only if δ1 = δ2. The latter says that −bα(x) + β(x)b =
aα(x) − β(x)a for all x ∈ R. Hence (a + b)α(x) = β(x)(a + b) and thus
α−1(a + b)x = α−1β(x)α−1(a + b) for all x ∈ R. If a + b 6= 0, then by
[10;p.136], α−1(a+b) and hence a+b is intertible in Q and α−1β(x) = α−1(a+
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b)x(α−1(a + b))−1 for all x ∈ R. Conversely, if a + b = 0, then b = −a
and f(x) = aα(x) + β(x)b = aα(x) − β(x)a is an (α, β)-derivation of R. If
α−1β(x) = α−1(a + b)x(α−1(a + b))−1 for all x ∈ R, then (a + b)α(x) =
β(x)(a + b) and δ1(x) = −bα(x) − β(x)(−b) = aα(x) − β(x)α = δ2(x) for all
x ∈ R. Hence f is a generalized (α, β)-derivation associated with δ = δ1 = δ2.

Let us examine the previous example f(x) = aα(x) + β(x)b more closely.
We can rewrite f into the form f(x) = (a + b)α(x) + δ1(x) = β(x)(a + b) +
δ2(x), where δ1(x) = −bα(x) − β(x)(−b) and δ2(x) = aα(x) − β(x)a. On
the other hand, since any automorphism of a prime ring R can be uniquely
extended to both left and right Martindale quotient rings of R, we see that
f(x) = aα(x) + β(x)b can also be uniquely extended to both left and right
Martindale quotient rings of R. Moreover, we have f(1) = a + b and f(x) =
f(1)α(x) + δ1(x) = β(x)f(1) + δ2(x). In general, we have

Lemma 2. Let R be a prime ring. If f is a left (right resp.) general-
ized (α, β)-derivation of R, then f can be uniquely extended to the left (right
resp.) Martindale quotient ring RF (FR resp.) of R and f(x) = β(x)f(1)+δ(x)
(f(x) = f(1)α(x) + δ(x) resp.) for all x ∈ R, where δ is an (α, β)-derivation
of R.

Proof. Assume that f is a left generalized (α, β)-derivation associated
with δ. Let T (x) = f(x) − δ(x). Then T (xy) = f(xy) − δ(xy) = δ(x)α(y) +
β(x)f(y) − (δ(x)α(y) + β(x)δ(y)) = β(x)(f(y) − δ(y)) = β(x)T (y) for all x,
y ∈ R. For s ∈RF , there exists an ideal Is of R such that Iss ∈ R. Then T
can be uniquely extended to RF by the rule T (is) = β(i)T (s) for all i ∈ Is.
Since f(x) = T (x) + δ(x) for all x ∈ R and δ can be uniquely extended
to RF , we conclude that f can be uniquely extended to RF . Moreover, we
have f(x) = f(x · 1) = δ(x)α(1) + β(x)f(1)= β(x)f(1) + δ(x) for all x ∈ R.
Similarly, every right generalized (α, β)-derivation associated with δ can be
uniquely extended to FR and f(x) = f(1)α(x) + δ(x) for all x ∈ R.

Remark. (1) A left (right resp.) generalized (α, β)-dervation f of a prime
ring R is associated with a unique (α, β)-derivation δ.

(2) A left (right resp.) generalized (α, β)-derivation f of a prime ring R
can be extended to Q if and only if f(1) ∈ Q.

We can sharpen the previous lemma little bit when f is a generalized
(α, β)-derivation associated with δ.

Lemma 3. Let R be a prime ring. Then f is a generalized (α, β)-
derivation of R associated with δ if and only if one of the following holds:
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(i) f(x) = δ(x) for all x ∈ R

(ii) f(x) = f(1)α(x) + δ(x) = β(x)f(1) + δ(x) for all x ∈ R, where f(1) is
invertible in Q and βα−1(x) = f(1)xf(1)−1 for all x ∈ R.

