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SYMPLECTIC SURFACES IN SYMPLECTIC 4-MANIFOLDS

Mi Sung Cho and Yong Seung Cho

Abstract. Let a closed, minimal, symplectic 4-manifold X contain a
symplectic surface F such that the genus g of F is greater than or equal
to one and the value c1(TX)[F ] > g. Then we show that the space X is
rational or ruled.

1. INTRODUCTION

Let X be a closed, connected, minimal symplectic 4-manifold with sym-
plectic form ω. Let F be a symplectic surface in X satisfying c1(TX)[F ] > 0.
In this case McDuff [10] proposed the following problem : Does it follow that
the space X must be rational or ruled? This is true for minimal complex sur-
faces and when F is a rational curve with the intersection number F · F ≥ 0.
Let us introduce a few theorems and use them in the process of proving our
Theorem 1.4.

Theorem 1.1 [1]. If a minimal complex surface X contains a curve C
with c1(C) = −c1(KX) · C > 0, then X is rational or ruled.

Theorem 1.2 [16]. A minimal symplectic 4-manifold (X, ω) which con-
tains a rational curve C with C ·C ≥ 0 is symplectomorphic either to CP2 or
to S2 × S2 with the standard symplectic form.

Remark. McDuff pointed out in [18] that Theorem 1.3 in [16] about
the structure of symplectic S2-bundles needs an extra hypothesis. The argu-
ment which proves uniqueness works only for a restricted range of cohomology
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classes, and the condition a2(V ) > (a(F ))2 need not hold when the base M of
S2-bundle V has genus > 0.

We say that a closed 2-manifold S is positively and symplectically im-
mersed in (X, ω) if it is symplectically immersed (i.e. the restriction of ω to
S does not vanish) and its only singularities are transverse double points of
positive orientation.

In general, the singularities of a J-holomorphic curve need not all be trans-
verse double points. However, it is proved in [15] that any J-holomorphic curve
can be perturbed so that it is positively symplectically immersed in the above
sense. McDuff [16] proved the problem for the case of immersed spheres.

Theorem 1.3 [16].
(1) If a compact symplectic 4-manifold (X, ω) contains a positively symplec-

tically immersed 2-sphere S with c1(S) ≥ 2, then (X,ω) is the blow up
of a rational or ruled manifold.

(2) If S is not embedded, then X is rational.

In this paper, we would like to give the solution, Theorem 1.4, of a re-
stricted version of the problem proposed by McDuff. We introduce, in Section
2, some basic results about J-holomorphic curves in symplectic 4-manifolds, in
Section 3, the Gromov invariant. In section 4, using McDuff’s results and the
Seiberg-Witten and Gromov invariants we will prove the following theorem :

Theorem 1.4. Let X be a closed, connected, minimal symplectic 4-
manifold containing a symplectic surface F with genus g(F ) = g ≥ 1 and
c1(TX)[F ] > g. Then X is rational or ruled.

2. J-HOLOMORPHIC CURVES IN 4-MANIFOLD

In this section, we introduce the basic results about J-holomorphic curves
on symplectic 4-manifolds which we will need later. For the convenience we
will begin with a brief summary of the Gromov’s theory. For more details see
[12, 16, 9].

First recall that an almost complex structure J on a symplectic manifold
(X, ω) is said to be ω-tame if ω is positive on all J-complex line in TX. We
will denote the Sobolev space of all Hs-smooth ω-tame J by J (ω), where s
is suitably large. It is easy to check that J (ω) is nonempty and contractible.
Given a homology class A ∈ H2(X,Z) and an ω-tame J , a parameterized
J-holomorphic A-curve is a map u from a Riemann surface (Σg, j) to (X, J)
which represents the class A, and is J-holomorphic in the sense that du ◦ j =
J ◦ du. We define the moduli space MA,g by setting

MA,g = {(u, j, J) ∈ F × J (Σg)× J (ω) : u is (j, J)− holomorphic},
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where F is a suitable Sobolev space of somewhere injective maps Σg → X,
and J (Σg) is the genus g Teichmüller space. Let PA : MA,g → J (ω) be
the projection defined by (u, j, J) 7→ J , and let Mp(A, J,Jg) be the inverse
image P−1

