TAIWANESE JOURNAL OF MATHEMATICS

Vol. 6, No. 4, pp. 555-563, December 2002

This paper is available online at http://www.math.nthu.edu.tw/tjm/

ON THE ASYMPTOTIC BEHAVIORS OF THE POSITIVE SOLUTION OF $\mathbb{C}_p u + |u|^{q_i} ^2 u = 0$

Julius Caesar C. Agapito, Lorna I. Paredes, Reynaldo M. Rey and Polly W. Sy

Abstract. In this paper, the unique positive solution of the nonlinear elliptic equation $\mathfrak{C}_p u + |u|^{q_1} {}^2 u = 0$, where $p \neq q$, is described and its behaviors relative to certain limiting conditions on p and q are discussed.

1. Introduction

For $p; q \in (1; \infty)$, with $p \neq q$, we consider the following one dimensional equation

$$(E)_{0;1}^{p;q} \qquad \left\{ \begin{array}{l} \Phi_p u + |u|^{q_i \ 2} u = 0 & \text{on } (0;1) \\ u(0) = u(1) = 0 \end{array} \right.$$

where $\Phi_p u = (|u_x|^{p_i 2} u_x)_x$.

A function U is said to be a *solution* of $(E)_{0;1}^{p;q}$ if $u \in W_0^{1;p}(0;1)$ and U satisfies (1) in the distribution sense.

Ôtani [8] showed the existence of the unique positive solution of $(E)_{0;1}^{p;q}$ and gave some detailed properties of the solution of $(E)_{0;1}^{p;q}$. Idogawa [5] studied the behavior of the maximum values of the solution of $(E)_{0;1}^{p;q}$ as $p;q \to 1^+$. In this paper, we give an explicit formula for the unique solution $u_{p;q}$ of $(E)_{0;1}^{p;q}$ and study the behaviors of the solution of $(E)_{0;1}^{p;q}$ as $p;q \to \infty$ and $p;q \to 1^+$ relative to some conditions on p and q.

In Ôtani's paper, he proved the following two theorems.

Theorem 1. [8] Suppose that p; q > 1 and $p \neq q$. If u is a solution of $(E)_{0;1}^{p;q}$; then u satisfies the following:

Received May 14, 2001; revised August 13, 2001.

Communicated by S. B. Hsu.

2000 Mathematics Subject Classification: 34B18, 34E10, 35J05, 35J60.

Key words and phrases: nonlinear elliptic equation, asymptotic behavior, positive solution.

This research is supported by the Natural Sciences Research Institute, University of the Philippines-Diliman.

 $i) \ \ u \in C^{\circledast}([0;1]) \cap C^{<q>}([0;1] \backslash Z(u)), \quad \text{where}$

$$Z(u) = \{x \in [0; 1] \mid u_X(x) = 0\}; \quad ^{\textcircled{\tiny 0}} = \min \left\{ < \frac{2-p}{p-1} > +1; < q > \right\}$$

and

$$< r > =$$
 $\begin{cases} \infty & \text{if } r \text{ is an even integer} \\ \min\{n \mid n \geq r; \text{ nnonnegative integer} \} \text{ otherwise.} \end{cases}$

ii)
$$\frac{p_i-1}{p}|u_X(X)|^p+\frac{1}{q}|u_X(X)|^q=\text{constant for all }X\in[0;1]$$

iii)
$$\lim_{t \to 0^+} u_x(t) = \lim_{t \to 1^+} [-u_x(t)]$$

$$\mathrm{iv)} \ \|u_x\|_{L^p(0;1)}^p = \|u\|_{L^q(0;1)}^q = \tfrac{q(p_i \ 1)}{pq_i \ q+p} |\operatorname{Iim}_{t!} \ _{0^+} u_x(t)|^p.$$