Proof. If f is a generalized (α, β)-derivation of R associated with δ, then
as a right generalized (α, β)-derivationof R, we have f(x) = sα(x) + δ(x) for
all x ∈ R, where s = f(1) ∈ FR. On the other hand, as a left generalized
(α, β)-derivation of R, we have f(xy) = δ(x)α(y) + β(x)f(y) for all x, y ∈
R. Subsititute f(y) = sα(y) + δ(y) and f(xy) = sα(xy) + δ(xy) into the
last equation, we obtain sα(x)α(y) = β(x)sα(y)for all x, y ∈ R. Therefore,
sα(x) = β(x)s for all x ∈ R and hence s ∈ Q. If s = 0, then f(x) = δ(x) for all
x ∈ R. If s 6= 0, then sx = β(α−1(x))s for all x ∈ R. Hence β(α−1(x)) = sxs−1

for all x ∈ R by [10; p136]. Since sα(x) = β(x)s for all x ∈ R, we also have
f(x) = β(x)s + δ(x) = β(x)f(1) + δ(x) for all x ∈ R.

The converse is obvious.

Definition 2. We say a generalized (α, β)-derivation of a prime ring R
association with δ is proper if f 6= δ.

Let δ 6= 0 be an (α, β)-derivation of a prime R and let a ∈ R. It is shown in
[5] that if aδ(x) = 0 (δ(x)a = 0) then a = 0. In the following lemma we show
that this is still true for any nonzero generalized (α, β)-derivation associated
with δ.

Lemma 4. Let f 6= 0 be a generalized (α, β)-derivation of a prime ring
R associated with δ and let a ∈ R.

(i) if af(x) = 0 for all x ∈ R, then a = 0

(ii) if f(x)a = 0 for all x ∈ R, then a = 0.

Proof. (i) If af(x) = 0 for all x ∈ R, then 0 = af(xy) = a(f(x)α(y) +
β(x)δ(y)) = αβ(x)δ(y) for all x, y ∈ R. Assume on the contrary that a 6= 0.
Then since R is prime and β is an automorphism, δ(y) = 0 for all y ∈ R.
On the other hand, we also have 0 = af(xy) = a(δ(x)α(y) + β(x)f(y)) =
αβ(x)f(y) for all x, y ∈ R. Hence f(y) = 0 for all y ∈ R which is contrary to
the hypothesis. This completes the proof of (i).

The proof of (ii) is similar.

Note that Lemma 4 does not hold for neither left nor right generalized
(α, β)-derivation. Indeed, we have the following examples.
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Example 3. Let R = M2(F ). Let a =
(

0 −1
0 0

)
, b = s =

(
0 1
1 0

)
=

s−1 and c =
(

1 0
0 0

)
. Then c(a+b) =

(
1 0
0 0

)(
0 0
1 0

)
= 0. Now, define

f(x) = ax + s−1xsb for all x ∈ R. Then f(x) = ax + bx = (a + b)x for all
x ∈ R. Clearly, cf(x) = c(a + b)x = 0 for all x ∈ R. But, c 6= 0. Similarly, if
let g(x) = bs−1xs + xa for all x ∈ R, then g(x) = x(a + b) for all x ∈ R. Now

let e =
(

0 0
0 1

)
. Then e 6= 0 but g(x)e = 0 for all x ∈ R.

Now we come to our main theorem

Theorem 1. Let R be a prime ring, and let f, g and h be the generalized
(α, β)-derivations of R associated with γ, δ and τ respectively. Assume that
there exists a, b ∈ Q \ C such that

(6) h(x) = af(x) + g(x)b for all x ∈ R.

If either f 6= 0 or g 6= 0, then there exists s ∈ Q such that sα(x)s−1 = β(x)
for all x ∈ R and one of the following holds:

(i) f(x) = sα(x), g(x) = sα(x) and h(x) = asα(x) + β(x)sb for all x ∈ R,
where as + sb = s or 0.

(ii) f(x) = s[b, α(x)], g(x) = [a, β(x)]s and h(x) = s[s−1asb, α(x)] for all
x ∈ R.

