ON THE JENSEN'S EQUATION IN BANACH MODULES

Chun-Gil Park and Won-Gil Park

Abstract

We prove the Hyers-Ulam-Rassias stability of the Jensen's equation in Banach modules over a Banach algebra.

Let E_{1} and E_{2} be Banach spaces, and $f: E_{1} \rightarrow E_{2}$ a mapping such that $f(t x)$ is continuous in $t \in R$ for each fixed $x \in E_{1}$. Assume that there exist constants ${ }^{2} \geq 0$ and $p \in[0 ; 1)$ such that

$$
\|f(x+y)-f(x)-f(y)\| \leq^{2}\left(\|x\|^{p}+\|y\|^{p}\right)
$$

for all $x ; y \in E_{1}$. Th.M. Rassias [7] showed that there exists a unique R-linear mapping $\mathrm{T}: \mathrm{E}_{1} \rightarrow \mathrm{E}_{2}$ such that

$$
\|f(x)-T(x)\| \leq \frac{2^{2}}{2-2^{p}}\|x\|^{p} ;
$$

for all $x \in E_{1}$.
The stability problems of functional equations have been investigated in several papers ([2, 3, 4, 5]).

Throughout this paper, let B be a unital Banach algebra with norm $|\cdot|, \mathrm{R}^{+}$the set of positive real numbers, and B_{1} the set of all elements of B having norm 1 , and let ${ }_{B} B_{1}$ and ${ }_{B} B_{2}$ be left Banach B-modules with norms $\|\cdot\|$ and $\|\cdot\|$, respectively.

We are going to prove the Hyers-Ulam-Rassias stability of the Jensen's equation in Banach modules over a Banach algebra.

Theorem 1. Let $\mathrm{f}: \mathrm{B}_{\mathrm{B}} \mathrm{B}_{1} \rightarrow{ }_{\mathrm{B}} \mathrm{B}_{2}$ be a mapping for which there exists a function ' $:{ }_{B} B_{1} \backslash\{0\} \times{ }_{\mathrm{B}} \mathrm{B}_{1} \backslash\{0\} \rightarrow[0 ; \infty)$ such that

[^0]\[

$$
\begin{gathered}
\mathrm{e}(x ; y)={ }^{x^{\prime}} 3^{\mathrm{k}^{k_{1}}\left(3^{k} x ; 3^{k} y\right)<\infty ;} \\
\left\|2 f^{3} \frac{a x+a y^{\prime}}{2}-a f(x)-a f(y)\right\| \leq^{\prime}(x ; y) ;
\end{gathered}
$$
\]

for all $\mathrm{a} \in \mathrm{B}_{1} \cup \mathrm{R}^{+}$and all $\mathrm{x} ; \mathrm{y} \in \mathrm{B}_{\mathrm{B}} \backslash\{0\}$. Then there exists a unique B -linear mapping $\mathrm{T}: \mathrm{B}_{\mathrm{B}} \rightarrow_{\mathrm{B}} \mathrm{B}_{2}$ such that

$$
\|f(x)-f(0)-T(x)\| \leq \frac{1}{3}(' e(x ;-x)+' e(-x ; 3 x)) ;
$$

for all $\mathrm{x} \in{ }_{\mathrm{B}} \mathrm{B}_{1} \backslash\{0\}$.
Proof. By [6, Theorem 1], it follows from the inequality of the statement for $\mathrm{a}=1$ that there exists a unique additive mapping $\mathrm{T}: \mathrm{B}_{\mathrm{B}} \mathrm{B}_{1} \rightarrow{ }_{\mathrm{B}} \mathrm{B}_{2}$ satisfying the condition given in the statement.

By the assumption, for each $a \in B_{1} \cup R^{+}$,

$$
\| 2 f\left(3^{n} a x\right)-\text { af }\left(2 \cdot 3^{n_{i}{ }^{1}} x\right)-\operatorname{af}\left(4 \cdot 3^{n_{i}{ }^{1}} x\right) \| \leq^{\prime}\left(2 \cdot 3^{n_{i}{ }^{1}} \times 4 \cdot 3^{n_{i}{ }^{1}} x\right) ;
$$

for all $x \in{ }_{B} B_{1} \backslash\{0\}$. Using the fact that for each $a \in B$ and each $z \in B_{B}$ $\|a z\| \leq K|a| \cdot\|z\|$ for some $K>0$,