Theorem 2. [8] Suppose that p; q > 1 and $p \neq q$. Then $(E)_{0:1}^{p;q}$ has a unique positive solution $U_{p:q}$. Furthermore; for the functional R defined by

$$R(v) = \frac{\|v\|_{L^q(0;1)}}{\|v_x\|_{L^p(0;1)}};$$

we have $R(u_{p;q}) = \sup\{R(v)| v \in W_0^{1;p}(0;1) \text{ and } v \neq 0\}.$

Remark: The solution $U_{p;q}$, in addition, satisfy the following:

- i) $u_{p;q}(x) = u_{p;q}(1-x)$ for any $x \in [0; 1]$.
- ii) $(u_{p;q})_x$ is positive and decreasing on $[0;\frac{1}{2})$ with $(u_{p;q})_x(\frac{1}{2})=0$.
- iii) $u_{p;q}(\frac{1}{2}) = \max_{x \ge [0;1]} u_{p;q}(x)$.

2. Main Results

We first give an explicit formula for $u_{p;q}$. For this, recall that the Beta function B(k;l) for k;l>0 is defined by

$$B(k; I) = \int_0^1 s^{k_i - 1} (1 - s)^{l_i - 1} ds$$

$$= \frac{1}{k} \int_0^1 (1 - t^{\frac{1}{k}})^{l_i - 1} dt \quad \text{using the substitution } t = s^k$$
:

Let

$$f_{p;q}(s) = \int_0^s (1-t^q)^{\frac{i-1}{p}} dt$$

for any $S \in [0; 1]$. It follows from

$$\int_0^s (1-t^q)^{\frac{i-1}{p}} dt \le \int_0^1 (1-t^q)^{\frac{i-1}{p}} dt = q^{i-1} B(q^{i-1}; 1-p^{i-1}) =: b_{p;q}$$

that $f_{p;q}$ is well-defined on [0,1]. Now since

$$\frac{d}{ds}f_{p;q}(s) = (1 - s^q)^{\frac{i-1}{p}} > 0 \quad \text{on (0; 1)};$$

thus $f_{p;q}$ is increasing on [0; 1], and hence $f_{p;q}$ must have an inverse $f_{p;q}^{i,1}$ defined on [0; $b_{p;q}$].

Let

$$w_{p;q}(x) = \left[\frac{q(p-1)}{p}\right]^{\frac{1}{q_i p}} f_{p;q}^{i,1}(x)$$

for $x \in [0; b_{p;q}]$. Then on $(0; b_{p;q})$, we have

$$\begin{split} \frac{d}{dx}w_{p;q}(x) &= \left[\frac{q(p-1)}{p}\right]^{\frac{1}{q_{i}\cdot p}}\frac{d}{dx}f_{p;q}^{i,1}(x) \\ &= \left[\frac{q(p-1)}{p}\right]^{\frac{1}{q_{i}\cdot p}}\left[\frac{d}{ds}f_{p;q}(s)|_{s=f_{p;q}^{i,1}(x)}\right]^{i}^{1} \\ &= \left[\frac{q(p-1)}{p}\right]^{\frac{1}{q_{i}\cdot p}}\left[1-\left[\left[\frac{q(p-1)}{p}\right]^{\frac{i}{q_{i}\cdot p}}w_{p;q}\right]^{q}\right]^{\frac{1}{p}}; \end{split}$$

and $(w_{p;q})_x > 0$ on $(0;b_{p;q})$ because $w_{p;q} < [\frac{q(p_i \ 1)}{p}]^{\frac{1}{q_i \ p}}$ on $(0;b_{p;q})$.

Observe that

$$(2.2) \quad \lim_{x!=0^+} (w_{p;q})_x(x) = \left[\frac{q(p-1)}{p}\right]^{\frac{1}{q_i-p}} \quad \text{and} \quad \lim_{x!=b_{p;q}} (w_{p;q})_x(x) = 0:$$

Since $W_{p;q}$ is continuous on $[0;b_{p;q}]$, we have $W_{p;q} \in L^p(0;b_{p;q})$. It follows from (2.1) that $(W_{p;q})_x \in L^p(0;b_{p;q})$.