(iii) f(x) = sα(x) + ηs[b, α(x)], g(x) = sα(x) + η[a, β(x)]s and h(x) =
s[ηs−1asb− b, α(x)] for all x ∈ R, where as + sb = 0, η ∈ C.

(iv) f(x) = sα(x)+ηs[b, α(x)], g(x) = sα(x)+η[a, β(x)]s and h(x) = sα(x)+
s[ηs−1asb− b, α(x)] for all x ∈ R, where as + sb = s, η ∈ C.

Proof. If f and g are all (α, β)-derivation, then (ii) holds by Theorem 1
in [6]. So we may assume that either f or g is a proper generalized (α, β)-
derivation.

Substituting xy for x into (6), we have af(x)α(y)+aβ(x)γ(y)+g(x)α(y)b+
β(x)δ(y)b = h(x)α(y) + β(x)τ(y) = af(x)α(x) + g(x)bα(y) + β(x)τ(y). Hence

(7) [a, β(x)]γ(y) + g(x)[α(y), b] = β(x)(τ(y)− aγ(y)− δ(y)b) for all x, y ∈ R.

Using Lemma 3 and the hypothesis h = af + gb, we can rewrite (7) into the
following form

(8) [a, β(x)]γ(y) + δ(x)[α(y), b] = β(x)Aα(y) for all x, y ∈ R.
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where A is one of the values in {as + sb− s, as + sb, as− s, sb− s, as, sb,−s}.
Substituting yz for y into (8), the left hand side of (8) becomes

[a, β(x)]γ(yz) + δ(x)[α(yz), b]

= [a, β(x)](γ(y)α(z) + β(y)γ(z)) + δ(x)[α(y)α(z), b]

= [a, β(x)]γ(y)α(z) + [a, β(x)]β(y)γ(z) + δ(x)[α(y), b]α(z) + δ(x)α(y)[α(z), b]

= ([a, β(x)]γ(y) + δ(x)[α(y), b])α(z) + [a, β(x)]β(y)γ(z) + δ(x)α(y)[α(z), b]

= β(x)Aα(y)α(z) + [a, β(x)]β(y)γ(z)− δ(x)α(y)[b, α(z)].

Also the right hand side of (8) becomes β(x)Aα(y)α(z). Therefore, we have

(9) [a, β(x)]β(y)γ(z) = δ(x)α(y)[b, α(z)] for all x, y, z ∈ R.

Form (9), it is easy to see that γ = 0 if and only if δ = 0. So, if g = 0
then δ = 0 and hence γ = 0. But, by the hypothesis f 6= 0, hence f = sα by
Lemma 3. By (7), we have β(x)τ(y) = 0 for all x, y ∈ R. Therefore, τ(x) = 0
and h(x) = af(x) = asα(x) for all x ∈ R. By Lemma 3, we have as = s,
which is not the case. So g 6= 0. Similiarly, using an analogue of (7), we can
show that f 6= 0. Therefore, f 6= 0 and g 6= 0.

The last paragraph tells us that either both f and g have zero (α, β)-
derivations or both f and g have nonzero (α, β)-derivations. Suppose both f
and g having zero (α, β)-derivations, then f = sα = g and sα = βs by Lemma
3. Therefore h = af + gb = asα + sαb = asα + βsb. Since h is a generalized
(α, β)-derivations, we must have as + sb = s or 0 by Lemma 1 and Lemma 3.
Hence (i) holds. Now suppose that f and g have nonzero (α, β)-derivations.
Applying α−1 on each term of (9), we have

(10)
α−1([a, β(x)])α−1β(y)α−1γ(z)

= α−1δ(x)yα−1([b, α(z)]) for all x, y, z ∈ R.

Since either f or g is a proper generalized (α, β)-derivations, α−1β is Q-inner
by Lemma 3. In fact, α−1β(x) = txt−1 for all x ∈ R, where t = α−1(s) and
sα = βs. Substituting this into (10), we have

(11)
α−1([a, β(x)])tyt−1α−1γ(z)

= α−1δ(x)yα−1([a, α(z)]) for all x, y, z ∈ R.

