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MULTIPLICATIVE RENORMALIZATION
AND GENERATING FUNCTIONS I.

Nobuhiro Asai, Izumi Kubo and Hui-Hsiung Kuo

Abstract. Let µ be a probability measure on the real line with fi-
nite moments of all orders. Apply the Gram-Schmidt orthogonalization
process to the system {1, x, x2, . . . , xn, . . .} to get orthogonal polynomials
Pn(x), n ≥ 0, which have leading coefficient 1 and satisfy (x−αn)Pn(x) =
Pn+1(x) + ωnPn−1(x). In general it is almost impossible to use this pro-
cess to compute the explicit form of these polynomials. In this paper we
use the multiplicative renormalization to develop a new method for deriv-
ing generating functions for a large class of probability measures. From
a generating function for µ we can compute the orthogonal polynomials
Pn(x), n ≥ 0. Our method can be applied to derive many classical poly-
nomials such as Hermite, Charlier, Laguerre, Legendre, Chebyshev (first
and second kinds), and Gegenbauer polynomials. It can also be applied
to measures such as geometric distribution to produce new orthogonal
polynomials.

1. INTRODUCTION

Let µ be a probability measure on R with finite moments of all orders. Ap-
ply the Gram-Schmidt orthogonalization process to the sequence {1, x, x2, . . . , xn, . . .}
to get a sequence {Pn(x);n = 0, 1, 2, . . .} of orthogonal polynomials in L2(µ).
Here P0(x) = 1 and Pn(x) is a polynomial of degree n with leading coefficient
1. It is well-known that these polynomials Pn’s satisfy the recursion formula:

(1.1) (x− αn)Pn(x) = Pn+1(x) + ωnPn−1(x), n ≥ 0,

where αn ∈ R, ωn ≥ 0 for n ≥ 0 and P−1 = 0 by convention. The numbers αn

and ωn are called Szegö-Jacobi parameters of µ.
0Received April 15, 2000; revised May 4, 2002.

Communicated by Y. J. Lee.
2000 Mathematics Subject Classification: 33C45.
Key words and phrases: Orthogonal polynomials, Generating functions, Szegö-Jacobi pa-
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A generating function for the polynomials {Pn} is a function of the form

(1.2) ψ(t, x) =
∞∑

n=0

anPn(x)tn,

where an’s are constants. There is an enormous amount of literature on or-
thogonal polynomials and generating functions, see for example the books [6,
7, 9, 11].

Given such a probability measure µ, the computation of polynomials Pn’s
by using the Gram-Schmidt orthogonalization process is in fact impractical
and very hard, if not impossible. On the other hand, suppose we have a
generating function ψ(t, x) for µ like in Equation (1.2). Then by expanding
ψ(t, x) as a power series in t we can easily compute the polynomials {Pn}.
This leads to the following question.

Question 1: Given a probability measure µ with finite moments of all
orders, how to find a corresponding generating function ψ(t, x) for µ?

The key point in this question is to derive ψ(t, x) directly from µ and then
use the resulting function ψ(t, x) to compute the polynomials Pn’s. Although
this question sounds quite natural, we have not been able to find in the lit-
erature any explicit discussion of this question. The purpose of this paper is
to give a method which can be used to derive generating functions for a large
class of such probability measures.

In Section 2 we will give two simple examples to explain our ideas. These
examples lead to Question 2 below for a general probability measure. In
Section 3 we will provide answers to these two questions and work out more
examples. The details and further results, e.g., the computation of the Szegö-
Jacobi parameters αn and ωn in Equation (1.1), will appear in Part II [5] of
this paper.

Our present work is motivated by applications in interacting Fock spaces
and the associated Segal-Bargmann transforms. See the recent papers [1, 2,
3, 4].

2. TWO SIMPLE EXAMPLES

Let µσ2 be the Gaussian measure with mean 0 and variance σ2, i.e.,

dµσ2(x) =
1√
2πσ

e−
x2

2σ2 dx.
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Consider the exponential function

(2.1) etx =
∞∑

n=0

tn

n!
xn.

Regard x as a random variable with distribution µσ2 and take the expectation

Exetx = e
1
2
σ2t2 .