$$
\begin{aligned}
\left\|f\left(3^{n} a x\right)-a f\left(3^{n} x\right)\right\|= & \| f\left(3^{n} a x\right)-\frac{1}{2} a f\left(2 \cdot 3^{n_{i}{ }^{1}} x\right)-\frac{1}{2} a f\left(4 \cdot 3^{n_{i} 1^{1}} x\right) \\
& +\frac{1}{2} a f\left(2 \cdot 3^{n_{i} 1^{1}} x\right)+\frac{1}{2} a f\left(4 \cdot 3^{n_{i} 1^{1}} x\right)-a f\left(3^{n} x\right) \| \\
\leq & \frac{1}{2}\left(2 \cdot 3^{n_{i} 1^{1}} x ; 4 \cdot 3^{n_{i} 1^{1}} x\right) \\
& +\frac{1}{2} K|a| \cdot\left\|2 f\left(3^{n} x\right)-f\left(2 \cdot 3^{n_{i} 1^{1}} x\right)-f\left(4 \cdot 3^{n_{i} 1_{x}}\right)\right\| \\
\leq & \frac{1+K|a|}{2} \cdot\left(2 \cdot 3^{n_{i} 1_{x}} ; 4 \cdot 3^{n_{i} 1_{x}}\right) ;
\end{aligned}
$$

for all $a \in B_{1} \cup R^{+}$and all $x \in{ }_{B} B_{1} \backslash\{0\}$. So $3^{i n}\left\|f\left(3^{n} a x\right)-a f\left(3^{n} x\right)\right\| \rightarrow 0$ as $n \rightarrow \infty$ for all $a \in B_{1} \cup R^{+}$and all $x \in{ }_{B} B_{1} \backslash\{0\}$. Hence

$$
T(a x)=\lim _{n!1} 3^{i^{n}} f\left(3^{n} a x\right)=\lim _{n!1} 3^{i^{n}} a f\left(3^{n} x\right)=a T(x) ;
$$

for all $a \in B_{1} \cup R^{+}$and all $x \in{ }_{B} B_{1} \backslash\{0\}$. Since T is additive, $T(0)=0$ and $T(a 0)=T(0)=0=a 0=a T(0)$ for all $a \in B_{1} \cup R^{+}$. So $T(a x)=a T(x)$ for all $a \in B_{1} \cup R^{+}$and all $x \in{ }_{B} B_{3}$. Thus

$$
T(a x)=T \quad|a| \cdot \frac{a}{|a|} x^{\prime}=|a|^{3} \frac{a}{|a|} x^{\prime}=a T(x) ;
$$

for all $a \in B \backslash\{0\}$ and all $x \in{ }_{B} B_{1}$. Note that $T(0 x)=T(0)=0=0 T(x)$ for all $x \in{ }_{B} B_{1}$. So the unique additive mapping $T:{ }_{B} B_{1} \rightarrow_{B} B_{2}$ is a B-linear mapping, as desired.

Corollary 1. Let $\tilde{\mathrm{A}}: \mathrm{R}^{+} \rightarrow \mathrm{R}^{+}$be a function such that $\frac{\tilde{\mathrm{A}}(3)}{3}<1$ and

$$
\tilde{A}(t s) \leq \tilde{A}(t) \tilde{A}(s) ;
$$

for all $\mathrm{t} ; \mathrm{s} \in \mathrm{R}^{+}$. Let $\mathrm{f}: \mathrm{B}_{\mathrm{B}} \mathrm{B}_{1} \rightarrow \mathrm{~B}_{\mathrm{B}} \mathrm{B}_{2}$ be a mapping such that

$$
\left\|2 f^{3} \frac{a x+a y^{\prime}}{2}-a f(x)-a f(y)\right\| \leq \tilde{A}(\|x\|)+\tilde{A}(\|y\|)
$$

for all $\mathrm{a} \in \mathrm{B}_{1} \cup \mathrm{R}^{+}$and all $\mathrm{x} ; \mathrm{y} \in \mathrm{B}_{\mathrm{B}} \backslash\{0\}$. Then there exists a unique B -linear mapping $\mathrm{T}: \mathrm{B}_{\mathrm{B}} \mathrm{B}_{1} \rightarrow_{\mathrm{B}} \mathrm{B}_{2}$ such that