From (2.1), we see, that on $(0; b_{p;q})$,

(2.3)
$$(w_{p;q})_{x}^{p} + \left[\frac{q(p-1)}{p}\right]^{i} w_{p;q}^{q} = \left[\frac{q(p-1)}{p}\right]^{\frac{p}{q_{i}-p}} :$$

Differentiating both sides of (2.3), we get

$$(2.4) \qquad p(w_{p;q})_{x}^{p_{i}-1}(w_{p;q})_{xx} + \frac{p}{p-1}w_{p;q}^{q_{i}-1}(w_{p;q})_{x} = 0 \qquad \text{on } (0;b_{p;q})$$

Multiplying both sides of (2.4) by $(p-1)(p(w_{p;q})_x)^{i-1}$, we obtain

$$(((w_{p;q})_x)^{p_i})_x + w_{p;q}^{q_i} = 0$$
 on $(0; b_{p;q})$:

Set

$$v_{p;q}(x) = \left\{ \begin{array}{ll} w_{p;q}(x) & \text{if } x \in [0;b_{p;q}] \\ \\ w_{p;q}(2b_{p;q}-x) & \text{if } x \in [b_{p;q};2b_{p;q}] . \end{array} \right.$$

Then $v_{p;q} \in W^{1;p}(0;2b_{p;q})$. Since $v_{p;q}(0) = v_{p;q}(2b_{p;q}) = 0$, we have $v_{p;q} \in W_0^{1;p}(0;2b_{p;q})$. Thus, $v_{p;q}$ is the unique positive solution of $(E)_{0;2b_{p;q}}^{p;q}$ and consequently,

(2.5)
$$u_{p;q}(x) = [2b_{p;q}]^{\frac{p}{q_i p}} v_{p;q}(2b_{p;q}x) \qquad x \in [0; 1]$$

is in $W_0^{1;p}(0;1)$ and is the unique solution of $(E)_{0;1}^{p;q}$.

We therefore obtain the following theorem.

Theorem 3. If $U_{p;q}$ is the unique positive solution of $(E)_{0;1}^{p;q}$; then for any $x \in [0; \frac{1}{2}]$; we have

$$u_{p;q}(x) = (2q^{i-1}B(q^{i-1}; 1-p^{i-1}))^{\frac{p}{q_i-p}} \left(\frac{q(p-1)}{p}\right)^{\frac{1}{q_i-p}} f_{p;q}^{i,1}(2xq^{i-1}B(q^{i-1}; 1-p^{i-1}));$$

where B is the Beta function and $f_{p;q}(s) = \int_0^s (1-t^q)^{\frac{j-1}{p}} dt$ for $s \in [0;1]$.

Corollary 4. The best possible constant for the Sobolev-Poincare type inequality

$$\|v\|_{L^q(0;1)} \le C\|v_x\|_{L^p(0;1)}$$
 for all $v \in W_0^{1;p}(0;1)$

is given by

$$C_{p;q} = \frac{p^{\frac{1}{q}}q^{1i}^{\frac{1}{p}}(pq - q + p)^{\frac{1}{p}i^{\frac{1}{q}}}}{2(p - 1)^{\frac{1}{p}}B(q^{i}^{1}; 1 - p^{i}^{1})}:$$

Proof. For each $x \in [0; \frac{1}{2}]$, we have from (2.5)

(2.6)
$$u_{p;q}(x) = [2b_{p;q}]^{\frac{p}{q_i p}} w_{p;q}(2b_{p;q}x)$$

and on $(0; \frac{1}{2})$, we have

$$(u_{p;q})_x(x) = [2b_{p;q}]^{\frac{q}{q_i p}}(w_{p;q})_x(2b_{p;q}x)$$
:

From (2.2), we obtain

(2.7)
$$\lim_{x \in \mathbb{R}^+} (u_{p;q})_x(x) = [2b_{p;q}]^{\frac{q}{q_i p}} \left[\frac{q(p-1)}{p} \right]^{\frac{1}{q_i p}} :$$

Thus, using Theorem 1(iv), Theorem 2 and (2.7), we get

$$\begin{array}{lll} R(u_{p;q}) & = & \frac{\|u_{p;q}\|_{L^q(0;1)}}{\|(u_{p;q})_x\|_{L^p(0;1)}} = \|u_{p;q}\|_{L^q(0;1)}^{1_i \frac{q}{p}} \\ & = & \left[\frac{q(p-1)}{pq-q+p} \left[(2b_{p;q})^{\frac{q}{q_i-p}} \left(\frac{q(p-1)}{p}\right)^{\frac{1}{q_i-p}}\right]^{p}\right]^{\frac{p_i-q}{pq}} \end{array}$$

which completes the proof of Corollary 4.

The behaviors of the unique positive solution $u_{p;q}$ of $(E)_{0;1}^{p;q}$ as $p \to \infty$ and $q \to \infty$ are given in the following theorem.

Theorem 5. (i) Suppose $^{\circledR}(p)$ is a function defined on $(1; \infty)$ with $1 < p^{\circledR}(p) \neq p$ and $\lim_{p \in \mathbb{N}} (p) = a$. If $q = p^{\circledR}(p)$; then

$$\lim_{p! \ 1} \ u_{p;q}(x) = 2^{\frac{a}{a_i \ 1}} \left(\frac{1}{2} - \left| x - \frac{1}{2} \right| \right) \qquad \text{for all} \quad x \in [0;1]:$$

(ii) Let $^{\circledR}(q)$ be a function defined on $(1; \infty)$ such that $1 < q^{\circledR}(q) \neq q$ for all $q \in (1; \infty)$ and $\lim_{q \in (1, \infty)} ^{\circledR}(q) = b$. If $p = q^{\circledR}(q)$; then

$$\lim_{q! \ 1} \ u_{p;q}(x) = 2^{\frac{a}{1; \ b}} \left(\frac{1}{2} - \left| x - \frac{1}{2} \right| \right) \qquad \text{for all} \quad x \in [0; 1]:$$

Proof. Due to the symmetry of $u_{p;q}$, it suffices to prove the Theorem only on the interval $[0;\frac{1}{2}]$.

To prove (i), let $q = p^{\textcircled{@}}(p)$ where the function @ is defined on $(1; \infty)$ with $1 < p^{\textcircled{@}}(p) \neq p$ and $\lim_{p \in \mathbb{R}} \mathbb{R}(p) = a$. First we recall that

$$\lim_{p! \to 1} (1 - t^q)^{\frac{j-1}{p}} = \begin{cases} \infty & \text{if } t = 1 \\ 1 & \text{if } t \in [0; 1): \end{cases}$$

By the Lebegue's Dominated Convergence Theorem, we have

$$\lim_{p! \ 1} \ f_{p;q}(s) = \lim_{p! \ 1} \ \int_0^s (1-t^q)^{\frac{i-1}{p}} dt = \int_0^s 1 dt = s \quad \text{for all} \ \ s \in [0;1]:$$

Thus,

$$\lim_{p \downarrow 1} f_{p;q}^{i,1}(x) = x \quad \text{for all} \quad x \in [0;1]:$$

Since $1 \leq (1-t^q)^{\frac{j-1}{p}}$ for all $t \in [0;1]$, we have $f_{p;q}(s) \to s^+$ as $p \to \infty$ for all $s \in [0;1]$. In particular $b_{p;q} = f_{p;q}(1) \to 1^+$ as $p \to \infty$.

