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VALUE DISTRIBUTION FOR p-ADIC HYPERSURFACES

Ha Huy Khoai and Vu Hoai An

Abstract. The purpose of this paper is to give a p-adic version of value
distribution theory for hypersurfaces.

1. INTRODUCTION

Nevanlinna theory is a far-reaching generalization of Picard’s theorem.
There are two main theorems and defect relations which occupy a central place
in Nevanlinna theory. Recently, Nevanlinna theory was extended ([1], [6], [7],
[10]) to p-adic meromorphic functions on Cp. Khoai ([8]), Khoai - Tu ([11]),
and Cherry - Ye ([4]) began to study several variable p-adic Nevanlinna theory,
in particular, they established p-adic value distribution theory for the case of
hyperplanes. In [8] Khoai gives a p-adic version of the Poisson-Jensen formula
for several variable functions. His method is based on the higher dimensional
analogs of the valuation polygon. However, the formula obtained in [8] is hard
to compute. In [4] Cherry and Ye consider a meromorphic function in several
variables and restrict it to a generic line through the origin, and prove that
the counting function for this one variable function does not depend on the
choice of line through the origin. They use this observation to define counting
functions as in the one variable theory, and then a several variable Poisson-
Jensen formula follows. Their formula gives the relation between the modulus
of a function on the boundary of a ball and the zero set in the ball, while the
formula in [8] deals with the zero set on the boundary of a parallelepiped.

In this paper by using the ideas in [8] and some arguments in [4], [11], [12],
we give a p-adic version of the Poisson-Jensen formula for several variable
functions. Our formula permits to compute the modulus of a function on the
boundary of a parallelepied by using information about the zero set. This
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formula lets us to give some results on the value distribution for the case
of hypersurfaces. Notice that, in a recent paper ([12] Min Ru also obtained
similar results, but for the case of holomorphic curves.

The authors would like to thank the referee for many helpful comments
and suggestions.

2. HEIGHT OF p-ADIC HOLOMORPHIC FUNCTIONS OF SEVERAL VARIABLES

Let p be a prime number, Qp the field of p-adic numbers and Cp the p-
adic completion of the algebraic closure of Qp. The absolute value in Qp is
normalized so that |p| = p−1. We further use the notion v(z) for the additive
valuation on Cp which extends ordp.

We use the notations
b(m) = (b1, ..., bm),

(̂bi) = (b1, ..., bi−1, bi+1, ..., bm),
Dr =

{
z ∈ Cp : |z| ≤ r, r > 0

}
, D<r> =

{
z ∈ Cp : |z| = r, r > 0

}
,

D =
{
z ∈ Cp : |z| ≤ 1

}
,

Dr(m)
= Dr1 × · · · ×Drm , where r(m) = (r1, . . . , rm) for ri ∈ R+,

D<r(m)> = D<r1> × · · · ×D<rm>,
Dm = D × · · · ×D the unit polydisc in Cm

p , |f |r(m)
= |f |(r1,...,rm),

γi ∈ N, γ = (γ1, ..., γm),
|γ| = γ1 + · · ·+ γm, zγ = zγ1

1 ...zγm
m , rγ = rγ1

1 ...rγm
m ,

log = logp, ti = − log ri, i = 1, ..., m.

Notice that the set of (r1, ..., rm) ∈ Rm
+ such that there exist x1, ..., xm ∈ Cp

with |xi| = ri, i = 1, ..., m, is dense in Rm
+ . Therefore, without loss of generality

one can assume that D<r(m)> 6= ∅.
Let f be a non-zero holomorphic function in Dr(m)

represented by a con-
vergent series

f =
∑

|γ|≥0

aγzγ , |zi| ≤ ri for i = 1, . . . , m.

We define
|f |r(m)

= max
0≤|γ|<∞

|aγ |rγ .

Set γt = γ1t1 + · · ·+ γmtm.
Then we have

lim
|γ|→∞

(v(aγ) + γt) = +∞.

Hence, there exists an ~γ ∈ Nm such that v(aγ) + γt is minimal.
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Definition 2.1. The height of the function f(z(m)) is defined by

Hf (t(m)) = min
0≤|γ|<∞

(v(aγ) + γt).

We also use the notation

H+
f (t(m)) = −Hf (t(m)).

Write

f(z(m)) =
∞∑

k=0

fi,k (̂zi)zk
i , i = 1, 2, . . . , m.