By a similar argument as we did before (e.g. [6]), there exists λ ∈ C such that
α−1δ(x) = λα−1([a, β(x)])t and t−1α−1γ(z) = λα−1([b, α(z)]) for all x, z ∈ R.
Therefore δ(x) = [a, β(x)]ηs, γ(x) = ηs[b, α(x)] for all x ∈ R, where η = α(λ).
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Subsituting γ(y) = ηs[b, α(y)] and δ(x) = [a, β(x)]ηs into (8), we have
β(x)Aα(y) = 0 for all x, y ∈ R and hence A = 0. Since A must be one of the
values in {as + sb− s, as + sb, as− s, sb− s, as, sb,−s}, it follows that either
as+sb−s = 0 or as+sb = 0. If as+sb−s = 0, then f(x) = sα(x)+ηs[b, α(x)],
g(x) = sα(x) + [a, β(x)]ηs and h(x) = asα(x) + sα(x)b + aηs[b, α(x)] +
[a, β(x)]ηsb = sα(x) − sbα(x) + sα(x)b + ηas[b, α(x)] + η[s−1as, α(x)]b =
sα(x) − s[b, α(x)] + ηs[s−1asb, α(x)] = sα(x) + s[ηs−1asb − b, α(x)] for all
x ∈ R. If as + sb = 0, then f(x) = sα(x) + ηs[b, α(x)], g(x) = sα(x) +
η[a, β(x)]s and h(x) = asα(x)+sα(x)b+ηas[b, α(x)]+η[a, β(x)]sb =−sbα(x)+
sα(x)b+ηss−1as[b, α(x)]+ηs[s−1as, α(x)]b = −s[b, α(x)]+s[ηs−1asb, α(x)] =
s[ηs−1asb − b, α(x)] for all x ∈ R. Therefore, either (iii) or (iv) holds. This
completes the proof of Theorem 1.

One should note that if there exists s ∈ Q such that sα(x)s−1 = β(x) for
all x ∈ R and one of (i), (ii), (iii), (iv) holds, then h(x) = af(x)+ g(x)b for all
x ∈ R.

As a corollary, we have

Corollary 1. Let R be a prime ring, f and g generalized (α, β)-derivations
of R associated with γ and δ respectively. Assume that there exists a, b ∈ Q\C
such that af(x)+ g(x)b = 0 for all x ∈ R. If either f 6= 0 or g 6= 0, then there
exists s ∈ Q such that sα(x)s−1 = β(x) for all x ∈ R and one of the following
holds:

(i) f(x) = s[b, α(x)], g(x) = [a, β(x)]s for all x ∈ R and s−1asb ∈ C
(β−1(a)α−1(b) ∈ C).

(ii) f(x) = sα(x) + ηs[b, α(x)], g(x) = sα(x) + η[a, β(x)]s for all x ∈ R,
as + sb = 0 and ηsas−1b− b ∈ C(λβ−1(a)α−1(b)− b ∈ C).

Proof. This is a consequence of Theorem 1.

Corollary 2. Let R be a prime ring, f a nonzero generalized (α, β)-
derivations of R associated with δ. Let a ∈ Q\C be such that [a, f(x)] = 0 for
all x ∈ R. Then there exists s ∈ Q such that sα(x)s−1 = β(x) for all x ∈ R
and one of the following holds:

(i) f(x) = [a, β(x)]s for all x ∈ R, a + sas−1 ∈ C and s−1asa ∈ C.

(ii) Char R = 2, f(x) = sα(x) + ηs[a, α(x)] for all x ∈ R, [a, s] = 0 and
ηa2 + a ∈ C.

Proof. We can appeal to corollary 1 with b = −a and g = f . If Corollary 1
(i) holds, then f(x) = [a, β(x)]s = s[−a, α(x)] = [−sas−1, β(x)]s for all x ∈ R
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since sα(x)s−1 = β(x) for all x ∈ R. Therefore, [a + sas−1, β(x)] = 0 for all
x ∈ R. Hence a + sas−1 ∈ C. Also, s−1asa ∈ C.

