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ON GENERALIZED EXPONENTS OF TOURNAMENTS

Bo Zhou¤ and Jian Shen

Abstract. We determine two types of generalized exponent sets for tourna-
ments with given order. In the course of proving the main results we find the
following result, which may be interesting in its own right: When n is large
enough, almost all tournaments on n vertices have the property that there is a
path of length 2 from each vertex u to each vertex v 6= u.

1. INTRODUCTION

Let G = (V; E) be a digraph on n vertices. The notation u
k! v (resp. u

k
6! v)

is used to indicate that there is a walk (no walk) of length k from u to v. By u ! v

we denote u
1! v. Similarly, for a set X µ V , the notation X

k! v (resp. X
k
6! v)

means that u
k! v for some u 2 X (resp. u

k
6! v for each u 2 X).

A digraph G is said to be primitive if there exists an integer p ¸ 1 such that
u

p! v for all u; v 2 V (G) (possibly u = v). The minimum such p is called the
exponent of G, denoted by exp(G).

Suppose G is a primitive digraph of order n. The exponent of a set X µ
V , denoted by expG(X), is the smallest integer p ¸ 1 such that X

p! v for
each v 2 V . For x 2 V , we use expG(x) to denote expG(fxg) for simplicity.
Without loss of generality, let the vertices v1; v2; : : : ; vn of G be ordered such
that expG(v1) ∙ expG(v2) ∙ : : : ∙ expG(vn). Then expG(vk) is called the
first type k-th generalized exponent of G, denoted by exp(G; k). Let F (G; k) =
maxfexpG(X) : jXj = kg with 1 ∙ k ∙ n. Then F (G; k) is called the second type
k-th generalized exponent of G. Clearly we have exp(G; n) = F (G; 1) = exp(G).
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A tournament is a digraph in which every pair of distinct vertices is joined
by exactly one arc. It is well known [3] that each vertex of a strong (strongly
connected) tournament of order n is contained in at least one cycle of each length
between 3 and n, inclusive, and hence [7] that a tournament of order n is primitive
if and only if it is strong and n ¸ 4.

Let PTn be the set of all primitive tournament of order n, and let E1(n; k) =
fexp(T; k) : T 2 PTng and E2(n; k) = fF (T; k) : T 2 PTng be the two gen-
eralized exponent sets of PTn. Let e1(n; k) = maxfm : m 2 E1(n; k)g and
e2(n; k) = maxfm : m 2 E2(n; k)g.

In [7], Moon and Pullman proved that e1(n; n) = n + 2 for n ¸ 5 and that
E1(n; n) = f3; : : : ; n + 2g for n ¸ 6. In [4, 5], Liu proved that for n ¸ 7

e1(n; k) = k + 2(1)

and

e2(n; k) =

8<:
n¡ k + 3 k = 1; 2;
n¡ k + 2 3 ∙ k ∙ n¡ 1;
1 k = n:

(2)

The main purpose of this note is to determine the sets E1(n; k) and E2(n; k).

2. THE EXPONENT SET E1(n; k)

In this section we will determine the exponent set E1(n; k) for n ¸ 7. First we
construct a family of tournaments Tn;r which will give us a number of exponents
in the sets E1(n; k) and E2(n; k).

Let n; r be integers with 1 ∙ r ∙ n ¡ 2, n ¸ 7. The tournament Tn;r with
vertex set V = f1; 2; : : : ; ng is defined as follows: The arcs (n; n¡ 1); : : : ; (2; 1)
are in Tn;r and so are the arcs (j; i) if 1 ∙ i < j ∙ r + 1; arcs not yet specified are
all oriented towards vertices with larger numbers. Clearly Tn;r contains a cycle of
length n and hence it is primitive.

Lemma 2.1. Suppose that 1 ∙ r ∙ n¡ 4; n ¸ 7. Then

expTn;r
(k) =

½
3 1 ∙ k ∙ r;
3 + k ¡ r r + 1 ∙ k ∙ n:

Proof. There are two cases to consider.

Case 1. 1 ∙ k ∙ r. Then k ! r + 2 ! r + 1 ! j if 1 ∙ j ∙ r,
k ! j + 2 ! j + 1 ! j if r + 1 ∙ j ∙ n ¡ 2, k ! n ¡ 3 ! n ! n ¡ 1 if
j = n ¡ 1, and k ! n ¡ 1 ! n ¡ 2 ! n if j = n. Hence k

3! j for any j with
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1 ∙ j ∙ n. Note that the smallest positive length of walks from each vertex to
itself is 3. We have expTn;r

(k) = 3.