Set
If (t(m))=

{
(γ1, . . . , γm) ∈ Nm : v(aγ) + γt = Hf (t(m))

}

n+
i,f (t(m))= min

{
γi : ∃ (γ1, . . . , γi, . . . , γm) ∈ If (t(m))

}
,

n−i,f (t(m))= max
{

γi : ∃ (γ1, . . . , γi, . . . , γm) ∈ If (t(m))
}

,

ni,f (0, 0)= min
{

k : fi,k (̂zi) 6≡ 0
}

,

νf (t(m))=
m∑

i=1

(
(n−i,f (t(m))− n+

i,f (t(m))
)
.

Call ~t a critical point if νf (~t) 6= 0.

Theorem 2.2. Let f(z) be a holomorphic function on Dr. Assume that
f is not identically zero. Then there exist a polynomial

g(z) = b0 + b1z + · · ·+ bvz
v, deg g = n−f (t), t = − logp r,

and a holomorphic function h = 1 +
∞∑

n=1
cnzn on Dr such that

1) f(z) = g(z)h(z),

2) f(z) just has n−f (t) zeros in Dr,

3) n−f (t)− n+
f (t) is equal to the number of zeros of f at v(z) = t,

4) h has no zeros in Dr.

For the proof, see Weierstrass Preparation Theorem [6].

The set of z in Cp with |z| ≤ 1 forms a closed subring of Cp. We denote
this subring by O (called the ring of integers of Cp), and the set of z with
|z| < 1 forms a maximal ideal I in O. We denote the field O/I, which is called
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the residue class field, by Ĉp. Note that since Cp is algebraically closed, so is
Ĉp, and in particular Ĉp cannot be a finite field. Given an element w in O,
denote its equivalence class in Ĉp by ŵ.

Let f =
∞∑
|γ|=0

aγzγ be a non-zero entire function on Cm
p . Choose y = y(m)

such that
|y| = max{|γ| : |aγ | = |f |(1,...,1)}.

Define f̂ by

f̂ =
∞∑

|γ|=0

âγ

ay
zγ .

Since f is entire,
∣∣aγ

ay

∣∣ < 1 for all but finitely many γ, and thus f̂ is a polynomial

in m−variables with coefficients in Ĉp. Since
∣∣∣ay

ay

∣∣∣ = 1,

f̂ is not the zero polynomial.

Lemma 2.3. Let fs(z(m)) =
∞∑

|γ|=0

as
γzγ , s = 1, . . . , q, be q non-zero entire

functions on Cm
p . Then for any Dr(m)

in Cm
p (D<r(m)> 6= ∅) there exists

u = u(m) ∈ Dr(m)
such that

∣∣fs(u(m))
∣∣ =

∣∣fs

∣∣
r(m)

, s = 1, . . . , q.

Proof. First we prove that if r(m) = (1, . . . , 1), then there exists w =
w(m) ∈ Dm such that

(2.1) |fs(w)| = max
0≤|γ|<∞

|as
γ |, s = 1, . . . , q.

For each s = 1, . . . , q, choose ys = (ys
1, . . . , y

s
m) such that

|ys| = max{|γ| : |as
γ | = |f |(1,...,1)}.

Set
M = {f̂s, s = 1, . . . , q}.

Since f̂s is not the zero polynomial, so is
q∏

s=1
f̂s.
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Let w = w(m) ∈ Dm be such that ŵ is not a solution of
q∏

s=1
f̂s.

Set
fs(w)
ays

= bs, s = 1, . . . , q.

We have
b̂s = f̂s(ŵ).

Since ŵ is not a solution of all f̂s,

bs /∈ I.

Thus ∣∣∣fs(w)
ays

∣∣∣ = 1.

Hence, |fs(w)| = |ays |.
Now let x1, . . . , xm ∈ Cp such that |xi| = ri.

Consider the following transformations of Cm
p

ϕ(z(m)) = (x1z1, . . . , xmzm).

Set
x = (x1, . . . , xm).

We have
ϕ(Dm) = Dr(m)

,

and

fs ◦ ϕ(z(m)) =
∞∑

|γ|=0

(
as

γxγ
)
zγ

are non-zero entire functions on Cm
p .