A (J). Then MA,g is a Hilbert manifold and that the projection
PA : MA,g → J (ω) is Fredholm. For generic J in J (ω), Mp(A, J,J (Σg)) is
a manifold whose dimension is the index of the differential δPA,

ind(δPA) = dimJ (Σg) + 4(1− g) + 2c1(A),

where g = genus(Σg), and c1(A) is the first Chern number of X on A.
The J-holomorphic image C in (X,ω) of a Riemann surface Σg of genus g

must have c1(C) ≥ 1−g, for generic J . Indeed, given K > 0, we define U(K, g)
to be the subset of J (ω) containing of all J such that, for each holomogy class
B such that c1(B) ≤ −g and ω(B) ≤ K, there are no J-holomorphic images
of Σg in the class B. Then U(K, g) is open, dense and path-connected.

Assume that J is C∞. Then the virtual genus g(C) of a closed curve C
is de fined to be the number g(C) = 1 + 1

2(C · C − c1(TX)(C)). If C is an
embedded J-holomorphic curve of a Riemann surface Σ with genus gΣ, the
equalities c1(TX)(C) = [c1(TC) + c1(νC)](C) = 2 − 2gΣ + C · C show that
the virtual genus g(C) equals the genus gΣ of Σ. Let C be a J-holomorphic
image of the closed Riemann surface of Σ with genus gΣ. Then the virtual
genus g(C) is an integer which is greater than or equal to gΣ, with equality if
and only if C is embedded.

3. PSEUDO-HOLOMORPHIC CURVES.

In this section we prove that the moduli space of the pseudo-holomorphic
curves is compact whenever suitable assumptions are made. We consider the
moduli space MG(X, e) of Gromov’s pseudo-holomorphic curves which repre-
sent the Poincaré dual α = PD(e) of the class e.

Fix a Riemann surface Σ of genus g and consider the moduli space MG(X,
e, g) of all equivalence classes of pairs [u, j] where j ∈ J (Σ) is a complex
structure on Σ and u : Σ → X is a (j, J)-holomorphic map which represent
the class α. The equivalence relation is given by the obvious action of the
diffeomorphism group Diff(Σ) on Map(Σ, X)×J (Σ). If 2g−2 = c1(K)·e+e·e,
the map u : Σ → X is an embedding for every pair [u, j] ∈ MG(X, e, g).
By [9], MG(X, e, g) is the space of all embedded unparameterized pseudo-
holomorphic curves representing α and dimension of MG(X, e, g) is

dimMG(X, e, g) = e · e− c1(K) · e ≡ d.

The class A ∈ H2(X,Z) is called J-simple if it cannot be written as a sum
A1 + · · ·+ Am for some m ≥ 2 where
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(1) each Ai has a J-holomorphic representative and
(2) if Ai 6= Aj , there is a sequence Ai = Ai1 , Ai2 , · · · , Ain = Aj such that

positive intersection numbers Aip ·Aip+1 ≥ 1 for p = 1, · · · , n− 1.

By the same way as the proof of the completeness theorem in [24], we have
the following lemma in the case of J-simple.

Lemma 3.1. If A is J-simple, MG(X, PD(A), g ≥ 1) is compact.

Let X be a closed, symplectic 4-manifold. Then the Gromov invariant
is defined by the moduli space MG(X, e, g) for each e in H2(X,Z). Let
A is J-simple, H = H(e, J,Ω) = {{(C, 1)}}. By the Proposition 4.3 in
[23], we can choose a generic (J,Ω) such that C is non-degenerated. Hence
Gr(e) =

∑
h∈H q(h) = q({(C, 1)}) =

∏
k r(Ck,mk) = r(C, 1) = ±1, where

r(·) is an integer assignment to pairs (C,m) of positive integer m and pseudo-
holomorphic submanifold C ⊂ X. Therefore we have the following Lemma.

Lemma 3.2. If A is J-simple which is not represented by a torus with
A ·A = 0, then Gr(e) = ±1, where e = PD(A).