Case 2. r + 1 ∙ k ∙ n. Then k
k¡r! r

3! j and hence k
3+k¡r! j for any j with

1 ∙ j ∙ n. We have expTn;r
(k) ∙ 3 + k ¡ r. Since the smallest length from k

to r is k ¡ r, we have k
2+k¡r
6! r, which implies expTn;r

(k) ¸ 3 + k ¡ r. Hence
expTn;r

(k) = 3 + k ¡ r.

Let T 0
n;r be the tournament obtained from Tn;r by replacing the arc (r; 1) with

(1; r). By using some similar arguments as in Lemma 2.1, one can prove the
following lemma.

Lemma 2.2. For n ¸ 7;

expT 0
n;n¡4

(k) =

8>><>>:
3 1 ∙ k ∙ n¡ 3;
4 k = n¡ 2;
5 k = n¡ 1;
6 k = n;

expT 0
n;n¡3

(k) =

8<:
3 1 ∙ k ∙ n¡ 2;
4 k = n¡ 1;
5 k = n;

expT 0
n;n¡2

(k) =

½
3 1 ∙ k ∙ n¡ 1;
4 k = n:

Theorem 2.3. E1(n; k) = f3; : : : ; k + 2g for n ¸ 7.

Proof. For any T 2 PTn, clearly we have exp(T; k) ¸ 3. By (1) we have
E1(n; k) µ f3; : : : ; k + 2g. In the following we are going to prove the converse
conclusion.

Let r be an integer with 1 ∙ r ∙ n¡ 4. By Lemma 2.1,

expTn;r
(k) =

½
3 1 ∙ k ∙ r;
3 + k ¡ r r + 1 ∙ k ∙ n:

Then (let r = k; k ¡ 1; : : : ; 1)

f3; : : : ; k + 2g µ E1(n; k) if 1 ∙ k ∙ n¡ 4(3)

and (let r = n¡ 4; n¡ 5; : : : ; 1)

fk ¡ n + 7; : : : ; k + 2g µ E1(n; k) if n¡ 3 ∙ k ∙ n:(4)
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By Lemma 2.2, k ¡ n + 6 = exp(T 0
n;n¡4; k) 2 E1(n; k) if k = n ¡ 3; n ¡

2; n ¡ 1; n, k ¡ n + 5 = exp(T 0
n;n¡3; k) 2 E1(n; k) if k = n ¡ 2; n ¡ 1; n,

k¡ n + 4 = exp(T 0
n;n¡2; k) 2 E1(n; k) if k = n¡ 1; n. Note that f3g µ E1(n; n)

(see [7]). Then

f3; : : : ; k ¡ n + 6g µ E1(n; k) if n¡ 3 ∙ k ∙ n:(5)

By combining (3), (4) and (5), we have f3; : : : ; k + 2g µ E1(n; k) for any k
with 1 ∙ k ∙ n. The proof is completed.

3. THE EXPONENT SET E2(n; k)

In this section we will determine the exponent set E2(n; k) for n ¸ 7. Note
that F (T; 1) = exp(T; n) and F (T; n) = 1 for any T 2 PTn. We have E2(n; 1) =
E1(n; n) and E2(n; n) = f1g. Thus we only need to consider the case 2 ∙ k ∙
n¡ 1.

Lemma 3.1. For 1 ∙ r ∙ n¡ 4,

F (Tn;r; k) =

8<:
n¡ r + 2 k = 2;
n¡ k ¡ r + 3 3 ∙ k ∙ n¡ r;
3 n¡ r + 1 ∙ k ∙ n¡ 1:

Proof. We write G = Tn;r. Let X µ f1; : : : ; ng with jXj = k and let
1 ∙ i ∙ n. Note that j

l! i for any 1 ∙ j ∙ r and l ¸ 3 (see Lemma 2.1). If X

contains some j with 1 ∙ j ∙ r, then j
3! i and hence X

3! i for any 1 ∙ i ∙ n,
implying expG(X) ∙ 3. Suppose X contains no j with 1 ∙ j ∙ r.