$$
\|f(x)-f(0)-T(x)\| \leq \frac{3 \tilde{A}(\|x\|)+\tilde{A}(\|3 x\|)}{3-\tilde{A}(3)}
$$

for all $\mathbf{x} \in \mathrm{B}_{\mathrm{B}} \backslash\{0\}$.
Proof. Let ${ }^{\prime}(x ; y)=\tilde{A}(\|x\|)+\tilde{A}(\|y\|)$ for all $x ; y \in{ }_{B} B_{1} \backslash\{0\}$. Then we get

$$
\begin{aligned}
\mathrm{e}(x ; y) & =\sum_{x^{\wedge}=0}^{3^{k}=0}\left(3^{k} x ; 3^{k} y\right) \\
& =3^{\mathrm{N}} 3^{\mathrm{k}}\left(\tilde{A}\left(\left\|3^{k} x\right\|\right)+\tilde{A}\left(\left\|3^{k} y\right\|\right)\right) ; \\
& \leq \sum_{k=0}^{x^{2}}\left(\frac{\tilde{A}(3)}{3}\right)^{k}(\tilde{A}(\|x\|)+\tilde{A}(\|y\|)) \\
& =\frac{\tilde{A}(\|x\|)+\tilde{A}(\|y\|)}{1-\frac{\tilde{A}(3)}{3}}<\infty ;
\end{aligned}
$$

for all $x ; y \in{ }_{B} B_{1} \backslash\{0\}$. It follows from Theorem 1 that there exists a unique B-linear mapping $T:{ }_{B} B_{1} \rightarrow{ }_{B} B_{2}$ such that

$$
\|f(x)-f(0)-T(x)\| \leq \frac{3 \tilde{A}(\|x\|)+\tilde{A}(\|3 x\|)}{3-\tilde{A}(3)} ;
$$

for all $x \in{ }_{B} B_{1} \backslash\{0\}$.
Corollary 2. Let $\mathrm{p}<1$ and $\mathrm{f}: \mathrm{B}_{\mathrm{B}} \mathrm{B}_{1} \rightarrow{ }_{\mathrm{B}} \mathrm{B}_{2}$ a mapping such that

$$
\left\|2 f^{3} \frac{a x+a y^{\prime}}{2}-a f(x)-a f(y)\right\| \leq\|x\|^{p}+\|y\|^{p} ;
$$

for all $\mathrm{a} \in \mathrm{B}_{1} \cup \mathrm{R}^{+}$and all $\mathrm{x} ; \mathrm{y} \in \mathrm{B}_{\mathrm{B}} \backslash\{0\}$. Then there exists a unique B -linear mapping $\mathrm{T}: \mathrm{B}_{\mathrm{B}} \mathrm{B}_{1} \rightarrow{ }_{\mathrm{B}} \mathrm{B}_{2}$ such that

$$
\|f(x)-f(0)-T(x)\| \leq \frac{3+3^{p}}{3-3^{p}}\|x\|^{p}
$$

for all $\mathrm{x} \in{ }_{\mathrm{B}} \mathrm{B}_{1} \backslash\{0\}$.
Proof. Define $\tilde{A}: \mathrm{R}^{+} \rightarrow \mathrm{R}^{+}$by $\tilde{\mathrm{A}}(\mathrm{t})=\mathrm{t}^{\mathrm{p}}$ and apply Corollary 1 .
Theorem 2. Let B be a unital Banach $*$-algebra over C , and B_{1}^{+}the set of positive elements of B having norm 1. Let $\mathrm{f}:{ }_{\mathrm{B}} \mathrm{B}_{1} \rightarrow{ }_{\mathrm{B}} \mathrm{B}_{2}$ be a mapping for which there exists a function ' $:{ }_{\mathrm{B}} \mathrm{B}_{1} \backslash\{0\} \times{ }_{\mathrm{B}} \mathrm{B}_{1} \backslash\{0\} \rightarrow[0 ; \infty)$ such that

$$
\begin{gathered}
\mathrm{e}(x ; y)={ }^{\mathrm{A}} 3^{i^{k} 1}\left(3^{k} x ; 3^{k} y\right)<\infty ; \\
\left\|2 f^{3} \frac{a x+a y}{2}-\operatorname{af}(x)-a f(y)\right\| \leq^{\prime}(x ; y) ;
\end{gathered}
$$

for all $\mathrm{a} \in \mathrm{B}_{1}^{+} \cup\{\mathrm{i}\} \cup \mathrm{R}^{+}$and all $\mathrm{x} ; \mathrm{y} \in \mathrm{B}_{\mathrm{B}} \backslash\{0\}$. Then there exists a unique B -linear mapping $\mathrm{T}: \mathrm{B}_{\mathrm{B}} \mathrm{B}_{\mathrm{B}} \mathrm{B}_{2}$ satisfying the condition given in the statement of Theorem 1.