4. MAIN THEOREM

In this section we assume that X is a closed, minimal, symplectic 4-
manifold containing a symplectic surface F of genus g(F ) = g ≥ 1 and
c1(F ) > g. Since F is a symplectic 2-dimensional submanifold of X, there is
a pseudo-holomorphic embedding u : (Σg, j) −→ (X, J) such that u(Σg) = F ,
where Σg is a Riemann surface of genus g.

Lemma 4.1. There is an element J of U∞ such that the class [F ] can be
represented by a J-holomorphic cusp-curve S = S1 ∪ · · · ∪ Sm, where, for each
i, the class Ai = [Si] is J-simple and J is regular for Ai-curves.

Proof. Let J0 be an ω-tame almost complex structure for which F has a J0-
holomorphic parameterization. We may assume that J0 is a regular value for
the projection map PF (defined in Section 2) and that it belongs to u∞. As the
corollary of the Gromov compactness theorem for pseudo-holomorphic curves,
there is a neighborhood N (J0) of J0 in J (ω) such that only finitely many
classes A in H2(X,Z) with ω(A) ≤ ω(F ) has J-holomorphic representative for
some J in N (J0). Hence we may further assume that J0 is a regular value for
all such PA. Thus there is a finite-decomposition A1 + · · ·+Am of F such that

(1) each Ai has a J-holomorphic representative Si and
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(2) if Ai 6= Aj , there is a sequence Ai = Ai1 , Ai2 , · · · , Ain = Aj such that
intersection numbers Aip ·Aip+1 ≥ 1 for p = 1, · · · , n− 1.

Hence we may take J = J0. Clearly, each such decomposition of [F ] gives rise
either to a cusp-curve S = S1∪· · ·∪Sm or a representation of [F ] as a multiply-
covered curve. In the latter case, a multiply-covered curve can be represented
by a cusp-curve. That is, by Corollary 2.3, [F ] has a decomposition with
m = 3, A1 = A2 = A3 and A1 · A2 = A2 · A3 = A3 · A1 = 1, so that it also
has a representation by a cusp-curve. If the constituent components of this
cusp-curve are not simple, they may be decomposed further. And so, among
the finite set of decompositions of [F ], there clearly is at least one such that
each Ai is J0-simple.

Now we introduce McDuff’s and Taubes’s results which we will need later.

Lemma 4.2 [16]. Let J be a regular value for the projection PA defined
in section 2. If A is a J-simple class which can be represented by an embedded
J-holomorphic 2-sphere. Then p = A ·A ≤ 1.

Lemma 4.3 [13]. If X contains a J-simple class which can be represented
by an embedded 2-sphere with self-intersection 1, then X = CP2.

Lemma 4.4 [14]. Let C be a symplectically embedded rational A-curve in
a symplectic 4-manifold (X, ω), where A is a simple homology class of self-
intersection zero. Then there is a fibration π : X → M which is compatible
with ω and has one fiber equal to C, where M is a compact 2-manifold.

Theorem 4.5 [21]. Let (X, ω) be a closed symplectic 4-manifold with
b+
2 (X) ≥ 2 and C ⊂ X be a 2-dimensional symplectic submanifold with C ·C ≥

0. Then c1(K) · C = −c1(TX)(C) ≥ 0 and every line bundle E → X with
SW (X, LE) 6= 0 satisfies

0 ≤ c1(E) · C ≤ c1(K) · C.

Corollary 4.6. Let X be a compact symplectic 4-manifold containing a
symplectically embedded 2-dimensional manifold F with c1(TX)(F ) > 0 and
g(F ) ≥ 1. Then b+

2 (X) = 1.

Proof. Suppose X is a closed symplectic 4-manifold with b+
2 (X) ≥ 2. Let

F be a symplectically embedded surface with c1(TX)(F ) > 0 and g(F ) ≥ 1.
Then by the adjunction formula, F · F = c1(TX)(F ) + 2g − 2 > 0. This
contradicts Theorem 4.5.
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Since X is a closed symplectic 4-manifold containing a symplectically em-
bedded surface F with g(F ) = g ≥ 1 and c1(TX)(F ) > g > 0, by Corollary
4.6, b+

2 (X) = 1. For simplicity, we denote MG(X, PD(A), g) by M(X, J)
when A is J-simple.

