TAIWANESE JOURNAL OF MATHEMATICS Vol. 7, No. 1, pp. 69-75, March 2003 This paper is available online at http://www.math.nthu.edu.tw/tjm/

ON INVARIANT SUBSPACES FOR POWER-BOUNDED OPERATORS OF CLASS C_1 .

László Kérchy and Vu Quoc Phong

Abstract. We prove that if T is a power-bounded operator of class C_* . on a Hilbert space which commutes with a nonzero quasinilpotent operator, then T has a nontrivial invariant subspace. Connections with the questions of convergence of T^n to 0 in the strong operator topology and of cyclicity of power-bounded operators of class C_1 are discussed.

A linear operator T on a Hilbert space \mathcal{H} is called *power-bounded* if $\sup_{n\geq 0} ||T^n|| < \infty$. A power-bounded operator T is said to be of class C_* . if there exists a nonzero vector $x \in \mathcal{H}$ such that the sequence $\{||T^nx||\}_n$ does not converge to 0, and T is of class C_1 . if $\{||T^nx||\}_n$ does not converge to 0 for every nonzero vector x. It is still an unsolved problem whether every powerbounded operator of class C_* . (in particular, C_* -contraction) has a nontrivial invariant subspace, i.e., whether there exists a (closed) subspace \mathcal{M} of \mathcal{H} such that $\{0\} \neq \mathcal{M} \neq \mathcal{H}$ and $T\mathcal{M} \subset \mathcal{M}$. For partial results on that problem, see, e.g., [1, Chapter XII] or [16]. In this note we prove the following theorem.

Theorem 1. Assume that T is a power-bounded operator of class C_* . on a Hilbert space \mathcal{H} , which commutes with a nonzero quasinilpotent operator. Then T has a nontrivial invariant subspace.

This theorem will follow from the following one. We recall that the operator T is called *cyclic* if it has a cyclic vector, that is, a vector x such that the sequence $\{T^n x\}_{n>0}$ spans the whole space \mathcal{H} .

Received February 18, 2002; revised February 25, 2002.

Communicated by P. Y. Wu.

2000 Mathematics Subject Classification: 47A15.

Key words and phrases: Power-bounded operator of class C_1 , operator of class C_* , invariant subspace, quasinilpotent operator, cyclic operator, isometry.

Research partially supported by Hungarian NFS Research grant no. T 035123.

Theorem 2. If T is a power-bounded operator of class C_1 . on a Hilbert space \mathcal{H} such that T commutes with a nonzero quasinilpotent operator, then T is not cyclic.

The proof is based on the following construction of the limit isometric operator associated with T (see [11] and [21]).

Given a power-bounded operator T acting on the Hilbert space \mathcal{H} , fix a generalized Banach limit glim on $\ell^{\infty}(\mathbf{N})$ and consider the sesquilinear form w_T on \mathcal{H} defined by

$$w_T(x,y) := \operatorname{glim}_{n \to \infty} \langle T^n x, T^n y \rangle, \quad x, y \in \mathcal{H}.$$

Since $\{\|T^n\|\}_n$ is bounded, it is easy to see that $\operatorname{glim}_{n\to\infty}\|T^nx\| = 0$ if and only if $\inf_{n\geq 0} \|T^nx\| = 0$, and this happens if and only if $\lim_{n\to\infty} \|T^nx\| = 0$. Let $\mathcal{H}_0(T)$ be the kernel of w_T , i.e.,

$$\mathcal{H}_0(T) := \{ x \in \mathcal{H} : w_T(x, x) = 0 \} = \{ x \in \mathcal{H} : \lim_{n \to \infty} \| T^n x \| = 0 \}.$$

Clearly, $\mathcal{H}_0(T)$ is a subspace which is invariant for any operator A in the commutant $\{T\}'$ of the operator T. Furthermore, $\mathcal{H}_0(T) \neq \mathcal{H}$ if and only if T is of class C_{*} , and $\mathcal{H}_0(T) = \{0\}$ if and only if T is of class C_1 . Thus, Theorem 1 is an immediate consequence of Theorem 2.