Now, since $b_{p;q} > 1$ for all p > 1 and $f_{p;q}^{i,1}$ is increasing on [0; 1], we have for all $x \in (0; \frac{1}{2})$

(2.8)
$$f_{p;q}^{i,1}(2x) < f_{p;q}^{i,1}(2xb_{p;q}):$$

Let $^2>0$ be such that $2x(1+^2)<1$, and let p_2 be such that for all $p>p_2$ we have $b_{p,q}<(1+^2)$. Then

(2.9)
$$f_{p;q}^{i,1}(2xb_{p;q}) < f_{p;q}^{i,1}(2x(1+2)):$$

It follows from (2.8) and (2.9) that, for all $p > p_2$, we have

$$f_{p;q}^{i,1}(2x) < f_{p;q}^{i,1}(2xb_{p;q}) < f_{p;q}^{i,1}(2x(1+2))$$
:

Taking the limit as $p \to \infty$, we obtain

$$2x \le \lim_{p_1^1 \to 1} f_{p,q}^{i,1}(2xb_{p,q}) \le 2x(1+2)$$
:

Hence,

$$\lim_{p! \to 1} f_{p;q}^{i,1}(2xb_{p;q}) = 2x:$$

From (2.6), we have

$$u_{p;q}(x) = [2b_{p;q}]^{\frac{1}{@(p)_{1}-1}}[(p-1)^{\textcircled{@}}(p)]^{\frac{1}{p(\textcircled{@}(p)_{1}-1)}}f_{p;q}^{i-1}(2xb_{p;q})$$

so that if $\lim_{p!} 1^{\mathbb{R}}(p) = a$, then

$$\lim_{p! \ 1} \ u_{p;q}(x) = 2^{\frac{1}{a_i \ 1} + 1} x \qquad \text{for all} \quad x \in \left[0; \frac{1}{2}\right] \colon$$

We thus proved (i).

(ii) can be proved in an analogous manner.

The behaviors of the maximum values of the unique positive solution of $(E)_{0;1}^{p;q}$ as $p \to 1^+$ and $q \to 1^+$ are given in the following theorem.

Theorem 6. (Idogawa) [5] Let
$$D_{p;q} = \max_{x \ge [0;1]} u_{p;q}(x)$$
. Then

(i) for fixed q > 1; we have

$$\lim_{p! \ 1^+} D_{p;q} = 2^{\frac{1}{q_i-1}}:$$

(ii) for fixed p > 1, we have

$$\lim_{q!} D_{p;q} = 2^{\frac{j \cdot p}{p_i \cdot 1}} \left(\frac{p-1}{p} \right) :$$

In addition, we describe the behaviors of the unique positive solution of $(E)_{0:1}^{p;q}$ as $p \to 1^+$ and $q \to 1^+$ in the following two theorems.

Theorem 7. For some $\pm > 1$; let $^{\circledR}(p)$ be a function defined on $(1; 1 + \pm]$ such that $p \neq ^{\circledR}(p) > 1$ for all $p \in (1; 1 + \pm]$ and $\lim_{p \in (1+\pm]} ^{\circledR}(p) = a > 1$. If $q = ^{\circledR}(p)$; then; for any $x \in (0; \frac{1}{2}]$

$$\lim_{p!} u_{p;q}(x) = 2^{\frac{1}{a_i-1}}$$
:

Proof. From Theorem 3, we have, for any $x \in [0, \frac{1}{2}]$

$$u_{p;q}(x) = 2^{\frac{p}{q_i \cdot p}} \left(\frac{1}{q} B\left(\frac{1}{q}; 1 - \frac{1}{p}\right)\right)^{\frac{p}{q_i \cdot p}} \left(\frac{q(p-1)}{p}\right)^{\frac{1}{q_i \cdot p}} f_{p;q}^{i \cdot 1} \left(\frac{2x}{q} B\left(\frac{1}{q}; 1 - \frac{1}{p}\right)\right) :$$

Let $q = {}^{\circledR}(p)$ and $lim_{p!} {}_{1^+} {}^{\circledR}(p) = a > 1$. For any fixed $s \in [0;1)$, we have

$$\begin{array}{lll} \lim_{p!=1^+} f_{p;q}(s) & = & \lim_{p!=1^+} \int_0^s (1-t^q)^{i-\frac{1}{p}} dt \\ & = & \int_0^s (1-t^a)^{i-1} dt < \infty; \end{array}$$

which implies that $\lim_{p \in 1^+} f_{p;q}(s) = \infty$ if and only if s = 1.

