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ON THE ASYMPTOTIC BEHAVIORS OF THE
POSITIVE SOLUTION OF €pu + [ul9i2u =0

Julius Caesar C. Agapito, Lorna I. Paredes, Reynaldo M. Rey and Polly W. Sy

Abstract. In this paper, the unique positive solution of the nonlinear elliptic
equation €pu + |u|9%2u = 0, where p # g, is described and its behaviors
relative to certain limiting conditions on p and q are discussed.

1. INTRODUCTION

For p;q € (1;00), with p # @, we consider the following one dimensional
equation

. Cou+ |uffi?Zu=0 on (0;1) (1)
(E)o1
u(0) = u() = 0 ©)

where ©pu = (Jux|Pi2uy)x.

A function u is said to be a solution of (E)§] if u € Wy*(0;1) and u satisfies
(1) in the distribution sense.

Otani [8] showed the existence of the unique positive solution of (E)Bé‘j and gave
some detailed properties of the solution of (E)f. Idogawa [5] studied the behavior
of the maximum values of the solution of (E)gfj as p;q — 1™. In this paper, we give
an explicit formula for the unigue solution up,q of (E)§: and study the behaviors of
the solution of (E)g;g as p;q — oo and p;q — 1™ relative to some conditions on p
and q.

In Otani’s paper, he proved the following two theorems.

Theorem 1. [8] Suppose that p;q > 1 and p # q. If u is a solution of (E)51;
then u satisfies the following:
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i) ue C®(0;1]) N C=<9=([0; 1]\Z(u)), where
Z(u) = {x € [0;1] |ux(x) = 0}; ®:min{ <H>+1;<q>}

and

<r>=4 ® if r is an even integer
min{n|n > r; nnonnegative integer} otherwise.

ii) P;,—1|ux(x)|lo + L|ux(x)|? = constant for all x € [0;1]
i) limgw o+ Ux(t) = limgw 13 [—Ux(t)]

- _ _ i1 .
V) (Ul ooy = I1UlT oy = masddd | limygy o+ Ux (D).

Theorem 2. [8] Suppose that p;q > 1 and p # . Then (E)5 has a unique
positive solution up,q. Furthermore; for the functional R defined by

R(v) = IVIlLago:ny
[VxlLp:ny”

we have R(Up,q) = sup{R(v)| v e W,y"(0;1) and v # 0}.
Remark: The solution up,q, in addition, satisfy the following:
i) Up:q(X) = Up;q(1 — x) for any x € [0; 1].
i) (up;q)x is positive and decreasing on [0; 3) with (Upq)x(3) = 0.

i) Up;g(3) = MaXyopo:11Upiq (X)-

2. MaIN ResuLTs

We first give an explicit formula for upq. For this, recall that the Beta function
B(k; ) for k; 1 > 0 is defined by

1
/ skil(1 —g)lilgs

0

B(k; 1)

1/t ] . -
= E/ (1 —t&)'ildt  using the substitution t = sK:
0

Let s
il
fpq(s) = / 1 —-t9Hrdt
0
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for any s € [0; 1]. It follows from

S - 1 -
/o (1—t‘*>?ldt§/0 (1t 5 dt=qi'B(qi%1—pil) =Dy
that f,.q is well-defined on [0,1]. Now since

pa = -sHF >0 on (@)

thus fy,q is increasing on [0; 1], and hence fj,q must have an inverse fi  defined
on [0; bp:q].

Let .
Wpig(X) = [Q(pp— 1)} qip fpi;ql(X)
for x € [0; bp;g]. Then on (0; bp;q), we have
a(p - DT d
gea00 = | KD St
- . 1 il
(2.1) = q(pp )| [ Foq (5)] —f'l(x)}
i a5
—1 1)]ase P
_ q(loIO )] [ [ q(p )] Wp;q] ] ;

and (Wp.q)x > 0 on (0; bpq) because Wp,q < [%]ﬁ on (0; bp:q).

Observe that

and lim (Wp,q)x(x) = 0:
X Tbig

i 1) |ai p
o xlércr)L(Wp;q)x(X):[q(pp )]

Since wp,q is continuous on [0; bp.q], we have wpq € LP(0;bpq). It follows
from (2.1) that (Wp;q)x € LP(0;bpgq).