Case 1. k = 2. X contains some j with r + 1 ∙ j ∙ n¡ 1. Then j
j¡r! r

l! i

for any 1 ∙ i ∙ n and l ¸ 3. On setting l = n ¡ j + 2 we have j
n+r¡2! i and

hence X
n+r¡2! i for any 1 ∙ i ∙ n, which implies F (G; 2) ∙ n ¡ r + 2. Take

X0 = fn; n ¡ 1g. Clearly X0

n¡r+1
6! r. Thus F (G; 2) ¸ expG(X0) ¸ n ¡ r + 2.

It follows that F (G; 2) = n¡ r + 2.

Case 2. k ¸ n ¡ r. Then k = n¡ r, X = fr + 1; : : : ; ng, r + 3
3! i for any

1 ∙ i ∙ r, i
3! i for any r + 1 ∙ i ∙ n and hence X

3! i for any 1 ∙ i ∙ n. It

follows that F (G; k) ∙ 3. Take X0 = f1; : : : ; ngnfr + 2g. Then X0

2
6! r and we

have F (G; k) ¸ expG(X0) ¸ 3. Thus F (G; k) = 3.

Case 3. 3 ∙ k ∙ n ¡ r ¡ 1. Let j = minfu : u 2 Xg. Then r + 1 ∙ j ∙
n ¡ k + 1. If r + 1 ∙ j ∙ n ¡ k, then j

j¡r! r
l! i for any 1 ∙ i ∙ n and
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l = n¡ k ¡ j + 3 ¸ 3, which implies j
n¡k¡r+3! i and hence X

n¡k¡r+3! i for any
1 ∙ i ∙ n. Suppose j = n ¡ k + 1. Then X = fn ¡ k + 1; : : : ; ng. Note that
n¡ k + 3

n¡k¡r+3! i for any 1 ∙ i ∙ r, n¡ k + 1
n¡k¡r+1! r ! i + 1 ! i for any

r + 1 ∙ i ∙ n¡ 1, n¡ k + 1
n¡k¡r+1! r ! n¡ 2 ! n. We have X

n¡k¡r+3! i. It
follows that F (G; k) ∙ n ¡ k ¡ r + 3. Take X0 = fn ¡ k; : : : ; ngnfn ¡ k + 2g.
Then X0

n¡k¡r+2
6! r and so F (G; k) ¸ expG(X0) ¸ n ¡ k ¡ r + 3. Hence

F (G; k) = n¡ k ¡ r + 3.

By using some similar arguments as in Lemma 3.1, one can prove the following
lemmas.

Lemma 3.2. For n ¸ 7,

F (T 0
n;n¡3; k) =

8<:
4 k = 2;
3 3 ∙ k ∙ n¡ 3;
2 k = n¡ 2; n¡ 1;

F (T 0
n;n¡2; k) =

½
3 2 ∙ k ∙ n¡ 3;
2 k = n¡ 2; n¡ 1:

Lemma 3.3. Let T 00
n;n¡3be the tournament obtained from Tn;n¡3 by replacing

the arc (n¡ 3; 2) with (2; n¡ 3). Then

F (T 00
n;n¡3; 2) = 5:

Let Tn be the tournament containing the arc (i; j) if and only if 0 < j¡ i ∙ b1
2nc;

where subtraction is taken modulo n or n + 1 according to n is odd or even. Then

F (Tn; k) =

8>><>>:
3 k = 2; 3;

2 4 ∙ k ∙ bn
2 c+ 1;

1 k ¸ bn
2 c+ 2;

Let T 0
n be the tournament obtained from Tn by replacing the arcs (i; 1) with (1; i)

for all bn
2 c ∙ i ∙ n¡ 3. Then

F (T 0
n; k) =

8<:
3 k = 2;
2 4 ∙ k ∙ n¡ 3;
1 k = n¡ 2; n¡ 1;

if n is odd;

F (T 0
n; k) =

8<:
3 k = 2; 3; 4
2 5 ∙ k ∙ n¡ 3;
1 k = n¡ 2; n¡ 1;

if n is even:
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Lemma 3.4. Suppose T 2 PTn and k ∙ bn=2c+ 1. Then F (T; k) ¸ 2.

Proof. Suppose F (T; k) = 1. Then the in-degree of every vertex is at least
n¡k +1 and hence T contains at least n(n¡k +1) arcs. This yields n(n¡1)=2 ¸
n(n¡ k + 1); that is, k ¸ bn=2c+ 2, a contradiction.