If Corollary 1 (ii) holds, then f(x) = sα(x) + ηs[−a, α(x)] = sα(x) +
ηs[s−1as, α(x)] for all x ∈ R since sα(x)s−1 = β(x) for all x ∈ R. Therefore
[a + s−1as, α(x)] = 0 for all x ∈ R, and hence a + s−1as ∈ C. On the
other hand, we also have as − sa = 0 by Corollary 1 (ii). Hence 2a ∈ C.
If Char R 6= 2, then a ∈ C which is not the case. So Char R = 2. Since
ηsas−1a+a ∈ C and since as = sa, we have, ηa2 +a ∈ C. This completes the
proof.

Sharpen Corollary 2, we have

Corollary 3. Let R be a prime ring of characteristic not two and let f
be a nonzero proper generalized (α, β)-derivations of R. If a ∈ R is such that
[a, f(x)] = 0 for all x ∈ R, then a ∈ Z.

Note that Corollary 3 is no longer true if f is just merely a left (right)
generalized (α, β)-derivation of R. In fact, we have the following example.

Example 4. Let R = M2(F ), where F is a field with Char F 6= 2. Let

a = b = c =
(

0 1
0 0

)
.

Define f(x) = ax + xb for all x ∈ R. Then f(x) = (a + b)x + [x, b]
is not a generalized (1, 1)-derivation since (a + b) is a nonzero divisor in R.
However, f is a right generalized (1, 1)-derivation associated with d−b, where
d−b(x) = [−b, x]. Clearly, c /∈ Z and [c, f(x)] = 0 for all x ∈ R.

For the next result, we need a lemma.

Lemma 5. Let f be a nonzero proper generalized (α, β)-derivation of a
prime ring R with ceter Z. If f(x) ∈ Z for all x ∈ R, then R is commutative.

Proof. For x ∈ R and z ∈ Z, we have f(xz) = f(x)α(z) + β(x)δ(z).
Since f(x) ∈ Z for all x ∈ R, we have β(x)δ(z) ∈ Z for all x ∈ R and for
all z ∈ Z. Therefore, yδ(z) ∈ Z. If δ(z) 6= 0 for some z ∈ Z, then R is
commutative and we are done. So, we may assume that δ(Z) = 0. By Lemma
3, f(x) = sα(x) + δ(x) for all x ∈ R. Therefore, f(z) = sα(z) ∈ Z for all
z ∈ Z. In particular, s ∈ C and α = β.

If δ = 0, then f(x) = sα(x) ∈ Z for all x ∈ R and hence R is commutative.
So we have assume that δ 6= 0. Commute f(x) with α(x), we get [δ(x), α(x)] =
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0 for all x ∈ R and hence [α−1(δ(x)), x] = 0 for x ∈ R. Since α = β, α−1δ is
a derivation. By [13], R is commutative.

Note that Lemma 5 still holds for left (right) generalized (α, β)-derivations,
but its proof is little bit harder than that of Lemma 5. We will prove it latter.

Combine Corollary 3 and Lemma 5, we have

Corollary 4. Let R be a prime ring of characteristic not two and let f
be a nonzero proper generalized (α, β)-derivation of R. If [f(x), f(y)] = 0 for
all x, y ∈ R, then R is commutative.

As usual, we can extend Corollary 3 and Corollary 4 in the following way.

Theorem 2. Let R be a prime ring of characteristic not two and let f
be a nonzero proper generalized (α, β)-derivation of R. If a ∈ R is such that
[a, f(x)] ∈ Z for all x ∈ R, then a ∈ Z.