Since, by definition, $B(\frac{1}{q};1-\frac{1}{p})=\frac{i(\frac{1}{q})_i(1_i\frac{1}{p})}{i(\frac{1}{q}+1_i\frac{1}{p})}$, where $i(\cdot)$ is the Gamma function, we have

$$\lim_{p! \to 1^{+}} B\left(\frac{1}{q}; 1 - \frac{1}{p}\right) = \lim_{p! \to 1^{+}} \frac{i\left(\frac{1}{q}\right)}{i\left(\frac{1}{q} + 1 - \frac{1}{p}\right)} \cdot \lim_{p! \to 1^{+}} i\left(1 - \frac{1}{p}\right)$$
$$= \frac{i\left(\frac{1}{a}\right)}{i\left(\frac{1}{a}\right)} \cdot \infty = \infty:$$

Therefore, for any $x \in (0; \frac{1}{2}]$, we have $\lim_{p \in \mathbb{R}^+} \frac{2x}{q} B(\frac{1}{q}; 1 - \frac{1}{p}) = \infty$, and hence,

$$\lim_{p!=1^+}f_{p;q}^{i,1}\left(\frac{2x}{q}B\left(\frac{1}{q};1-\frac{1}{p}\right)\right)=1;$$

Note that

$$\begin{split} & \left[\frac{1}{q}B\left(\frac{1}{q};1-\frac{1}{p}\right)\right]^{\frac{p}{q_i\,p}}\left[\frac{q(p-1)}{p}\right]^{\frac{1}{q_i\,p}}\\ & = \left(\frac{1}{q}\right)^{\frac{p}{q_i\,p}}\left(\frac{q}{p}\right)^{\frac{1}{q_i\,p}}\left(\frac{i\left(\frac{1}{q}\right)}{i\left(\frac{1}{q}+1-\frac{1}{p}\right)}\right)^{\frac{p}{q_i\,p}}\left(i\left(1-\frac{1}{p}\right)\right)^{\frac{p}{q_i\,p}}(p-1)^{\frac{1}{q_i\,p}}; \end{split}$$

Since $\frac{1}{p}$ is not an integer, we see that

$$\left(i\left(1-\frac{1}{p}\right)\right)^{\frac{p}{q_i\cdot p}}(p-1)^{\frac{1}{q_i\cdot p}}=\left(\left(\frac{\frac{1/4}{(\sin\frac{1/4}{p})_i\cdot (\frac{1}{p})}\right)^p(p-1)\right)^{\frac{1}{q_i\cdot p}}:$$

From

$$\lim_{p! \ 1^+} \frac{p-1}{(\sin \frac{1}{p})^p} = \frac{1}{1/2};$$

it follows easily that

$$\underset{p!}{lim} \left[\frac{1}{q}B\left(\frac{1}{q};1-\frac{1}{p}\right)\right]^{\frac{p}{q_1-p}} \left[\frac{q(p-1)}{p}\right]^{\frac{1}{q_1-p}} = 1:$$

Hence, for each $x \in (0; \frac{1}{2}]$, we have $\lim_{p! = 1^+} u_{p;q}(x) = 2^{\frac{1}{a_1} \cdot 1}$.