The quotient etx/Exetx is the multiplicative renormalization of etx. In the
right hand side of Equation (2.1), take term by term renormalization. Then
we get

(2.2) etx− 1
2
σ2t2 =

∞∑

n=0

tn

n!
:xn :σ2 .

where :xn :σ2 denotes the “renormalization” of xn with respect to the measure
µσ2 . The left hand side of Equation (2.2) can easily be expanded as a power
series in t and the coefficient of tn is given by

(2.3)
[n/2]∑

k=0

1
2kk!(n− 2k)!

(−σ2)kxn−2k.

It follows from Equations (2.2) and (2.3) that the renormalization : xn :σ2 is
given by

:xn :σ2=
[n/2]∑

k=0

n!
2kk!(n− 2k)!

(−σ2)kxn−2k.

Thus : xn :σ2 is exactly the Hermite polynomial Hn(x; σ2) of degree n with
parameter σ2 as defined by

Hn(x; σ2) = (−σ2)nex2/2σ2
Dn

xe−x2/2σ2
.

(See [6] or page 354 in [10].) This idea of renormalization was originally
introduced by Hida in [8] for defining generalized white noise functionals.

In order to demonstrate the above idea more clearly, we give another ex-
ample. Let µλ be the Poisson measure with parameter λ > 0, i.e.,

µλ({k}) = e−λ λk

k!
, k = 0, 1, 2, . . . .

Consider the binomial series

(2.4) (1 + t)x =
∞∑

n=0

tn

n!
px,n, |t| < 1,
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where px,0 = 1 and px,n = x(x − 1) · · · (x − n + 1) for n ≥ 1. Regard x as a
random variable with distribution µλ and take the expectation

Ex(1 + t)x = eλt.

Then take the multiplicative renormalization (1 + t)x/Ex(1 + t)x as above to
get

(2.5) e−λt(1 + t)x =
∞∑

n=0

tn

n!
:px,n :λ,

where : px,n :λ denotes the “renormalization” of px,n with respect to µλ. By
comparing the coefficients of tn in both sides of Equation (2.5) we see that
:px,n :λ is given by

:px,n :λ =
n∑

k=0

(
n

k

)
(−λ)n−kpx,k.

Thus : px,n :λ is exactly the Charlier polynomial Cn(x; λ) of degree n with
parameter λ as defined by

Cn(x; λ) = (−1)nλ−xΓ(x + 1)∆n

[
λx

Γ(x− n + 1)

]
,

where ∆ is the difference operator ∆f(x) = f(x + 1) − f(x) and Γ(x) is the
Gamma function (See pages 160 and 170 in [6].)

From the above examples we see that the Hermite and Charlier polynomials
can be computed from the generating functions in Equations (2.2) and (2.5),
respectively. Moreover, these two generating functions are derived in the same
way through the multiplicative renormalization, i.e., dividing a function of t
and x by its expectation with respect to the variable x. But then we have the
following crucial question.

Question 2: How to find the functions etx and (1 + t)x in Equations
(2.1) and (2.4)? In general, given µ, how to find a function ϕ(t, x) such that
the multiplicative renormalization ψ(t, x) = ϕ(t, x)/Exϕ(t, x) is a generating
function for µ?

3. THEOREM AND MORE EXAMPLES

We first address Question 1 in Section 1. The answer is given in the
following theorem.
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Theorem 3.1. Let µ be a probability measure on R with finite moments
of all orders. Suppose ϕ(t, x) is a function of t and x given by

(3.1) ϕ(t, x) =
∞∑

n=0

gn(x)tn,

where gn(x) is a polynomial of degree n satisfying the condition

lim sup
n→∞

‖gn‖1/n
L2(µ)

< ∞.

Let ψ(t, x) be the multiplicative renormalization of ϕ(t, x), i.e.,

(3.2) ψ(t, x) =
ϕ(t, x)

Exϕ(t, x)
,

where Ex denotes the expectation in the x-variable with distribution µ. Assume
that Exψ(t, x)ψ(s, x) is a function of ts. Then the series expansion of ψ(t, x)

(3.3) ψ(t, x) =
∞∑

n=0

Qn(x)tn

is a generating function for µ, i.e., Qn is a polynomial of degree n for n ≥ 0
and Qn’s are orthogonal in L2(µ). For each n, Qn is a linear combination of
g0, g1, g2, . . . , gn.

The proof of this theorem will be given in Part II [5] of this paper. Below
we will give several examples to demonstrate this theorem.

Next, we address Question 2 in Section 2, namely, how to find the function
ϕ(t, x) in Theorem 3.1? In this paper, we will consider two types of functions
of the following forms

(3.4) ϕ(t, x) = eρ(t)x =
∞∑

n=0

1
n!