Theorem 4.7. Let an almost complex structure J on X be generic.
Suppose that A is a J-simple class which can be represented by an embed-
ded J-holomorphic surface with genus g ≥ 1. Then the intersection number
p = A ·A ≤ g.

Proof. Since A is J-simple, by Lemma 3.1, M(A, J) ≡MG(X, PD(A), g)
is compact and the dimension of the moduli space M(A, J) is

dimM(A, J) = 2c1(TX)(A) + 2g − 2

= 2(A ·A + 2− 2g) + 2g − 2

= 2p + 2− 2g.

Suppose that p > g. Let M(A,J ) be the set of pairs (f, J) where J ∈ J (ω)
and f ∈ M(A, J). Consider the evaluation map coupled by (p + 1− g)-tuple
of Σg

eA : M(A,J )× Σg × · · · × Σg −→ X × · · · ×X

given by (f, J, z1, · · · , zp+1−g) 7→ (f(z1), · · · , f(zp+1−g)), where Σg is the Rie-
mann surface of genus g and there are p + 1− g factors in each product. Let
j : X → X × · · · ×X be an inclusion given by z 7→ (z, x2, · · · , xp+1−g), where
x2, · · ·xp+1−g are distinct fixed points in X. Then eA is transverse to the in-
clusion j. let R = e−1

A (imj) ∩ P−1
A (J) for a generic J . Then R is a compact

4-manifold. Let e = pr◦eA be a map from R into X, where pr is the projection
onto the first factor. Since M(A, J)×Σg×· · ·×Σg is compact and X×· · ·×X
is connected, e : R → X is surjective, by the following Lemma 4.10. Let

π : M(A, J)× Σg × · · · × Σg −→M(A, J)

be the obvious projection. Since R is a submanifold ofM(A, J)×Σg×· · ·×Σg,
π(R) is a compact 2-dimensional submanifold of M(A, J). Then R ' π(R)×
Σg. We now claim that π(R) ' S2. To see this, we identify the tangent space
to X at x2 with C2 and consider the map R → CP1 = S2 given by

(f, J, z1, · · · , zp+1−g) 7→ Tx2f ≡ the tangent space to imf at f(z2) = x2.

This map is well-defined since all the elements of R are embeddings by (2.3)
of section 2. Further, it clearly factors through π, so that we get a map

θ : π(R) −→ S2.
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Then θ is injective. If not, that is, Tx2f = Tx2g and f 6= g in π(R), (f ·g)x2 ≥ 2.
Where for simplicity, we denote f ≡ imf , g ≡ img. Since f and g meet at
x2, · · · , xp+1−g and (f ·g) = p the surface representing f ∪g has at most genus
2g + p− 2. By the adjunction formula

2g(f + g)− 2 ≥ (f + g)2 − c1(f + g) = 4g − 4 + 2p.

This is impossible. Hence θ must be a homeomorphism. That is, R is a
Σg-bundle over S2. Since an intersection point of two distinct J-holomorphic
curves C and C ′ always occurs with positive orientation, e preserves the ori-
entation. Hence by Lemma 3.4 deg(e) = Gr(e) > 0. Then e∗ : H∗(X,R) →
H∗(R,R) is injective. Since b+

2 (X) = 1, b−2 (X) = 0, or 1.
If b−2 = 0, then by the following Theorem 4.8, the intersection form QX

of X is QX = (+1). Let H∗(X) be the integral cohomology of X modulo
torsion. Then H2(X) = Z[α] and α · α = 1. Since A ∈ H2(X,Z), a =
PD(A) ∈ H2(X,Z). Let π : H2(X,Z) → H2(X) be the projection map and
ã = π(a). Then ã ∈ H2(X) = Z[α]. Since X is a symplectic 4-manifold with
b+
2 (X) = 1 and b−2 (X) = 0,

c1(TX) = kα and c1(TX)2 = k2 = 2χ(X) + 3σ(X) = 9− 4b1(X).