Let us form the quotient space $\mathcal{H}_T = \mathcal{H}/\mathcal{H}_0(T)$, and let us consider the canonical mapping $\pi_T \colon \mathcal{H} \to \hat{\mathcal{H}}_T$, $\pi_T(x) \coloneqq x + \mathcal{H}_0(T) \eqqcolon \hat{x}$. The sesquilinear form $\hat{w}_T(\hat{x}, \hat{y}) \coloneqq w_T(x, y) \ (x, y \in \mathcal{H})$ provides an inner product on $\hat{\mathcal{H}}_T$, so that $\hat{\mathcal{H}}_T$ is a pre-Hilbert space. Let \hat{T} be the operator on $\hat{\mathcal{H}}_T$ which is defined by $\hat{T}\hat{x} \coloneqq \hat{T}x$. It is easy to see that \hat{T} is an isometry.

Let \mathcal{H}_T be the completion of $\widehat{\mathcal{H}}_T$ and let V_T be the continuous extension of \widehat{T} , called the *isometric asymptote* of T in [11]. Any operator $A \in \{T\}'$ generates an operator \widehat{A} on \mathcal{H}_T by $\widehat{A}\widehat{x} := \widehat{A}x$ ($x \in \mathcal{H}$) (and by continuous extension from $\widehat{\mathcal{H}}_T$ to \mathcal{H}_T). The mapping $\gamma_T : A \mapsto \widehat{A}$ is a contractive algebra-homomorphism from the commutant $\{T\}'$ of T into the commutant $\{V_T\}'$ of the isometry V_T . Since γ_T is a unital algebra-homomorphism, we obtain the spectral inclusion $\sigma(\widehat{A}) \subset \sigma(A)$ ($A \in \{T\}'$). It follows that if A is quasinilpotent then so is \widehat{A} . It is also clear that $\widehat{A} = 0$ holds if and only if ran $A \subset \mathcal{H}_0(T)$.

For a bounded linear operator V on a Hilbert space \mathcal{K} , let $\{V\}''$ denote the bicommutant of V. Let $\mathcal{R}(V)$ be the set of operators f(V), where f runs through the set of rational functions with poles off the spectrum $\sigma(V)$, and let $\mathcal{A}(V)$ be the closure of $\mathcal{R}(V)$ in the weak operator topology. We will need the following well-known facts on these algebras. **Lemma 3.** If V is an isometry on a Hilbert space \mathcal{K} , then the abelian Banach algebra $\{V\}''$ is semisimple, and $\{V\}'' = \mathcal{A}(V)$.

Proof. For the sake of completeness, we sketch the proof. The Hilbert space isometry V splits into the orthogonal sum $V = V_a \oplus U_s$, where V_a is an absolutely continuous isometry and U_s is a singular unitary operator. It is known that $\{V\}'' = \{V_a\}'' \oplus \{U_s\}''$ and $\mathcal{A}(V) = \mathcal{A}(V_a) \oplus \mathcal{A}(U_s)$; see [5] and Rudin's theorem in [8, Chapter 6]. Let μ and μ_s denote the normalized Lebesgue measure and the scalar spectral measure of U_s , respectively, on the unit circle \mathbf{T} , and let H^{∞} be the Hardy subspace of $L^{\infty}(\mu)$. It can be easily verified that $\{V_a\}'' = \{\varphi(V_a) : \varphi \in H^{\infty}\}$ if V_a is nonunitary, $\{V_a\}'' = \{\varphi(V_a) : \varphi \in L^{\infty}(\mu)\}$ if V_a is unitary, and $\{U_s\}'' = \{\psi(U_s) : \psi \in L^{\infty}(\mu_s)\}$; see [4, Chapter IX]. Classical approximation theorems yield that $\{V\}'' = \mathcal{A}(V)$. On the other hand, the previous representation shows that every operator $A \in \{V\}''$ is subnormal, and so ||A|| is equal to the spectral radius r(A), which means that $\{V\}''$ does not contain nonzero quasinilpotent operators (or equivalently, the Gelfand transformation associated with $\{V\}''$ is injective).

Lemma 4. The isometry V acting on the Hilbert space \mathcal{K} is cyclic if and only if its commutant is abelian, that is, $\{V\}' = \{V\}''$.

Proof. Considering the former decomposition $V = V_a \oplus U_s$, we obtain that V is cyclic if and only if both V_a and U_s are cyclic. Let us recall that a unitary operator U is cyclic if and only if U is *-cyclic, which means that the set $\{U^n x\}_{n=-\infty}^{\infty}$ spans the whole space with a suitable vector x; see [3]. Now, the results in [4, Chapter IX] imply the statement.