Proof. Assume that f is a nonzero proper generalized (α, β)-derivation
associated with δ. By Lemma 3, f(x) = sα(x) + δ(x) for all x ∈ R. If δ = 0,
then f(x) = sα(x) for all x ∈ R. By the hypothesis, [a, sα(x)] ∈ Z for all
x ∈ R. But since sα(R) is an ideal of R, so a ∈ Z. So we may assume
that δ 6= 0. Since α−1β(x) = txt−1 for all x ∈ R, it follows easily that
α−1δ(x) = td(x) for all x ∈ R, where d is a derivation of Q and d(I) ⊂ R for
some nonzero ideal I of R. Hence α−1f(x) = tx + td(x) for all x ∈ R. By
hypothesis, we have

(12) [[b, tx + td(x)], y] = 0 for all x, y ∈ R

where b = α−1(a). If d is Q-inner, that is, there exists c ∈ Q such that
d(x) = cx−xc for all x ∈ Q, then by Theorem 2 in [1], we have from (12) that

[[b, tx + t(cx− xc)], y] = 0

for all x, y ∈ Q. So without loss of generality, we may assume that t, c ∈ R, t
is invertible in R and

(13) [[b, tx + t(cx− xc)], y] = 0 for all x, y ∈ R.

Substitute 0 6= x = z ∈ Z into (13), we have [b, t] ∈ Z. Substitute x = cz
into (13), where 0 6= z ∈ Z, then we have [b, tc] ∈ Z. Since [t, [b, tc]] = 0 and
[tc, [t, b]] = 0, we also have [b, t[c, t]] = [b, [tc, t]] = 0. Now substitute x = t
into (13), then we have [b, t2] = t[b, t] + [b, t]t = 2t[b, t] ∈ Z. Hence [b, t] = 0
since Char R 6= 2. Therefore, t[b, x + (cx− xc)] ∈ Z for all x ∈ R. Substitute
x = c2 into (13), then we have [b, tc2] = [b, tc]c+tc[b, c] = c[b, tc]+tct−1[b, tc] =
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(c+ tct−1)[b, tc] ∈ Z and hence we have either c+ tct−1 ∈ Z or [b, tc] = 0 since
[b, tc] ∈ Z. If c + tct−1 ∈ Z, then 0 = [b, c + tct−1] = t−1[b, tc] + [b, tc]t−1 =
2t−1[b, tc]. Since Char R 6= 2, we have [b, tc] = 0. So we can conclude that
[b, tc] = 0. Now replace x by cx in (13), we get [b, tcx+ tc(cx−xc)] = tc[b, x+
(cx−xc)] ∈ Z for all x ∈ R. Since tct−1[b, x+(cx−xc)] = tc[b, x+(cx−xc)] ∈ Z
for all x ∈ R and since t[b, x + (cx − xc)] ∈ Z for all x ∈ R, we have either
tct−1 ∈ Z or t[b, x+(cx−xc)] = [b, tx+t(cx−xc)] = 0. If tct−1 ∈ Z, then c ∈ Z
and hence d(x) = 0 for all x ∈ R. Therefore, δ(x) = 0 for all x ∈ R which is
not the case. If [b, tx+ t(cx−xc)] = 0 for all x ∈ R, then [a, sα(x)+ δ(x)] = 0
for all x ∈ R and hence a ∈ Z by Corollary 3. So we may assume that d
is Q-outer. In this case, we have [[b, tx + td(x)], y] = 0 for all x, y ∈ Q by
[12, Remark; p.14] and by [7, Theorem 1]. By a result of Kharchenko [11],
[[b, tx + tw], y] = 0 for all x, w, y ∈ R. In particular, [b, x] ∈ C for all x ∈ Q.
Hence again a = α(b) ∈ Z.

As a Corollary, we have

Corollary 5. Let R be a prime ring of characteristic not two and let f
be a nonzero proper generalized (α, β)-derivation of R. If [f(x), f(y)] ∈ Z for
all x, y ∈ R, then R is commutative.

ACKNOWLEDGEMENT

The author wishes to thank the referee for his valuable suggestions.

REFERENCES

1. K. I. Beider, Rings with generalized identities III, Vesten. Mosk. Gos. Univ.
4 (1978), 66-73.
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