Hence c1(TX) = 3α or c1(TX) = α. If c1(TX) = 3α, then c1(TX) · α = 3
and

dimMG(X,α, g) = 2g − 2 + 2c1(TX)(α) = 4 > 0.

Hence PD(α) is represented by an embedded J-holomorphic curve of genus 0.
If c1(TX) = α, then c1(TX) · α = 1 and

dimMG(X,α, g) = 2g − 2 + 2c1(TX)(α) = 2 > 0.

Hence PD(α) is represented by an embedded J-holomorphic curve of genus
1. Since PD(α) can be represented by an embedded J-holomorphic curve of
genus g = 0 or 1 and A is J-simple, ã = ±α. a2 = ã2 = (±α)2 = 1. This
contradicts the fact p > g = 1. Therefore b−2 (X) = 1. Then by the following
Theorem 4.9, the intersection from QX of X is either

QX = (100− 1) or QX = (0110)

Therefore H2(X) = Z[α]⊕Z[β] and α·α = 0 = β ·β or α·α = 1 and β ·β = −1.
Similarly, since X is a symplectic 4-manifold with b+

2 (X) = 1 and b−2 (X) = 1,

c1(TX) = k1α + k2β and c1(TX)2 = 2χ(X) + 3σ(X) = 8− 4b1.

First, consider the case α·α = 0 = β ·β. Then c1(X)2 = 2k1k2 = 8−4b1. Hence
b1 = 0 and k1 = 1, k2 = 4 or k1 = 2, k2 = 2. Therefore c1(TX) = α + 4β or
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2α + 2β. By the adjunction formula, c1(TX) ·α = 2 or c1(TX) · β = 2. Hence
dimMG(X, α, g) = 2g − 2 + 2c1(TX)(PDα) = 2 > 0 and dimMG(X, β) =
2g − 2 + 2c1(TX)(PD(β)) = 2 > 0. Therefore PD(α) is represented by
an embedded J-holomorphic curve of genus 0 or PD(β) is represented by
an embedded J-holomorphic curve of genus 0. Similarly we consider the case
α·α = 1 and β·β = −1. Then c1(TX) = 3α+β or α+β. Since c1(TX)·α = 1 or
3 and c1(TX) · β = 1, dimMG(X,α, g) > 0 and dimMG(X,β, g) > 0. Hence
PD(β) is represented by an embedded J-holomorphic curve of genus 0. That
is PD(β) is an exceptional curve. Since X is minimal, this is impossible. Since
Poincaré duals of α and β can be represented by an embedded J-holomorphic
curves of genus g = 0, 1 or 2 and A is J-simple, ã = ±α or ±β. Therefore
a2 = ã2 ≤ 1. This is impossible.

Theorem 4.8 (Donaldson). If X is a compact oriented smooth 4-
manifold with definite intersection form then QX is diagonalizable over the
integers.

Theorem 4.9 (Hasse-Minkowski). Let Q be a unimodular quadratic
form over the integers. If Q is odd and indefinite then it can be diagonalized
over Z and thus

Q ∼ l(1)⊕m(−1)

for some positive integers l and m. If Q is even and indefinite then it is
equivalent to the form

Q ∼ lE8 ⊕mH

for some integers l and m ≥ 1.

Let the evaluation map

e0 : M(A,J ) −→ X

for a fixed z0 ∈ Σg be defined by e0(f, J) = f(z0).

Lemma 4.10. For every point z0 ∈ Σg the map e0 : M(A,J ) → X is a
submersion.

Proof. It can be proved by the same way as the proof of Theorem 6.1.1 in
[13].

Now we assume that F is a symplectically embedded surface with g(F ) =
g ≥ 1 and c1(TX)(F ) > g. Then by Lemma 4.1, there is an almost com-
plex structure J of U∞ such that the class [F ] can be represented by a J-
holomorphic cusp-curve S = S1∪· · ·∪Sm, where for each i, the class Ai = [Si]



Symplectic Surfaces in Symplectic 4-Manifolds 85

is J-simple and J is regular for Ai-curves. By the adjunction formula,

2g(F )− 2 = F · F − c1(TX)(F )

= (A1 + · · ·+ Am) · (A1 + · · ·+ Am)

− (c1(TX)(A1) + · · ·+ c1(TX)(Am))

= 2g(S1) + · · ·+ 2g(Sm)− 2m + 2(A1 ·A2 + · · ·Am−1 ·Am).