By (2.1) there exists w = w(m) such that
∣∣fs ◦ ϕ(w)

∣∣= max
0≤|γ|<∞

∣∣as
γxγ

∣∣ = max
0≤|γ|<∞

∣∣as
γ

∣∣∣∣x1

∣∣γ1 · · · ∣∣xm

∣∣γm

= max
0≤|γ|<∞

∣∣as
γ

∣∣rγ =
∣∣fs

∣∣
r(m)

.

Set u = ϕ(w). Then u ∈ Dr(m)
and

∣∣fs(u)
∣∣ =

∣∣fs

∣∣
r(m)

, s = 1, . . . , q.

Lemma 2.4. Let fs(z(m)), s = 1, 2, . . . , q, be q non-zero holomorphic
functions on Dr(m)

. Then there exists u = u(m) ∈ Dr(m)
such that

|fs(u)| = |fs|r(m)
, s = 1, 2, . . . , q.
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Proof. Let

fs(z(m)) =
∞∑

|γ|=0

as
γzγ .

For each s = 1, 2, . . . , q, we set

ks = max
0≤|γ|<∞

{
|γ| : ∣∣as

γ

∣∣rγ =
∣∣fs

∣∣
r(m)

}
.

Then
Ps =

∑

0≤|γ|≤ks

as
γzγ , s = 1 . . . , q

are non-zero entire functions on Cm
p .

By Lemma 2.3, there exists u(m) = (u1, . . . , um) ∈ Dr(m)
with |ui| = ri

such that
|Ps(u(m))| = |Ps|r(m)

, s = 1, . . . , q.

Moreover,

|Ps|r(m)
= |fs|r(m)

, |Ps(u(m))| = |fs(u(m))|, s = 1, . . . , q.

Thus
|fs(u(m))| = |fs|r(m)

, s = 1, . . . , q.

As an immediate consequence of Lemma 2.4 we have

Corollary 2.5. Let f(z(m)) be a non-zero holomorphic function on Dr(m)
.

Then
max

u∈Dr(m)

|f(u)| = |f |r(m)
.

3. p-ADIC POISSON - JENSEN FORMULA IN SEVERAL VARIABLES

Let f be a non-zero holomorphic function on Dr(m)
.

Write

f(z(m)) =
∞∑

k=0

fi,k (̂zi)zk
i , i = 1, 2, . . . ,m.

Let
ni,f (0, 0) = min{k : fi,k (̂zi) 6≡ 0}.

For a fixed i (i = 1, . . . , m) we set for simplicity

ni,f (0, 0) = `, k1 = n−i,f (t(m)), k2 = n+
i,f (t(m)).
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Then there exist multi-indices γ = (γ1, . . . , γi, . . . , γm) ∈ If (t(m)) and µ =
(µ1, . . . , µi, . . . , µm) ∈ If (t(m)) such that γi = k1, µi = k2.

We consider the following holomorphic functions on Dr(m)

f`(z(m)) = fi,`(̂zi)z`
i , fk1(z(m)) = fi,k1 (̂zi)zk1

i , fk2(z(m)) = fi,k2 (̂zi)zk2
i .

The functions are not identically zero.
Set

Ui = {u = u(m) ∈ Dr(m)
: |f`(u)| = |f`|r(m)

, |f(u)| = |f |r(m)
,

|fk1(u)| = |fk1 |r(m)
, |fk2(u)| = |fk2 |r(m)

},

where i = 1, . . . , m.
By Lemma 2.4, Ui is a non-empty set. For each u ∈ Ui, set

fi,u(z) =
∞∑

k=0

fi,k (̂ui)zk
i , z = zi ∈ Dri .

The following theorem shows that we can use the Weierstrass Preparation
Theorem [6] to count zeros by slicing with a generic line through the point u :

Theorem 3.1. Let f(z(m)) be a holomorphic function on Dr(m)
. Assume

that f(z(m)) is not identically zero. Then for each i = 1, . . . , m, and for all
u ∈ Ui, we have

1) Hf (t(m)) = Hfi,u
(ti),

2) n−i,f (t(m)) is equal to the number of zeros of fi,u in Dri ,

3) n−i,f (t(m))−n+
i,f (t(m)) is equal to the number of zeros of fi,u at v(z) = ti.