Proof of Theorem 2. Let us suppose that T has a cyclic vector x. Since $\|\hat{y}\| \leq M \|y\|$ holds for every $y \in \mathcal{H}$, where $M = \sup\{\|T^n\|\}_{n=0}^{\infty}$, the vector \hat{x} is cyclic for the limit isometry V_T . Let A be the nonzero quasinilpotent operator that commutes with T. Then $\hat{A} = \gamma_T(A)$ commutes with V_T , hence we infer by Lemma 4 that $\hat{A} \in \{V_T\}''$. Since $\{V_T\}''$ is semisimple by Lemma 3, we have $\hat{A} = 0$, and so ran $A \subset \mathcal{H}_0(T) = \{0\}$. Thus A = 0, which is a contradiction.

Applying the Riesz–Dunford functional calculus, Theorem 1 can be easily extended to the following statement.

Corollary 5. Let T be a power-bounded operator of class C_* . on the Hilbert space \mathcal{H} . If T commutes with a nonscalar operator A having an isolated spectrum point, then T has a nontrivial invariant subspace. In particular, T has a nontrivial invariant subspace if T commutes with a nonzero, essentially quasinilpotent operator A.

The following proposition shows how the statement of Lemma 4 can be transferred to power-bounded operators.

Proposition 6. Let T be a power-bounded operator of class C_1 . on the Hilbert space \mathcal{H} , and let us consider the conditions: (a) T is cyclic, (b) V_T is cyclic, (c) $\{T\}' = \{T\}''$.

Then (a) \Longrightarrow (b) \Longrightarrow (c), but the reverse implications are false.

Proof. We have already seen that (a) implies (b). If V_T is cyclic then $\{V_T\}'$ is abelian by Lemma 4, which implies that $\{T\}'$ is also abelian since the mapping γ_T is one-to-one.

In [20], in terms of the Sz.-Nagy–Foias functional model of contractions, examples are given for the case when V_T is cyclic but T is noncyclic.

To show that (c) does not imply (b), let us consider the simply connected domains $\Omega_+ := \{z \in \mathbf{D} : \text{Re } z > -1/2\}$ and $\Omega_- := \{z \in \mathbf{D} : \text{Re } z < 1/2\}$, where \mathbf{D} stands for the open unit disc. Let φ and ψ be conformal mappings of \mathbf{D} onto Ω_+ and onto Ω_- , respectively. Let T_{φ} and T_{ψ} be the analytic Toeplitz operators with symbols φ and ψ , respectively, on the Hardy space H^2 , that is, $T_{\varphi}f := \varphi f$, $T_{\psi}f := \psi f$ $(f \in H^2)$. We know by [18, Proposition 2] that φ and ψ are (sequential) weak-* generators of the algebra H^{∞} , and so the operators T_{φ} and T_{ψ} have the same invariant subspaces as the operator T_{χ} , where $\chi(z) = z$. Since T_{χ} is cyclic, it follows that the operators T_{φ} and T_{ψ} are cyclic, as well.

It is clear that T_{φ} and T_{ψ} are contractions of class C_1 . Furthermore, $V_{T_{\varphi}}$ and $V_{T_{\psi}}$ are unitarily equivalent to the restrictions $M_{\alpha} := M | \chi_{\alpha} L^2(\mu)$ and $M_{\beta} := M | \chi_{\beta} L^2(\mu)$, respectively, where $Mf := \chi f$ $(f \in L^2(\mu))$, $\alpha := (\Omega_+)^- \cap \mathbf{T}$ and $\beta := (\Omega_-)^- \cap \mathbf{T}$.

Let us form the orthogonal sum $T := T_{\varphi} \oplus T_{\psi}$. Since V_T is unitarily equivalent to $M_{\alpha} \oplus M_{\beta}$ and $\mu(\alpha \cap \beta) > 0$, we obtain that V_T is noncyclic. On the other hand, the conditions $\mu(\beta \setminus \alpha) > 0$ and $\mu(\alpha \setminus \beta) > 0$ imply by [6] that $\{T\}' = \{T_{\varphi}\}' \oplus \{T_{\psi}\}'$; see also [16, Theorem 18 and Corollary 15]. Taking into account that T_{φ} and T_{ψ} are cyclic, we infer that $\{T\}'$ is a semisimple abelian Banach algebra.

The following example shows that Lemma 3 cannot be generalized to power-bounded operators.

Example 7. We recall that the power-bounded operator T is called of class C_{11} if both T and its adjoint T^* are of class $C_{1.}$. The invariant subspace \mathcal{M} is called *quasi-reducing* if the restriction $T|\mathcal{M}$ is of class C_{11} .