Since S is a cusp-curve, 0 ≤ g(S1) + · · ·+ g(Sm) ≤ g.
(1) If g(S1) + · · · + g(Sm) = 0, then g(Si) = 0 for all i = 1, · · · ,m. Since

c1(TX)(Ai) ≥ 1, Ai · Ai = c1(TX)(Ai) − 2 ≥ −1 for all i = 1, · · · ,m.
By Lemma 4.2, Ai ·Ai = −1, 0 or 1 for all i = 1, · · · ,m. But since X is
minimal, X does not contain an exceptional sphere. Hence Ai · Ai = 0
or 1 for all i = 2, · · · ,m. Then by Lemma 4.3 and Lemma 4.4, X is
rational or ruled.

(2) If g(S1) + · · · + g(Sm) = 1, then g(S1) = 1 and g(Si) = 0 for all i =
2, · · · ,m. By (1), Ai ·Ai = 0, 1 for all i = 2, · · · ,m. If there is a class Ai

such that Ai · Ai = 1, then m > 1 and by Lemma 4.3, X = CP2. Since
m > 1, X contains a J-simple class A1 which can be represented by a
symplectically embedded surface of genus g = 1. Every homology class
in H2(CP2,Z) is of the form dH and dH is a J-simple iff d = 1. Hence
d = 1. Since

g(dH) =
d2 − 3d + 2

2
= 0,

this contradicts our assumption. Hence Ai · Ai = 0 for all i = 2, · · · ,m.
Also, by the adjunction formula, A1 · A1 = 2g − 2 + c1(TX)(A1) ≥
2g − 2 + 1− g = g − 1 = 0 and by Lemma 4.7, A1 · A1 = 0 or 1. Hence
c1(TX)(A1) = 0 or 1. If c1(TX)(F ) = c1(TX)(A1) + · · · c1(TX)(Am) >
g = 1, then m > 1. Therefore X contains a J-simple which can be
represented by a symplectically embedded 2-sphere with self-intersection
0. Then by Lemma 4.4, X is ruled.(3) Suppose that g(S1) + · · ·+ g(Sm) = t ≤ g (i.e. 1 < t ≤ g). Let k be the
number of Si such that g(Si) = 1. Then 0 ≤ k ≤ t.

( i ) If k = 0, then g(Si) ≥ 2 or g(Si) = 0. If g(Si) = 0, then by
(2), Si · Si = 0. We have c1(TX)(Si) = 2. If g(Si) ≥ 2, then by
Theorem 4.8, Si · Si = g − 1, or g. We have c1(TX)(Si) ≤ 0. Since
c1(TX)(F ) = c1(TX)(A1) + · · · + c1(TX)(Am) > g, there is a J-
simple class A which can be represented by an embedded 2-sphere
with self-intersection 0. Then X is ruled.

(ii) If k > 0, then g(S1) = · · · = g(Sk) = 1 and g(Si) ≥ 2 or g(Si) = 0
for all i = k + 1, · · · , m and k + g(Sk+1) + · · · + g(Sm) = t. By
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(i), if g(Si) = 0, then c1(TX)(Ai) = 2, and if g(Si) ≥ 2, then
c1(TX)(Ai) < 0. If g(Si) = 0, then c1(TX)(Ai) = 0 or 1. Since
c1(TX)(F ) = c1(TX)(A1) + · · · + c1(TX)(Am) > g, there is a J-
simple class A which can be represented by an embedded 2-sphere
with self-intersection 0. Then X is ruled.

Therefore we have the following theorem:

Theorem 4.11. Let X be a closed, minimal, symplectic 4-manifold con-
taining a symplectic surface F satisfying g(F ) = g ≥ 1 and c1(TX)[F ] > g.
Then X is rational or ruled.
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