In order to show 2 2 E2(n; 2), one needs to find a tournament T on n vertices
with F (T; 2) = 2. For some special n, we know that an explicit construction of such
a tournament is possible. For example, when n is prime, n ¸ 7 and n ´ 3 (mod
4), it can be proved that every Paley tournament on n vertices has the following
property: there is a path of length 2 from each vertex u to each vertex v 6= u.
This property implies F (T; 2) = 2. (See [2, page 193] for the definition of a Paley
tournament.) Our next result shows that a desired tournament on n vertices always
exists for every n ¸ 24, although it is not constructible from our proof.

Theorem 3.5. For any integer n ¸ 24; there exists a tournament T on n
vertices with the following property:

there is a path of length 2 from each vertex u to each vertex v 6= u:

Furthermore; for sufficiently large n; almost all tournaments on n vertices have
this property.

Proof. Let A be the set of all tournaments with vertex set [n] = f1; 2; : : : ; ng.
Then jAj = 2(n

2): For any i; j 2 [n] with i 6= j, let Probfi 2! jg (resp. Probfi
2
6!

jg) denote the probability of i
2! j (resp. i

2
6! j) among all tournaments in A.

Then

Probfi
2
6! jg = Probfi ! k ! j holds for no k with k 6= i; jg =

µ
3

4

¶n¡2

;

and

Probfi 2! j for all distinct pairs of vertices i; jg¸ 1¡
X

i6=j2[n]

Probfi
2
6! jg

= 1¡ n(n¡ 1)

µ
3

4

¶n¡2

> 0 when n ¸ 24:

Thus, for every n ¸ 24, there exists some tournament T 2 A such that i
2! j for

all distinct vertices i, j. Furthermore, since n(n¡ 1)
¡

3
4

¢n¡2 approaches to 0 when
n approaches to infinity, the second part of the theorem follows immediately.
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Remark 1: The condition n ¸ 24 in Theorem 3.5 is not tight and the bound 24
can almost certainly be decreased. On the other hand, the condition n ¸ 24 cannot
be removed entirely since Theorem 3.5 fails for n = 4 at least.

Remark 2: Theorem 3.5 may be interesting in its own right. It echoes the
following result of Moon and Moser [6]: Almost all n by n (0,1)-matrices are
primitive with exponent 2. (Recall that the adjacency digraph of a (0,1)-matrix may
have digons, while a tournament contains none of them.)

Theorem 3.6. For n ¸ 7 and 4 ∙ k ∙ n¡ 1 or n ¸ 24 and k = 2; 3;

E2(n; k) =

8<:
f2; : : : ; n¡ k + 3g k = 2;
f2; : : : ; n¡ k + 2g 3 ∙ k ∙ bn=2c+ 1;
f1; : : : ; n¡ k + 2g bn=2c+ 2 ∙ k ∙ n¡ 1:

Proof. Let r be an integer with 1 ∙ r ∙ n¡ 4. By Lemma 3.1,

F (Tn;r; k) =

8<:
n¡ r + 2 k = 2;
n¡ k ¡ r + 3 3 ∙ k ∙ n¡ r;
3 n¡ r + 1 ∙ k ∙ n¡ 1:

Then (let r = n¡ 4; n¡ 5; : : : ; 1)

f6; : : : ; n + 1g for k = 2
f4; : : : ; n¡ 1g for k = 3
f3; : : : ; n¡ k + 2g for 4 ∙ k ∙ n¡ 1

9=; µ E2(n; k):(6)

By Lemmas 3.2 and 3.3,

3 = F (T 0
n;n¡2; 2); 4 = F (T 0

n;n¡3; 2); 5 = F (T 00
n;n¡3; 2) 2 E2(n; 2);

3 = F (T 0
n;n¡2; 3) 2 E2(n; 3);

2 2 E2(n; k) for 4 ∙ k ∙ n¡ 1;

1 2 E2(n; k) for bn=2c+ 2 ∙ k ∙ n¡ 1:

By Theorem 3.5, 2 2 E2(n; 2) and hence 2 2 E2(n; 3) for n ¸ 24. Hence we have

f2; : : : ; n¡ k + 3g µ E2(n; k) for k = 2;

f2; : : : ; n¡ k + 2g µ E2(n; k) for k = 3;

f2; : : : ; n¡ k + 2g µ E2(n; k) for 4 ∙ k ∙ bn
2 c+ 1;

f1; : : : ; n¡ k + 2g µ E2(n; k) for bn=2c+ 2 ∙ k ∙ n¡ 1:



572 Bo Zhou and Jian Shen

The proof is completed.

We thank the editor (Professor Gerard J. Chang) and a referee for their helpful
comments on the manuscript.
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