Proof. By the same reasoning as the proof of Theorem 1, there exists a unique additive mapping $T:{ }_{B} B_{1} \rightarrow{ }_{B} B_{2}$ such that

$$
\|f(x)-f(0)-T(x)\| \leq \frac{1}{3}(' e(x ;-x)+' e(-x ; 3 x))
$$

for all $x \in{ }_{B} B_{1} \backslash\{0\}$. By the same method as the proof of Theorem 1, one can show that

$$
T(a x)=\lim _{n!1} 3^{i n} f\left(3^{n} a x\right)=\lim _{n!1} 3^{i n} a f\left(3^{n} x\right)=a T(x)
$$

for all $a \in B_{1}^{+} \cup\{i\} \cup R^{+}$and all $x \in B_{B} B_{1} \backslash\{0\}$. So $T(a x)=a T(x)$ for all $a \in\left(B^{+} \backslash\{0\}\right) \cup\{i\}$ and all $x \in{ }_{B} B_{1}$. For any element $a \in B, a=a_{1}+i a_{2}$, where $a_{1}=\frac{a+a^{a}}{2}$ and $a_{2}=\frac{a_{i} a^{\text {b }}}{2 i}$ are self-adjoint elements, furthermore, $a=$ $a_{1}{ }^{+}-a_{1}{ }^{i}+i a_{2}{ }^{+}-i a_{2}{ }^{i}$, where $a_{1}{ }^{+}, a_{1}{ }^{i}, a_{2}{ }^{+}$, and $a_{2}{ }^{i}$ are positive elements (see [1, Lemma 38.8]). Since T is additive, $T(x)=T(x-y+y)=T(x-y)+T(y)$ and $T(x-y)=T(x)-T(y)$ for all $x ; y \in{ }_{B} B_{1}$. So

$$
\begin{aligned}
T(a x) & =T\left(a_{1}{ }^{+} x-a_{1}{ }^{i} x+i a_{2}{ }^{+} x-i a_{2}{ }^{i} x\right) \\
& =\left(a_{1}{ }^{+}-a_{1}{ }^{i}+i a_{2}^{+}-i a_{2}{ }^{i}\right) T(x) \\
& =a T(x)
\end{aligned}
$$

for all $a \in B$ and all $x \in{ }_{B} B_{1}$. Hence there exists a unique B-linear mapping $T:{ }_{B} B_{1} \rightarrow{ }_{B} B_{2}$ such that

$$
\|f(x)-f(0)-T(x)\| \leq \frac{1}{3}\left({ }^{\prime} e(x ;-x)+' e(-x ; 3 x)\right) ;
$$

for all $x \in{ }_{B} B_{1} \backslash\{0\}$.
Corollary 3. Let E_{1} and E_{2} be complex Banach spaces. Let $\mathrm{f}: \mathrm{E}_{1} \rightarrow \mathrm{E}_{2}$ be a mapping for which there exists a function' $: \mathrm{E}_{1} \backslash\{0\} \times \mathrm{E}_{1} \backslash\{0\} \rightarrow[0 ; \infty)$ such that

$$
\begin{gathered}
\mathrm{e}(x ; y)={ }^{\lambda} 3^{3^{k}{ }^{\prime}}\left(3^{k} x ; 3^{k} y\right)<\infty ; \\
\left\|2 f^{3} \frac{, x+, y^{\prime k}=0}{2}-f(x)-f(y)\right\| \leq x^{\prime}(x ; y) ;
\end{gathered}
$$

for,$\in\{\mathrm{i}\} \cup \mathrm{R}^{+}$and all $\mathrm{x} ; \mathrm{y} \in \mathrm{E}_{1} \backslash\{0\}$. Then there exists a unique C -linear mapping $\mathrm{T}: \mathrm{E}_{1} \rightarrow \mathrm{E}_{2}$ such that

$$
\|f(x)-f(0)-T(x)\| \leq \frac{1}{3}(' e(x ;-x)+' e(-x ; 3 x)) ;
$$

for all $\mathrm{x} \in \mathrm{E}_{1} \backslash\{0\}$.
Proof. Since C is a Banach algebra, the Banach spaces E_{1} and E_{2} are considered as Banach modules over C . By Theorem 2, there exists a unique C -linear mapping $\mathrm{T}: \mathrm{E}_{1} \rightarrow \mathrm{E}_{2}$ satisfying the condition given in the statement.