Proof. Set k3 = n−fi,u
(ti), k4 = n+

fi,u
(ti). Since

|f(u(m))| = |f |r(m)
= |aγ |rγ1

1 . . . rk1
i . . . rγm

m = |aµ|rµ1
1 . . . rk2

i . . . rµm
m

= |fk1 |r(m)
= |fk2 |r(m)

,

we obtain

|fi,k1 (̂ui)|rk1
i = |f |r(m)

= |fi,k2 (̂ui)|rk2
i = |f(u(m))|.

On the other hand, we have

|fi,k2 (̂ui)|rk2
i = |fi,k1 (̂ui)|rk1

i ≤ |fi,u|ri ≤ |f |r(m)
.
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Hence
|fi,k2 (̂ui)|rk2

i = |fi,u|ri = |fi,k1 (̂ui)|rk1
i .

From this it follows that k1 ≤ k3 and k4 ≤ k2. Now we consider j such that

|fi,j (̂ui)|rj
i = |fi,u|ri .

Then there exists η = (η1, . . . , ηi, . . . , ηm) with ηi = j such that

|f(u(m))|= |fi,u(ui)| ≤ |fi,u|ri = |fi,j (̂ui)|rj
i

≤ |aη|rη ≤ |f |r(m)
.

Since
|f(u(m))| = |f |r(m)

,

we have
|aη|rη = |f |r(m)

.

Hence k2 ≤ j ≤ k1. From this it follows that k4 ≥ k2 and k3 ≤ k1. Since
k1 ≤ k3 and k2 ≥ k4, so k2 = k4 and k1 = k3. By Lemma 2.4 and Theorem
2.2, we see that Hf (t(m)) = Hfi,u(ti), and n−i,f (t(m)) is equal to the number of
zeros of fi,u in Dri and n−i,f (t(m))− n+

i,f (t(m)) is equal to the number of zeros
of fi,u at ti.

Theorem 3.1 is proved.

For each i = 1, . . . , m, from Theorem 3.1 we see that ni,f (0, 0) = nfu(0, 0)
for all u ∈ Ui.

Let f be a non-zero holomorphic function on Dr(m)
. Define ni,f (0, r(m)) to

be the number of zeros with absolute value ≤ ri of the one - variable function
fi,u(z).

Theorem 3.1 tells us that

ni,f (0, r(m)) = n−i,f (t(m)).

For a an element of Cp and f a holomorphic function on Dr(m)
, which is not

identically equal to a, define

ni,f (a, r(m)) = ni,f−a(0, r(m)), ni,f (a, 0) = ni,f−a(0, 0), i = 1, . . . ,m.

Fix real numbers ρ1, . . . , ρm with 0 < ρi ≤ ri, i = 1, . . . , m.

For each x ∈ R, set

Ai(x) = (ρ1, . . . , ρi−1, x, ri+1, . . . , rm), i = 1, . . . , m.
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Define the counting function Nf (a, t(m)) by

Nf (a, t(m)) =
1

ln p

m∑

k=1

rk∫

ρk

nk,f (a,Ak(x))
x

dx.

If a = 0, then set Nf (t(m)) = Nf (0, t(m)).
For each t ∈ R, set

Ti(t) = (c1, . . . , ci−1, t, ti+1, . . . , tm),

where
ci = − log ρi, i = 1, . . . ,m.

Theorem 3.2. (P -adic Poisson - Jensen Formula in several variables)
Let f be a non-zero holomorphic function on Dr(m)

. Then

H+
f (t(m))−H+

f (c(m)) = Nf (t(m)).

Proof. Let

f =
∞∑

k=0

f1,k (̂z1)zk
1 .

Set
` = n1,f (0, 0), a = log

∣∣f1,`(̂z1)
∣∣cr1

,

M =
1

ln p

r1∫

0

n1,f (0, A1(x))− `xdx + ` log r1,

M1 =
1

ln p

ρ1∫

0

n1,f (0, A1(x))− `xdx + ` log ρ1,

M2 =
1

ln p

r1∫

ρ1

n1,f (0, A1(x))− `xdx + ` log
r1

ρ1
,

M3 =
1

ln p

r1∫

ρ1

n1,f (0, A1(x))xdx,

Γ= {T1(t) : (n−1,f ◦ T1(t)− n+
1,f ◦ T1(t)

) 6= 0, t ≥ t1}.
We will prove

(3.1) H+
f (t(m))−H+

f ◦ T1(c1) = M3.
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To show (3.1) first prove the following

(3.2) H+
f (t(m))− a = M.