Theorem 8. For some $\pm > 1$; let $\bar{\ }$ (q) be a function defined on $(1; 1 + \pm]$ such that $q \neq \bar{\ }$ (q) > 1 for all $q \in (1; 1 + \pm]$ and $\lim_{q \in \mathbb{Z}^+} \bar{\ }$ (q) = b > 1. If $p = \bar{\ }$ (q); then for any $x \in (0; \frac{1}{2}]$;

$$\lim_{q!=1^+} u_{p;q}(x) = 2^{\frac{j-b}{b_j-1}} \left(\frac{b-1}{b} \right) (1-(1-2x)^{\frac{b}{1_j-b}}):$$

Proof. Since $p = \bar{\ }(q)$ and $\lim_{q! = 1^+} \bar{\ }(q) = b > 1$, we have for each $s \in [0;1]$

$$\begin{split} \lim_{q!} \, f_{p;q}(s) &= \int_0^s (1-t)^{\frac{j-1}{b}} dt \\ &= \left(\frac{b}{b-1}\right) (1-(1-s)^{\frac{b_j-1}{b}}) =: g(s): \end{split}$$

Now if y = g(s) where $y \in [0; \frac{b}{b_1 - 1}]$, then $g^{i-1}(y) = 1 - (1 - (\frac{b_1 - 1}{b})s)^{\frac{b}{b_1 - 1}}$, and thus

$$\lim_{q!=1^+} f_{p;q}^{i,1}(y) = 1 - \left(1 - \left(\frac{b-1}{b}\right)y\right)^{\frac{b}{b_i-1}} \colon$$

Hence, for each $x \in (0; \frac{1}{2}]$, Theorem 3 yields,

$$\begin{split} &\lim_{q!=1^+} u_{p;q}(x) \\ &= \left(2B\left(1;1-\frac{1}{b}\right)\right)^{\frac{b}{1_i\cdot b}} \left(\frac{b-1}{b}\right)^{\frac{1}{1_i\cdot b}} \left(1-\left(1-2x\left(\frac{b-1}{b}\right)B\left(1;1-\frac{1}{b}\right)\right)^{\frac{b}{1_i\cdot b}}\right) \\ &= 2^{\frac{i\cdot b}{b_i\cdot 1}} \left(\frac{b-1}{b}\right) (1-(1-2x)^{\frac{b}{1_i\cdot b}}) : \end{split}$$

Thus the theorem is proved.

REFERENCES

- 1. Robert A. Adams, Sobolev Spaces, Academic Press, 1975.
- 2. J. C. Agapito, Lorna I. Paredes, Reynalso M. Rey and Polly W. Sy, On the Asymptotic Behavior of Solutions to $-\Phi_p u = |u|^{p_1/2}u$, *Matimyas Matematika*, January 1997, pp1-7.
- 3. N. Fukagai, M. Ito and K. Narukawa, Limit as $p \to \infty$ of p-Laplace eigenvalue problems and L^1 -inequality of the Poincaré type, to appear.
- 4. D. Gilbarg and N. Trudinger, "Elliptic Partial Differential equations of Second Order", Springer-Verlag, 1977.
- 5. T. Idogawa, Lecture Notes, preprint 2000.
- 6. Lee, Jine-Rong, Asymptotic behavior of positive solutions of the equation $\oplus u = u^p$ as $p \to 1$, Commu in Partial Diff Euations, **20**(3&4) (1995), 633-646.
- 7. M. Ôtani, A remark on certain nonlinear elliptic equations, *Proc. Fac. Sci. Tokai Univ.* **19** (1984), 23-28.
- 8. M. Ôtani, On certain second order ordinary differential equations associated with Sobolev-Poincaré-type inequalities, *Nonlinear Anal.* **8** (1984), 1255-1270.
- 9. M. Ôtani, Existence and nonexistence of nontrivial solutions of some nonlinear degenerate elliptic equations, *Journal of Functional Analysis*, **76** (1988), 140-159.
- 10. K. Yosida, "Functional Analysis", Springer-Verlag, 1965.

Julius Caesar C. Agapito, Lorna I. Paredes, Reynaldo M. Rey and Polly W. Sy Department of Mathematics, College of Science, University of the Philippines Diliman, Quezon City, Philippines

E-mail: pweesy@i-manila.com.ph