Remark 1. Consider a unital Banach $*$-algebra B over C. In Corollary 1 and Corollary 2 , when $a \in B_{1} \cup R^{+}$are replaced by $a \in B_{1}^{+} \cup\{i\} \cup R^{+}$, the results do also hold.

Theorem 3. Let $\mathrm{f}:{ }_{\mathrm{B}} \mathrm{B}_{1} \rightarrow{ }_{\mathrm{B}} \mathrm{B}_{2}$ be a mapping for which there exists a function ' $:{ }_{B} B_{1} \backslash\{0\} \times{ }_{B} B_{1} \backslash\{0\} \rightarrow[0 ; \infty)$ such that

$$
\begin{gathered}
\mathrm{e}(x ; y)={ }^{\mathrm{A}} 3^{k_{1}}\left(3^{i^{k}} x ; 3^{\left.\mathrm{k}^{k} y\right)<\infty ;}\right. \\
\left\|2 f^{3} \frac{a x+a y^{k}=0}{2}-a f(x)-a f(y)\right\| \leq^{\prime}(x ; y) ;
\end{gathered}
$$

for all $\mathrm{a} \in \mathrm{B}_{1} \cup \mathrm{R}^{+}$and all $\mathrm{x} ; \mathrm{y} \in \mathrm{B}_{\mathrm{B}} \mathrm{B}_{1} \backslash\{0\}$. Then there exists a unique B -linear mapping $\mathrm{T}: \mathrm{B}_{\mathrm{B}} \mathrm{B}_{1}{ }_{\mathrm{B}} \mathrm{B}_{2}$ such that

$$
\left.\|f(x)-f(0)-T(x)\| \leq e^{3} \frac{x}{3} ; \frac{-x}{3}\right)+e^{3} \frac{-x}{3} ; x ;
$$

for all $\mathrm{x} \in \mathrm{B}_{\mathrm{B}} \backslash\{0\}$.
Proof. By [6, Theorem 6], it follows from the inequality of the statement for $\mathrm{a}=1$ that there exists a unique additive mapping $\mathrm{T}:{ }_{\mathrm{B}} \mathrm{B}_{1} \rightarrow{ }_{\mathrm{B}} \mathrm{B}_{2}$ satisfying the condition given in the statement.

By the assumption, for each $a \in B_{1} \cup R^{+}$,

$$
\left\|2 f\left(3^{i n} a x\right)-a f\left(2 \cdot 3^{i n_{i}{ }^{1} x}\right)-a f\left(4 \cdot 3^{i n_{i}{ }^{1} x}\right)\right\| \leq^{\prime}\left(2 \cdot 3^{i n_{i}{ }^{1}} x ; 4 \cdot 3^{i n_{i}^{1}} x\right) ;
$$

for all $x \in{ }_{B} B_{1} \backslash\{0\}$. Using the fact that for each $a \in B$ and each $z \in{ }_{B} B_{2}$ $\|\mathrm{az}\| \leq \mathrm{K}|\mathrm{a}| \cdot\|\mathrm{z}\|$ for some $\mathrm{K}>0$,