Case 1. ` = 0.
Then

M =
1

ln p

r1∫

0

n1,f (0, A1(x))
x

dx.

If Γ = ∅, then H+
f (t(m)) = a and M = 0. Therefore

H+
f (t(m))− a = M.

If Γ 6= ∅, then Γ is a finite set. Suppose that Γ contains n elements

y(1) = T1(t(1)),
·
·
·

y(n) = T1(t(n)),

where t1 ≤ t(1) < t(2) < · · · < t(n).
Set bi = p−t(i) , i = 1, 2, . . . , n, s = n1,f (0, r(m)), s1 = n1,f (0, A1(b2)), a1 =

|f1,s(̂z1)|cr1
, a2 = H+

f ◦ T1(t(1)), a3 = H+
f ◦ T1(t(2)), a4 = |f1,s1 (̂z1)|cr1

. Then
0 < bn < bn−1 < · · · < b1 ≤ r1. We will prove (3.2) by induction on n.

Case n = 1.
If b1 = r1, then n1,f (0, A1(x)) = 0, 0 < x < r1. Moreover, by the continuity

of H+
f ◦ T1(t), we obtain (3.2). Consider b1 < r1. We have

M = s
(
log r1 − log b1

)
= log(a1r

s
1)− log(a1b

s
1).

Since b1 < r1 and n = 1,

H+
f (t(m)) = log(a1r

s
1).

Furthermore, T1(t) /∈ Γ with t > t(1) and H+
f ◦ T1(t) is continuous.

Thus
log (a1b

s
1) = a.

Hence (3.2) follows. So (3.2) is proved in this case.
Now we will prove (3.2) for any n.
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Case b1 < r1.
Then 0 < bn < bn−1 · · · < b1 < r1 and t1 < t(1) < · · · < t(n). Apply the

induction hypothesis,

1
ln p

b1∫

0

n1,f (0, A1(x))
x

dx = a2 − a.

Thus

M = a2 − a +
1

ln p

r1∫

b1

n1,f (0, A1(x))
x

dx.

On the other hand,

1
ln p

r1∫

b1

n1,f (0, A1(x))
x

dx= s
(
log r1 − log b1

)

= log(a1r
s
1)− log(a1b

s
1),

a2 = log(a1b
s
1).

Since T1(t) /∈ Γ with t1 ≤ t < t(1),

(3.4) H+
f (t(m)) = log(a1r

s
1).

By (3.3) and (3.4),
M = H+

f (t(m))− a.

Case b1 = r1.
Then 0 < bn < . . . < b2 < b1 = r1 and t1 = t(1) < . . . < t(n). Apply the

induction hypothesis,

1
ln p

b2∫

0

n1,f (0, A1(x))
x

dx = a3 − a.

Thus

(3.5) M = a3 − a +
1

ln p

b1∫

b2

n1,f (0, A1(x))
x

dx.

Moreover, n1,f (0, A1(x)) = s1 with b2 ≤ x < b1, and

1
ln p

b1∫

b2

n1,f (0, A1(x))
x

dx = s1(log b1 − log b2) = log (a4b
s1
1 )− log (a4b

s1
2 ),
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a3 = log (a4b
s1
2 ).

Since T1(t) /∈ Γ with t(1) < t < t(2), and by the continuity of H+
f ◦ T1(t),

H+
f (tm) = log (a4b

s1
1 ).

Since (3.5) and (3.6), we obtain

M = H+
f (tm)− a.

Case ` 6= 0.
Then f = f1f2 with f1 = z`

1. We have

n1,f2(0, 0)= 0,

n1,f (0, 0)= `, n1,f (0, A1(x)) = n1,f2(0, A1(x)) + `,

H+
f (t(m)) = H+

f1
(t(m)) + H+

f2
(t(m)) = ` log r1 + H+

f2
(t(m)).

By case ` = 0,

1
ln p

r1∫

0

n1,f (0, A1(x))
x

dx = H+
f2

(t(m))− a.

Thus
M = H+

f2
(t(m))− a + ` log r1 = H+

f (t(m))− a.

Similarly we obtain

(3.7) M1 = H+
f ◦ T1(c1)− a.

We have
M = M1 + M2, M3 = M2.

Apply (3.2) and (3.7),

M3 = M −M1 = H+
f (t(m))−H+

f ◦ T1(c1).