From (2.1), we see, that on (0; bp:q),

il q_Fi’_p
(2.3) W) + [q(pp— 1)] Wi, = [q(pp— 1)] :
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Differentiating both sides of (2.3), we get
(2.4) p(Wp;q)Qil(Wp;q)xx + prlwg;al(Wp;q)x =0 on (0; bp:g):
Multiplying both sides of (2.4) by (p — 1)(p(Wpq)x) i1, we obtain
(((Wp)x)P )X +wWiEE =0 on (0;bpy):
Set
Wp:q(X) if x € [0; bp:q]
Vpq(X) = .
Wpiq(20p;q — X)  if X € [bp:g; 2bpg]:

Then vp,q € WEP(0; 2bpq).  Since Vpq(0) = Vpq(2bpq) = 0, we have vpq €
Lp/n- ; H it i P9 -
méntfg, 2bpiq)- Thus, Vpyq is the unique positive solution of (E)y, . and conse

(2.5) Upig(X) = [20pg] TPV (2DpgX) X € [0; 1]

is in W, (0; 1) and is the unique solution of (E)o:1-
We therefore obtain the following theorem.

Theorem 3. If upq is the unique positive solution of (E)&{; then for any
x € [0; 3]; we have

Upq(¥) = (2011 B(qi Y 1—pit))ase (W)Wfpié(zxqils(q“; 1-pity);

where B is the Beta function and fp.q(s) = fos(l — tq)jp_ldt for s € [0; 1].

Corollary 4. The best possible constant for the Sobolev-Poincare type inequal-
ity
IVl[Lacoay < ClivllLeoay for all v e WoP(0; 1)
is given by
pag *P(pg—q+p)p'a
T :
2(p-1PB@QiL1—pit)

Cpg =

Proof. For each x € [0; ], we have from (2.5)

(2.6) Up:;q(X) = [pr;q]q_F‘)_pr;q (2bp;gX)
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and on (0; 3), we have

(Upig)x(X) = [2pig] 75 (Wiiq)x (20pig):

From (2.2), we abtain

2.7 X'L’B‘+(Up;q)x(x) = [pr;q]q_(i‘B [ 5

Thus, using Theorem 1(iv), Theorem 2 and (2.7), we get

[[Up;qllLaco;n) 14
i H(Up;q)xHLp(o;l) H pqHLq(O,l)
1 1pq Bl
= | 2R Fon i (M)‘“P A
pg—q+p | D
which completes the proof of Corollary 4. .

The behaviors of the unique positive solution up,q of (E)j as p — oo and
q — oo are given in the following theorem.

Theorem 5. (i) Suppose ®(p) is a function defined on (1; co) with 1 < p®(p) #
p and limpx 1 ®(p) = a. If ¢ = p®(p); then

|oli!n:1l_ Up:g(X) = 271 <% — ‘x — %D forall xe[0;1]:

(ii) Let ®(q) be a function defined on (1; o0) such that 1 < q®(q) # g for all
g€ (1;00) and limgx 1 ®(q) = b. If p=q®(q); then

JM Upa () = 21 <% i %D forall e )

Proof. Due to the symmetry of up,q, it suffices to prove the Theorem only on
the interval [0; 1].

To prove (i), let ¢ = p®(p) where the function ® is defined on (1;00) with
1 <p®(p) #p and limpx 1 ®(p) = a. First we recall that

lim (1 — )% =

o If t=1
pYT L

1 if te][0;1):
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By the Lebegue’s Dominated Convergence Theorem, we have

S il S
i . = i —tDr = = 11
IOll!n:}_fp,q(s) p“!n:}_/o (1-tHrdt /o ldt=s forall se|[0;1]:

Thus,
pIi!rr:1L fii0)=x  forall xe[0;1]:
Since 1 < (1 — tq)jp_1 for all t € [0;1], we have fy,q(s) — s™ as p — oo for all
s € [0;1]. In particular by,q = fp,q(1) — 17 as p — oo.
Now, since bp.q > 1 for all p > 1 and fpi;ql is increasing on [0; 1], we have for
all x € (0; 3)
(2.8) i (2) < Fig (2xbyy):