(
ρ(t)x

)n
,

(3.5) ϕ(t, x) =
(
1− ρ(t)x

)c =
∞∑

n=0

(
c

n

)
(−1)n

(
ρ(t)x

)n
,

where the function ρ(t) and constant c are to be determined by the condi-
tion that Exψ(t, x)ψ(s, x) is a function of ts as stated in Theorem 3.1. The
types of functions in Equations (3.4) and (3.5) can be used to derive gener-
ating functions for measures associated with classical orthogonal polynomials
such as Hermite, Charlier, Laguerre, Legendre, and Gegenbauer polynomials
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(including the special cases of Chebyshev polynomials of the first and sec-
ond kind). In addition, we can use our method to find a generating function
for the geometric distribution and thus obtain the corresponding orthogonal
polynomials, which to our best knowledge are new in the literature.

Example 3.2. Gaussian measure and Hermite polynomials.

Let µ be the Gaussian measure with mean 0 and variance σ2. Try the type
of function in Equation (3.4)

ϕ(t, x) = eρ(t)x.

For this function the corresponding function ψ(t, x) in Equation (3.2) is given
by

ψ(t, x) = e−
1
2
σ2ρ(t)2+ρ(t)x.

Then Exψ(t, x)ψ(s, x) is easily checked to be

Exψ(t, x)ψ(s, x) = eσ2ρ(t)ρ(s).

In order for Exψ(t, x)ψ(s, x) to be a function of ts, the function ρ(t) must be
given by ρ(t) = atb. Choose a = b = 1 so that ρ(t) = t, which gives ϕ(t, x)
and the generating function ψ(t, x) as follows:

ϕ(t, x) = etx,

ψ(t, x) = etx− 1
2
σ2t2 =

∞∑

n=0

tn

n!
Hn(x; σ2),

where Hn(x; σ2) is the Hermite polynomial of degree n with parameter σ2.

Example 3.3. Poisson measure and Charlier polynomials.

Let µ be the Poisson measure with parameter λ > 0. Try the type of
function in Equation (3.4)

ϕ(t, x) = eρ(t)x.

The corresponding function ψ(t, x) in Equation (3.2) is given by

ψ(t, x) = eλ(1−eρ(t))eρ(t)x

and we can easily check that

Exψ(t, x)ψ(s, x) = eλ(1−eρ(t))(1−eρ(s)).
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In order for Exψ(t, x)ψ(s, x) to be a function of ts, the function ρ(t) must
be given by 1 − eρ(t) = atb. Hence ρ(t) = log(1 − atb). Choose a = −1 and
b = 1 so that ρ(t) = log(1+ t), which gives ϕ(t, x) and the generating function
ψ(t, x) as follows:

ϕ(t, x) = (1 + t)x,

ψ(t, x) = e−λt(1 + t)x =
∞∑

n=0

tn

n!
Cn(x;λ),

where Cn(x; λ) is the Charlier polynomial of degree n with parameter λ.

Example 3.4. Gamma distribution and Laguerre polynomials.

Let µ be the Gamma distribution with parameter α > −1:

dµ(x) =
1

Γ(α + 1)
xαe−x dx, x > 0.

Try the type of function in Equation (3.4)

ϕ(t, x) = eρ(t)x.

The corresponding function ψ(t, x) in Equation (3.2) is given by

ψ(t, x) =
(
1− ρ(t)

)α+1
eρ(t)x

and so we have

Exψ(t, x)ψ(s, x) =
(

(1− ρ(t))(1− ρ(s))
1− ρ(t)− ρ(s)

)α+1

.

Let ξ(t) = 1− ρ(t). Then

Exψ(t, x)ψ(s, x) =
(

1−
(
1− 1

ξ(t)

)(
1− 1

ξ(s)

))−α−1

.

Thus in order for Exψ(t, x)ψ(s, x) to be a function of ts, ξ(t) must be given
by 1 − 1

ξ(t) = atb. Hence ρ(t) = − atb

1−atb
. Choose a = −1 and b = 1 so that

ρ(t) = t
1+t , which gives ϕ(t, x) and the generating function ψ(t, x) as follows:

ϕ(t, x) = e
tx

1+t ,

ψ(t, x) = (1 + t)−α−1e
tx

1+t =
∞∑

n=0

tn

n!
L(α)

n (x),
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where L(α)
n (x), by the power series expansions of (1+ t)−α−1 and exp[ tx

1+t ], can
be checked to be given by

L(α)
n (x) =

n∑

k=0

(−1)nn!
k!