Similarly we have
(3.8)

H+
f ◦ Ti−1(ci−1)−H+

f ◦ Ti(ci) =
1

ln p

ri∫

ρi

n1,f (0, A1(x))
x

dx for i = 2, . . . , m.
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Apply (3.8),

H+
f (t(m))−H+

f ◦ Tm(cm) =H+
f (t(m))−H+

f ◦ T1(c1) + H+
f ◦ T1(c1)− . . .

+H+
f ◦ Tm−1(cm−1)−H+

f ◦ Tm(cm),

we obtain
H+

f (t(m))−H+
f (c(m)) = Nf (t(m)).

4. VALUE DISTRIBUTION ON p-ADIC HYPERSUFACES

We say that an entire function g divides an entire function f if f = gh
for some entire function h, and we say that g is a greatest common divisor of
n entire functions f1, . . . , fn if whenever an entire function h divides each of
non-zero fi then h also divides g. We say that n entire functions f1, . . . , fn are
without common factors if 1 is a greatest common divisor.

Note that greatest common divisors exist in the ring of entire functions on
Cm

p (see [4]).
By a holomorphic map

f : Cm
p −→ Pn(Cp) = Pn,

we mean an equivalence class of (n+1)−tuples of entire functions (f1, . . . , fn+1)
such that f1, . . . , fn+1 do not have any common factors in the ring of entire
functions on Cm

p , where two (n + 1)−tuples (f1, . . . , fn+1) and (g1, . . . , gn+1)
are equivalent if there exists a constant c such that fi = cgi for all i. We
identify f with its representation by a collection of entire functions on Cm

p

f = (f1, . . . , fn+1).

Definition 4.1. The height of a holomorphic map f is defined by

Hf (t(m)) = min
1≤i≤n+1

Hfi(t(m)).

We also use the notation

H+
f (t(m)) = −Hf (t(m)).

A family Q1, . . . , Qq of polynomials in n + 1 variables with coefficients in
Cp (q ≥ n + 1) is said to be admissible if any set of n + 1 polynomials in this
family has no common zeros in Cn+1

p − {0}.
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Let Xi be hypersurfaces in Pn defined by the equations Qi = 0, i = 1, . . . , q,
where Qi are homogeneous polynomials of degree di. X1, . . . , Xq, q ≥ n + 1
are said to be in general position if the family Q1, . . . , Qq is admissible.

Let X be a hypersurface of Pn such that the image of f is not contained
in X, and X is defined by the equation Q = 0.

We set

Nf (X, t(m))= NQ◦f (t(m)), mf (X, t(m)) = max
1≤i≤n+1

(
H+

fd
i

(t(m))−H+
Q◦f (t(m))

)
,

Tf (X, t(m))= Nf (X, t(m)) + mf (X, t(m)), Hf (X, t(m)) = HQ◦f (t(m)),

H+
f (X, t(m))= −Hf (X, t(m)).

Notice that Hf (t(m)) and Hf (X, t(m)) are well defined upto an additive con-
stant.

Theorem 4.2. (first main theorem). Let f : Cm
p −→ Pn be a holomorphic

map. Let X be a hypersurface of degree d in Pn such that the image of f is
not contained in X. Then

Tf (X, t(m)) = dH+(t(m)) + 0(1),

where the 0(1) is bounded when T = max
1≤i≤m

ti → −∞.

Proof. Let f = (f1, . . . , fn+1). By definition,

Tf (X, t(m))= NQ◦f (t(m)) + max
1≤i≤n+1

(H+
fd

i

(t(m))−H+
Q◦f (t(m)))

= dH+
f (t(m)) + (NQ◦f (t(m))−H+

Q◦f (t(m))).

By Theorem 3.2,
NQ◦f (t(m))−H+

Q◦f (t(m)) = O(1),

Therefore,
Tf (X, t(m)) = dH+

f (t(m)) + O(1).

Theorem 4.2 is proved.

Theorem 4.3. (second main theorem). Let f : Cm
p −→ Pn be a non-

constant holomorphic map, and let Xi be hypersurfaces of degree d in general
position in Pn, such that the image of f is not contained in Xi, i = 1, . . . , q.
Then

(q − n)H+
f (t(m)) ≤

q∑

i=1

Nf (Xi, t(m))
di

+ 0(1),
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where 0(1) is bounded when T = max
1≤i≤m

ti → −∞.