Let 2> 0 be such that 2x(1 +2) < 1, and let p= be such that for all p > p= we
have bp.q < (1 +2). Then

(2.9) il (2xbpg) < Fia(2x(1 +2)):
It follows from (2.8) and (2.9) that, for all p > p=, we have
Fl(2x) < Fig(2xbpg) < Fi(2x(1+2)):
Taking the limit as p — oo, we obtain
2x < pli!ml g (2xbp,g) < 2x(1 + 2):
Hence,
Jim fili(2xbpg) = 2x:

From (2.6), we have

Upig (%) = [2bpg] TP [(p — 1)@(p)] @D F 11 (2xbpiq)
so that if limps 1 ®(p) = a, then

. 1 1
pl'!”:}_ Upg(X) =2x1%x  forall xe [O; E] ;
We thus proved (i).

(ii) can be proved in an analogous manner. [

The behaviors of the maximum values of the unique positive solution of (E)§:
asp— 1" and g — 1% are given in the following theorem.

Theorem 6. (Idogawa) [5] Let Dp,q = MaXyo[o;1] Up;q(X). Then
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(i) for fixed g > 1; we have

1
lim Dp.q = 24i?1;
pY1+ P

(ii) for fixed p > 1, we have

. ip
Ilm Dp’q —_ 2p|1

<p—1>.
quL* p /)

In addition, we describe the behaviors of the unique positive solution of (E):{
asp— 1% and g — 17 in the following two theorems.

Theorem 7. For some + > 1; let ®(p) be a function defined on (1; 1 + %] such

that p # ®(p) > 1 for all p € (1;1 +¢] and lim, x 1+ ®(p) = a > 1. If g = ®(p);
then; for any x € (0; 3]

1
lim upq(x) = 2ait:
pEl+ pa()
Proof. From Theorem 3, we have, for any x € [0; %]
1

(o b)) (552 (2o (31 )

Let g = ®(p) and lim, x 1+ ®(p) = a > 1. For any fixed s € [0; 1), we have

Up;q(x) = Zq?p

s
lim foq(s) = lim /(1_tQ)i%dt
p¥l1t+ p¥i1* Jo

S
/ (1 —t¥)ildt < oo;
0

which implies that limg g 1+ fp;q(S) = oo if and only if s = 1.

c(lyi1al
Since, by definition, B(3;1 — %) = 'I—((‘*;)%l'f)—) where j() is the Gamma
function, we have i "
1
i(3) 1
lim B (1-1) = lim —————— lim -<1——)
(1
_ i@ o = oo
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Therefore, for any x € (0; 3], we have lim, g 1+ %XB(%; 1— %) = o0, and hence,

lim fpi.ql <2—XB <1;1 — 1)) =1
pri+ * q q p
Note that

i B o
o . o |
) <%>q.p <%)q"’ <|(%L(—i)—%)> (i (2- %))q_g_p(p—l)m:

1
p

Since = is not an integer, we see that

p—1

1
im ———= = -
pr1+ (Sin EA)P Ya

From

it follows easily that

P
lim FB <1;1— l)} e
pri+ q p

Hence, for each x € (0; 3], we have limy g 1+ Up,g(X) = 2Tt m

Theorem 8. For some + > 1; let (q) be a function defined on (1; 1 + %] such
that g # (q) >1forallge (3;1++]and limyus+ (@) =b>1 Ifp="(0q);
then for any x € (0; 31;

lim up;q(x) = 2551 <b_—1) 1 — (1 - 2x)Tiv):
qr1™ b

Proof. Since p="(q) and limyx1+ (q) =b > 1, we have for each s € [0;1]
S il
lim foq(s) = / (1-t)>sdt
qEl* 0

= (%) L—(L-9)"F)=g(s):
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Now if y = g(s) where y € [0; bill], thengil(y) =1—(1— (b—g—l)s)b%, and thus

b

Jim fig () =1~ <1 _ <b;b1> y) =

Hence, for each x € (0; %], Theorem 3 vyields,

lim upq(X
qui1+ pia(X)

<ZB (“‘%))ﬁ (b_Tl)_ (1— (1—zx (b—T1> B (1;1_ i))

2

o

"

<b_T1) (1 — (1 — 2x)745):

Thus the theorem is proved. [
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