(
n + α

n− k

)
(−x)k.

This polynomial is related to the classical Laguerre polynomial L
(α)
n by

L(α)
n (x) = (−1)nn!L(α)

n (x),

where L
(α)
n is defined by

L(α)
n =

1
n!

x−αexDn
x [xn+αe−x].

Example 3.5. Uniform distribution and Legendre polynomials.

Let µ be the uniform distribution on the interval [−1, 1]. Try the type of
function in Equation (3.5) with c = −1/2

ϕ(t, x) =
1√

1− ρ(t)x
, |x| ≤ 1.

The corresponding function ψ(t, x) in Equation (3.2) is given by

ψ(t, x) =
ρ(t)√

1 + ρ(t)−
√

1− ρ(t)
1√

1− ρ(t)x
.

We can check that in order for Exψ(t, x)ψ(s, x) to be a function of ts, the
function ρ(t) must be given by

ρ(t) =
2atb

1 + a2t2b
.

Choose a = b = 1 so that ρ(t) = 2t
1+t2

, which gives ϕ(t, x) and the generating
function ψ(t, x) as follows:

ϕ(t, x) =
√

1 + t2√
1− 2tx + t2

,

ψ(t, x) =
1√

1− 2tx + t2
=

∞∑

n=0

(2n− 1)!!
n!

Ln(x)tn,

where k!! = k(k − 2)(k − 4) · · · , (−1)!! = 1 by convention and Ln(x) is given
by

Ln(x) = xn − n(n− 1)
2 · (2n− 1)

xn−2 +
n(n− 1)(n− 2)(n− 3)
2 · 4 · (2n− 1)(2n− 3)

xn−4 ∓ · · · .
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This polynomial is related to the classical Legendre polynomial Ln(x) by

Ln(x) =
n!

(2n− 1)!!
Ln(x),

where Ln(x) is defined by

Ln(x) =
1

2nn!
Dn

x(x2 − 1)n.

Example 3.6. Gegenbauer polynomials.

Let µ be the measure given by

(3.6) dµ(β)(x) =
Γ(β + 1)√
π Γ(β + 1

2)
(1− x2)β− 1

2 dx, |x| < 1,

where β > −1/2. First consider the case β 6= 0. Try the type of function in
Equation (3.5) with c = −β

(3.7) ϕ(t, x) =
1

(1− ρ(t)x)β
.

Let ψ(t, x) = ϕ(t, x)/Exϕ(t, x). Rather tedious calculations can show that in
order for Exψ(t, x)ψ(s, x) to be a function of ts, the function ρ(t) must be
given by

ρ(t) =
2atb

1 + a2t2b
.

Choose a = b = 1 so that ρ(t) = 2t
1+t2

, which gives ϕ(t, x) and the generating
function ψ(t, x) as follows:

ϕ(t, x) =
(1 + t2)β

(1− 2tx + t2)β
,

ψ(t, x) =
1

(1− 2tx + t2)β
=

∞∑

n=0

2nΓ(β + n)
Γ(β)n!

G(β)
n (x)tn,

where G(β)
n (x) can be checked to be given by

G(β)
n (x) = xnF

(
− n

2
,
1− n

2
, 1− n− β;

1
x2

)

with F (α, β, γ; z) being the Gauss hypergeometric series

F (α, β, γ; z) =
Γ(γ)

Γ(α)Γ(β)

∞∑

k=0

Γ(α + k)Γ(β + k)
k!Γ(γ + k)

zk.



98 Nobuhiro Asai, Izumi Kubo and Hui-Hsiung Kuo

The polynomial G(β)
n (x) is related to the classical Gegenbauer polynomial

G
(β)
n (x) by

G(β)
n (x) =

n!Γ(β)
2nΓ(β + n)

G(β)
n (x),

where G
(β)
n (x) is defined by

G(β)
n (x) =

(−1)n

2n

Γ(β + 1
2)Γ(n + 2β)

Γ(2β)Γ(n + β + 1
2)

(1− x2)
1
2
−β

n!
Dn

x

[(
1− x2

)n+β− 1
2

]
.