Let T be a cyclic, completely non-unitary contraction of class C_{11} on the Hilbert space \mathcal{H} such that the spectrum of T is the closed unit disc \mathbf{D}^- , and

 V_T is a cyclic bilateral shift. The existence of such operators follows from [2, Theorem 2]. For a concrete example we refer to [10, Example 12].

The lattice of the quasi-reducing invariant subspaces of T is isomorphic to the lattice of the spectral subspaces of V_T ; see [9, Theorem 15] and [12, Theorem 3]. Thus, we have an abundance of quasi-reducing subspaces of T. These subspaces are exactly those which can be written in the form $(\operatorname{ran} A)^-$, where $A \in \{T\}''$; see [9, Remark 5 and Proposition 10]. Hence, there are many nonzero operators in $\{T\}''$ which have nondense range.

On the other hand, since $\sigma(T) = \mathbf{D}^-$ and V_T is a bilateral shift, we infer by Runge's theorem and by [13, Corollary 2] that $\mathcal{A}(T) = H^{\infty}(T) := \{u(T) : u \in H^{\infty}\}$. However, for any nonzero function $u \in H^{\infty}$, the operator u(T) is quasisimilar to $u(V_T)$ (see, e.g., [12] and [19]), and so u(T) has dense range. Therefore, $\mathcal{A}(T)$ is a proper subset of $\{T\}''$.

Let T be a power-bounded operator of class C_1 . on the Hilbert space \mathcal{H} . Let $\mathcal{A}_0(T)$ denote the norm-closure of the set $\mathcal{R}(T)$. The norm-continuity of γ_T and the condition $\sigma(T) \supset \sigma(V_T)$ imply that $\gamma_T(\mathcal{A}_0(T)) \subset \mathcal{A}_0(V_T)$. Since $\mathcal{A}_0(V_T) \subset \mathcal{A}(V_T) = \{V_T\}''$ and $\{V_T\}''$ is semisimple, we may infer (as in the proof of Theorem 2) that $\mathcal{A}_0(T)$ is semisimple. This statement was previously proved in [17].

If $\gamma_T(\{T\}'') \subset \{V_T\}''$ holds, then it follows in the same way that $\{T\}''$ is semisimple. However, a look at the operator $T = T_{\varphi} \oplus T_{\psi}$ occurring in the proof of Proposition 6 shows that the inclusion $\gamma_T(\{T\}'') \subset \{V_T\}''$ does not hold in general. Indeed, the operator $I \oplus 0$ belongs to $\{T\}''$, but $\gamma_T(I \oplus 0) = I \oplus 0$ does not belong to $\{V_T\}''$. Thus, the following problem remains open.

Question 8. Is the abelian Banach algebra $\{T\}''$ semisimple for every power-bounded Hilbert space operator T of class C_1 ?

In view of Theorem 2 and Proposition 6, the answer is affirmative if T is cyclic.

Remark 9. We note that if V_T is of finite multiplicity, then every quasinilpotent operator B in the commutant of V_T is nilpotent. Indeed, considering the functional model of V_T (as in [15]), we obtain that B is an operator of multiplication by a function Ψ defined on the unit circle \mathbf{T} and taking on operator values $\Psi(z)$ acting on Hilbert spaces $\mathcal{H}(z)$ with dim $\mathcal{H}(z) \leq m$ ($z \in \mathbf{T}$), where m is the multiplicity of V_T . Since $||B^n|| = \text{ess sup}\{||\Psi(z)^n|| : z \in \mathbf{T}\}$ holds for every n, we infer by the spectral radius formula that $\Psi(z)$ is quasinilpotent, and so $\Psi(z)^m = 0$ is valid for a.e. $z \in \mathbf{T}$. Therefore, $B^m = 0$ is also true.

As a consequence, we obtain that if the power-bounded operator T of class C_1 is of finite multiplicity, then the quasinilpotent operators in the commutant

of T are nilpotent. So, if T is of finite multiplicity then the problem above can be reduced to the question whether every nilpotent operator A in the bicommutant of T is necessarily zero.

The following result on the stability of the semigroup $\{T^n\}_{n\geq 0}$ is related to Theorem 1 and has an analogous proof.