Proof. To show, first suppose that d1 = d2 = · · · = dq = d, and Xi are
defined by the equations

Qi(x1, . . . , xn+1) = 0 with i = 1, . . . , q.

Now let, for a fixed t(m), the following inequalities hold

(4.1) HQq◦f (t(m)) ≤ HQq−1◦f (t(m)) ≤ · · · ≤ HQ1◦f (t(m)).

From the hypothesis of general position, the Hilbert’s Nullstellensatz [13] im-
plies that for any integer k, 1 ≤ k ≤ n + 1, there is an integer mk ≥ d such
that

xmk
k =

n+1∑

i=1

aik(x1, . . . , xn+1)Qi(x1, . . . , xn+1),

where aik(x1, . . . , xn+1), 1 ≤ i ≤ n + 1, 1 ≤ k ≤ n + 1, are homogeneous
polynomials with coefficients in Cp of degree mk − d.

Therefore

fmk
k =

n+1∑

i=1

aik(f1, . . . , fn+1)Qi(f1, . . . , fn+1), k = 1, . . . , n + 1.

From this it follows that

Hf
mk
k

(t(m)) = mkHfk
(t(m))≥ (mk − d)Hf (t(m))

+ min
1≤i≤n+1

HQi◦f (t(m)) + 0(1)

= (mk − d)Hf (t(m))

+HQn+1◦f (t(m)) + 0(1),

where 0(1) is bounded when T = max
1≤i≤m

ti → −∞. So

(4.2) dHfk
(t(m)) ≥ HQi◦f (t(m)) + 0(1) for i = n + 1, . . . , q.

Notice that if Qi◦f is not a constant, then HQi◦f (t(m)) → −∞ when T → −∞,
i = 1, . . . , q. Thus, by (4.1) and (4.2)

d(q − n)Hf (t(m)) ≥
q∑

i=1

HQi◦f (t(m)) + 0(1).
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Hence

d(q − n)H+
f (t(m)) ≤

q∑

i=1

H+
Qi◦f (t(m)) + 0(1).

By Theorem 3.2, we obtain

H+
Qi◦f (t(m)) = NQi◦f (t(m)) + 0(1).

Thus

(4.3) d(q − n)H+
f (t(m)) ≤

q∑

i=1

Nf (Xi, t(m)) + 0(1).

Now we can return to the proof of Theorem 4.3. We set

d = d1 . . . dq and write d = diki, i = 1, . . . , q.

Let Yi be the hypersurfaces in Pn defined by the equations Qki
i = 0, i =

1, . . . , q. Then Yi are hypersurfaces of degree d in general position in Pn. On
the other hand, Qki

i ◦ f not identically zero.
Thus, by (4.3),

d(q − n)H+
f (t(m)) ≤

q∑

i=1

Nf (Yi, t(m)) + 0(1).

Since
Nf (Yi, t(m)) = kiNf (Xi, t(m)),

so

(q − n)H+
f (t(m)) ≤

q∑

i=1

Nf (Xi, t(m))
di

+ 0(1).

Theorem 4.3 is proved.

Let f : Cm
p −→ Pn be a holomorphic map and let X be a hypersurface of

degree d in Pn such that the image of f is not contained in X. Then we define
the defect δf (X) of f for the hypersurface X to be

δf (X) = lim
T→−∞

inf
{

1− Nf (X, t(m))

dH+
f (t(m))

}
,

where T = max
1≤i≤m

ti.

Theorem 4.3 implies the following
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Theorem 4.4. (defect relation) Let f : Cm
p −→ Pn be a non-constant

holomorphic map and let Xi be hypersurfaces of degree di in general position
in Pn such that the image of f is not contained in Xi, i = 1, . . . , q. Then

q∑

i=1

δf (Xi) ≤ n.

In particular, we have the following

Theorem 4.5. Let f : Cm
p −→ Pn be a holomorphic map and let Xi be

hypersurfaces of degree di in general position in Pn such that the image of f
omits Xi, i = 1, . . . , q. Then f must be constant.

Remark: Theorems 4.3, 4.4 and 4.5 are sharp by the following example:

Let X1, . . . , Xn+1 be the coordinate hyperplanes in projective space Pn(Cp)
and let f = (1, 2, . . . , n, z) : Cm

p → Pn(Cp). Then f(Cm
p ) omits the first n

coordinate hyperplanes, but f is non-constant.
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