Note that when β = 1/2, the polynomial G
(1/2)
n (x) is the Legendre polynomial

Ln(x) in Example 3.5. For the special case β = 1, the polynomials G
(1)
n (x),

n ≥ 0, are the Chebyshev polynomials of the second kind.
Now, consider the case β = 0. The measure in Equation (3.6) is given by

dµ(0)(x) =
1
π

1√
1− x2

dx, |x| < 1.

But the above argument using ϕ(t, x) in Equation (3.7) to derive ψ(t, x) breaks
down when β = 0. However, we can try the function ϕ(t, x) =

(
1 − ρ(t)x

)−1

and carry out similar calculation as above to obtain

ϕ(t, x) =
4 + t2

(4− 4tx + t2)
,

ψ(t, x) =
4− t2

(4− 4tx + t2)
=

∞∑

n=0

Tn(x)tn,

where the polynomials Tn(x) are given by

T0(x) = 1,

Tn(x) =
1

2n−1

[n/2]∑

k=0

(−1)k

(
n

2k

)
xn−2k(1− x2)k, n ≥ 1.

These polynomials are related to the classical Chebyshev polynomials Tn(x)
of the first kind by

T0(x) = T0(x) = 1, Tn(x) =
1

2n−1
Tn(x), n ≥ 1,

where Tn(x) is defined by Tn(x) = cos(n arccosx), n ≥ 0.

Eample 3.7. Geometric distribution.
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Let µ be the geometric distribution with parameter 0 < p < 1 given by

µ({n}) = p(1− p)n, n = 0, 1, 2, . . . .

Try the type of function in Equation (3.4) and let θ(t) = eρ(t) so that

ϕ(t, x) = θ(t)x.

The corresponding function ψ(t, x) in Equation (3.2) is given by

ψ(t, x) =
1− qθ(t)

p
θ(t)x,

where q = 1− p. Then we can check that

Exψ(t, x)ψ(s, x) =
q

p

(
1

1− qθ(t)
+

1
1− qθ(s)

− p

(1− qθ(t))(1− qθ(s))
− 1

)−1

.

Observe that

1
1− qθ(t)

+
1

1− qθ(s)
− p

(1− qθ(t))(1− qθ(s))

=
1
p
− p

(
1

1− qθ(t)
− 1

p

)(
1

1− qθ(s)
− 1

p

)
.

Hence in order for Exψ(t, x)ψ(s, x) to be a function of ts, we must have

1
1− qθ(t)

− 1
p

= atb.

Therefore, the function θ(t) is given by

θ(t) =
1 + p

q atb

1 + patb
.

Choose a = q/p and b = 1 so that θ(t) = 1+t
1+qt , which gives ϕ(t, x) and the

generating function ψ(t, x) as follows:

ϕ(t, x) =
(

1 + t

1 + qt

)x

,

ψ(t, x) = (1 + t)x(1 + qt)−x−1.

We can expand the function ψ(t, x) as a power series in t to get

ψ(t, x) =
∞∑

n=0

pn

n!
Pn(x)tn,
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where the polynomial Pn(x) is given by

(3.8) Pn(x) =
n!
pn

n∑

k=0

(
x

k

)(−x− 1
n− k

)
qn−k.

The first few polynomials are given by

P0(x) = 1,

P1(x) = x− q

p
,

P2(x) = x2 − 1 + 3q

p
x + 2

(q

p

)2
,

P3(x) = x3 − 3(1 + 2q)
p

x2 +
2 + 5q + 11q2

p2
x− 6

(q

p

)3
.

Moreover, we have the recursion formula:
(

x− (1 + q)n + q

p

)
Pn(x) = Pn+1(x) +

qn2

p2
Pn−1(x), n ≥ 0.

Thus the Szegö-Jacobi parameters αn and ωn of the geometric distribution µ
in Equation (1.1) are given by

αn =
(1 + q)n + q

p
, ωn =

qn2

p2
.

We need to make a remark about the polynomials Pn’s in Equation (3.8).
As we pointed out in Section 1 that for a given probability measure µ, the com-
putation of the corresponding polynomials Pn’s by using the Gram-Schmidt or-
thogonalization process is impractical and very hard, if not impossible. In the
case of geometric distribution, we do not know how to compute the polynomi-
als Pn’s in Equation (3.8) from the Gram-Schmidt orthogonalization process.
Thus our method of generating functions via the multiplicative renormaliza-
tion seems to be a powerful tool.
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