Theorem 10. Suppose that T is a cyclic power-bounded operator on a Hilbert space \mathcal{H} such that T commutes with a quasinilpotent operator A. Then $\{T^n\}_{n\geq 0}$ is stable on the range of A, that is, $\lim_{n\to\infty} ||T^nx|| = 0$ holds for every $x \in (\operatorname{ran} A)^-$.

In connection with Theorem 10, let us also note the following related fact contained in [22].

Theorem 11. Let T be a power-bounded operator which commutes with a compact operator K with dense range. Then $\{T^n\}_{n\geq 0}$ is stable if and only if T does not have a unimodular eigenvalue.

We note that most of the previous results can be extended without any difficulty to operators T such that the norm-sequence $\{||T^n||\}_{n\geq 0}$ is regular in the sense of [14].

Studying these problems in the general Banach space setting, we encounter the obstacle that Lemma 3 fails, since $\{V\}''$ is not necessarily semisimple if V is an isometry on an arbitrary Banach space, see [7].

References

- B. Beauzamy, Introduction to Operator Theory and Invariant Subspaces, North-Hol-land, Amsterdam, 1988.
- H. Bercovici and L. Kérchy, On the spectra of C₁₁-contractions, Proc. Amer. Math. Soc., 95 (1985), 412-418.
- 3. J. Bram, Subnormal operators, Duke Math. J., 22 (1955), 75-94.
- J. B. Conway, A Course in Functional Analysis, Springer-Verlag, New York, 1996.
- 5. J. B. Conway and P. Y. Wu, The splitting of $\mathcal{A}(T_1 \oplus T_2)$ and related questions, Indiana Univ. Math. J., **26** (1977), 41-56.
- J. A. Deddens, Intertwining analytic Toeplitz operators, Michigan Math. J., 18 (1971), 243-246.
- G. M. Feldman, The semisimplicity of an algebra generated by isometric operators, *Funkcional. Anal. i Prilozhen.*, 8 (1974), no. 2, 93-94. (Russian)

On Invariant Subspaces for Power-Bounded Operators of Class C_1 .

- 8. K. Hoffman, Banach Spaces of Analytic Functions, Dover, New York, 1988.
- L. Kérchy, Contractions being weakly similar to unitaries, Oper. Theory Adv. Appl., 17 (1986), 187-200.
- L. Kérchy, Contractions weakly similar to unitaries. II, Acta Sci. Math. (Szeged), 51 (1987), 475-489.
- L. Kérchy, Isometric asymptotes of power-bounded operators, Indiana Univ. Math. J., 38 (1989), 173-188.
- L. Kérchy, Unitary asymptotes of Hilbert space operators, Banach Center Publ., 30 (1994), 191-201.
- L. Kérchy, Injection of unilateral shifts into contractions with non-vanishing unitary asymptotes, Acta Sci. Math. (Szeged), 61 (1995), 443-476.
- L. Kérchy, Operators with regular norm-sequences, Acta Sci. Math. (Szeged), 63 (1997), 571-605.
- L. Kérchy, Isometries with isomorphic invariant subspace lattices, J. Funct. Anal., 170 (2000), 475-511.
- L. Kérchy, On the hyperinvariant subspace problem for asymptotically nonvanishing contractions, Oper. Theory Adv. Appl., 127 (2001), 399-422.
- 17. G. Muraz and Q. P. Vu, Set of semisimplicity, *Prépublication de L'Institut Fourier*, Université de Grenoble I, CNRS, **490** (2000).
- 18. D. Sarason, Weak-star generators of H^{∞} , Pacific J. Math., 17 (1966), 519-528.
- B. Sz.-Nagy and C. Foias, *Harmonic Analysis of Operators on Hilbert Space*, North-Holland, Amsterdam, 1970.
- B. Sz.-Nagy and C. Foias, Jordan model for contractions of class C_{.0}, Acta Sci. Math. (Szeged), 36 (1974), 305-321.
- Vu Quoc Phong, Theorems of Katznelson–Tzafriri type for semigroups of operators, J. Funct. Anal., 103 (1992), 74-84.
- Vu Quoc Phong, Stability of semigroups commuting with a compact operator, Proc. Amer. Math. Soc., 124 (1996), 3207-3209.

László Kérchy Bolyai Institute, University of Szeged, 6720 Szeged, Hungary E-mail: kerchy@math.u-szeged.hu

Vu Quoc Phong Department of Mathematics, Ohio University, Athens, OH 45701, U.S.A. E-mail: qvu@bing.math.ohiou.edu