$$
\begin{aligned}
& \left\|f\left(3^{i n} a x\right)-a f\left(3^{i n} x\right)\right\|=\| f\left(3^{i n} a x\right)-\frac{1}{2} a f\left(2 \cdot 3^{n_{i}{ }^{1} x}\right)-\frac{1}{2} a f\left(4 \cdot 3^{i n_{i}{ }^{1} x}\right) \\
& +\frac{1}{2} a f\left(2 \cdot 3^{i} n_{i}^{1} x\right)+\frac{1}{2} a f\left(4 \cdot 3^{n_{i}{ }^{1}} x\right)-a f\left(3^{n^{n}} x\right) \| \\
& \leq \frac{1}{2}{ }^{\prime}\left(2 \cdot 3^{i n_{i}{ }^{1}} \times ; 4 \cdot 3^{n_{i}{ }^{1}} x\right) \\
& +\frac{1}{2} K|a| \cdot\left\|2 f\left(3^{i n} x\right)-f\left(2 \cdot 3^{i n_{i}{ }^{1}} x\right)-f\left(4 \cdot 3^{i n_{i}} x\right)\right\| \\
& \leq \frac{1+K|a|}{2} \cdot\left(2 \cdot 3^{\left.n_{i}{ }^{1} x ; 4 \cdot 3 i{ }^{n_{i}{ }^{1}} x\right) ; ~}\right.
\end{aligned}
$$

for all $a \in B_{1} \cup R^{+}$and all $x \in{ }_{B} B_{1} \backslash\{0\}$. So $3^{n}\left\|f\left(3^{i n} a x\right)-a f\left(3^{i n} x\right)\right\| \rightarrow 0$ as $n \rightarrow \infty$ for all $a \in B_{1} \cup R^{+}$and all $x \in{ }_{B} B_{1} \backslash\{0\}$. Hence

$$
T(a x)=\lim _{n!1} 3^{n} f\left(3^{i n} a x\right)=\lim _{n!1} 3^{n} a f\left(3^{i n} x\right)=a T(x) ;
$$

for all $a \in B_{1} \cup R^{+}$and all $x \in B_{B} B_{1} \backslash\{0\}$. By the same reasoning as the proof of Theorem 1, the unique additive mapping $T:{ }_{B} B_{1} \rightarrow{ }_{B} B_{2}$ is a B-linear mapping, as desired.

Corollary 4. Let $\tilde{\mathrm{A}}: \mathrm{R}^{+} \rightarrow \mathrm{R}^{+}$be a function such that $\frac{\tilde{\mathrm{A}}(3)}{3}>1$ and

$$
\tilde{A}(\mathrm{ts}) \geq \tilde{A}(\mathrm{t}) \tilde{\mathrm{A}}(\mathrm{~s}) ;
$$

for all $\mathrm{t} ; \mathrm{S} \in \mathrm{R}^{+}$. Let $\mathrm{f}: \mathrm{B}, \mathrm{B}_{1} \rightarrow \mathrm{~B} \mathrm{~B}_{2}$ be a mapping such that

$$
\left\|2 f^{3} \frac{a x+a y}{2}-a f(x)-a f(y)\right\| \leq \tilde{A}(\|x\|)+\tilde{A}(\|y\|) ;
$$

for all $\mathrm{a} \in \mathrm{B}_{1} \cup \mathrm{R}^{+}$and all $\mathrm{x} ; \mathrm{y} \in \mathrm{B}_{\mathrm{B}} \backslash\{0\}$. Then there exists a unique B -linear mapping $\mathrm{T}:{ }_{\mathrm{B}} \mathrm{B}_{1} \rightarrow{ }_{\mathrm{B}} \mathrm{B}_{2}$ such that

$$
\|f(x)-f(0)-T(x)\| \leq \frac{3 \tilde{A}\left(\left\|\frac{x}{3}\right\|\right)+\tilde{A}(\|x\|)}{1-\frac{3}{A(3)}} ;
$$

for all $\mathrm{x} \in \mathrm{B}_{\mathrm{B}} \backslash\{0\}$.
Proof. Let ${ }^{\prime}(\mathrm{x} ; \mathrm{y})=\tilde{\mathrm{A}}(\|\mathrm{x}\|)+\tilde{\mathrm{A}}(\|\mathrm{y}\|)$ for all $\mathrm{x} ; \mathrm{y} \in{ }_{\mathrm{B}} \mathrm{B}_{1} \backslash\{0\}$. Then we get

$$
\begin{aligned}
& \text { 'e }(x ; y)=^{x^{R}} 3^{k_{1}}\left(3^{i{ }^{k}} x ; 3^{i k} y\right) \\
& ={ }^{k=0} 3^{k}\left(\tilde{A}\left(\| 3^{i}{ }^{k} x| |\right)+\tilde{A}\left(\| 3^{i k} y| |\right)\right) \\
& \leq \sum_{k=0}^{k=0_{3}} \hat{A}^{\prime}(3) \quad{ }^{\prime}(\tilde{A}(\|x\|)+\tilde{A}(\|y\|)) \\
& =\frac{\tilde{A}(\|x\|)+\tilde{A}(\|y\|)}{1-\frac{3}{A(3)}}<\infty ;
\end{aligned}
$$

for all $x ; y \in{ }_{B} B_{1} \backslash\{0\}$: It follows from Theorem 3 that there exists a unique B-linear mapping $T:{ }_{B} B_{1} \rightarrow{ }_{B} B_{2}$ such that

$$
\|f(x)-f(0)-T(x)\| \leq \frac{3 \tilde{A}(\|x\|)+\tilde{A}(\|x\|)}{1-\frac{3}{A(3)}}
$$

for all $x \in B_{B} \backslash\{0\}$.
Corollary 5. Let $\mathrm{p}>1$ and $\mathrm{f}: \mathrm{B}_{\mathrm{B}} \mathrm{B}_{1} \rightarrow{ }_{\mathrm{B}} \mathrm{B}_{2}$ a mapping such that

$$
\left\|2 f^{3} \frac{a x+a y^{\prime}}{2}-a f(x)-a f(y)\right\| \leq\|x\|^{p}+\|y\|^{p} ;
$$

for all $\mathrm{a} \in \mathrm{B}_{1} \cup \mathrm{R}^{+}$and all $\mathrm{x} ; \mathrm{y} \in \mathrm{B}_{\mathrm{B}} \backslash\{0\}$. Then there exists a unique B -linear mapping $\mathrm{T}: \mathrm{B}_{\mathrm{B}} \mathrm{B}_{1} \rightarrow_{\mathrm{B}} \mathrm{B}_{2}$ such that

$$
\|f(x)-f(0)-T(x)\| \leq \frac{3^{p}+3}{3^{p}-3}\|x\|^{p} ;
$$

for all $\mathrm{X} \in \mathrm{B} \mathrm{B}_{1}$.
Proof. Define $\tilde{A}: \mathrm{R}^{+} \rightarrow \mathrm{R}^{+}$by $\tilde{A}(\mathrm{t})=\mathrm{t}^{\mathrm{p}}$ and apply Corollary 4 .
Theorem 4. Let B be a unital Banach $*$-algebra over C . Let $\mathrm{f}: \mathrm{B}_{\mathrm{B}} \mathrm{B}_{1} \rightarrow{ }_{\mathrm{B}} \mathrm{B}_{2}$ be a mapping for which there exists a mapping ' $: \mathrm{B}_{\mathrm{B}} \mathrm{B}_{1} \backslash\{0\} \times{ }_{\mathrm{B}} \mathrm{B}_{1} \backslash\{0\} \rightarrow[0 ; \infty)$ such that

$$
\begin{gathered}
\mathrm{e}(x ; y)={ }^{\lambda^{\prime}} 3^{k_{1}}\left(3^{i{ }^{k}} x ; 3^{i k} y\right)<\infty ; \\
\left\|2 f^{3} \frac{a x+a y^{k}=0}{2}-a f(x)-a f(y)\right\| \leq '(x ; y) ;
\end{gathered}
$$

for all $\mathrm{a} \in \mathrm{B}_{1}^{+} \cup\{\mathrm{i}\} \cup \mathrm{R}^{+}$and all $\mathrm{x} ; \mathrm{y} \in \mathrm{B}_{\mathrm{B}} \backslash\{0\}$. Then there exists a unique B -linear mapping $\mathrm{T}: \mathrm{B}_{\mathrm{B}} \mathrm{B}_{1} \rightarrow{ }_{\mathrm{B}} \mathrm{B}_{2}$ satisfying the condition given in the statement of Theorem 3.

Proof. The proof is similar to the proof of Theorem 2.
Corollary 6. Let E_{1} and E_{2} be complex Banach spaces. Let $\mathrm{f}: \mathrm{E}_{1} \rightarrow \mathrm{E}_{2}$ be a mapping for which there exists a function' $: \mathrm{E}_{1} \backslash\{0\} \times \mathrm{E}_{1} \backslash\{0\} \rightarrow[0 ; \infty)$ such that

$$
\begin{gathered}
\mathrm{e}(x ; y)={ }^{x} 3^{k^{\prime}}\left(3^{i{ }^{k}} x ; 3^{i^{k}} y\right)<\infty ; \\
\left\|2 f^{3} \frac{x+, y^{k=0}}{2}-f(x)-, f(y)\right\| \leq^{\prime}(x ; y)
\end{gathered}
$$

for,$\in\{\mathrm{i}\} \cup \mathrm{R}^{+}$and all $\mathrm{x} ; \mathrm{y} \in \mathrm{E}_{1} \backslash\{0\}$. Then there exists a unique C -linear mapping $\mathrm{T}: \mathrm{E}_{1} \rightarrow \mathrm{E}_{2}$ such that

$$
\left.\|f(x)-f(0)-T(x)\| \leq ' e\left(\frac{x}{3} ; \frac{-x}{3}\right)+\text { 'e(} \frac{-x}{3} ; x\right)
$$

for all $\mathrm{x} \in \mathrm{E}_{1} \backslash\{0\}$.
Proof. The proof is similar to the proof of Corollary 3.
Remark 2. Consider a unital Banach $*$-algebra B over C. In Corollary 4 and Corollary 5, when $a \in B_{1} \cup R^{+}$are replaced by $a \in B_{1}^{+} \cup\{i\} \cup R^{+}$, the results do also hold.

Remark 3. If the inequalities

$$
\left\|2 f^{3} \frac{a x+a y^{\prime}}{2}-a f(x)-a f(y)\right\| \leq^{\prime}(x ; y)
$$

in the statements are replaced by

$$
\left\|2 f^{3} \frac{a x+y^{\prime}}{2}-a f(x)-f(y)\right\| \leq^{\prime}(x ; y)
$$

then

$$
\begin{aligned}
& \left\|2 f^{3} \frac{a x+a y^{\prime}}{2}-a f(x)-f(a y)\right\| \leq^{\prime}(x ; a y) \\
& \left.\| 2 f^{i} \frac{a x+a y}{2}\right)-f(a x)-a f(y) \| \leq^{\prime}(a x ; y) ; \\
& \left\|2 f^{3} \frac{a x+a y}{2}-f(a x)-f(a y)\right\| \leq^{\prime}(a x ; a y):
\end{aligned}
$$

So

$$
\left\|2 f^{3} \frac{a x+a y^{\prime}}{2}-a f(x)-a f(y)\right\| \leq^{\prime}(x ; a y)+{ }^{\prime}(a x ; y)+'^{\prime}(a x ; a y) ;
$$

hence the results do also hold.
Remark 4. When the inequalities

$$
\left\|2 f^{3} \frac{a x+a y^{\prime}}{2}-a f(x)-a f(y)\right\| \leq^{\prime}(x ; y)
$$

in the statements of Theorem 1 and Theorem 3 are replaced by

$$
\left\|2 f^{3} \frac{a^{m} x+a^{m} y^{\prime}}{2}-a^{d} f(x)-a^{d} f(y)\right\| \leq^{\prime}(x ; y)
$$

for nonnegative integers m and d , by similar methods to the proofs of Theorem 1 and Theorem 3 , one can show that there exist unique additive mappings $T:{ }_{B} B_{1} \rightarrow{ }_{B} B_{2}$, satisfying the conditions given in the statements of Theorem 1 and Theorem 3, such that

$$
T\left(a^{m} x\right)=a^{d} T(x)
$$

for all $a \in B_{1} \cup R^{+}$and all $x \in B_{B}$.

References

1. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer-Verlag, New York, Heidelberg and Berlin, 1973.
2. J. Brzdęk, On the Cauchy difference on normed spaces, Abh. Math. Sem. Hamburg 66 (1996), 143-150.
3. S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Hamburg 62 (1992), 59-64.
4. G. L. Forti, The stability of homomorphisms and amenability, with applications to functional equations, Abh. Math. Sem. Hamburg 57 (1987), 215-226.
5. D. H. Hyers, G. Isac and Th.M. Rassias, Stability of Functional Equations in Several Variables, Birkhäuser, 1998.
6. Y. Lee and K. Jun, A generalization of the Hyers-Ulam-Rassias stability of Jensen's equation, J. Math. Anal. Appl. 238 (1999), 305-315.
7. Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.

Chun-Gil Park and Won-Gil Park
Department of Mathematics, Chungnam National University
TaeJon 305-764, South Korea
E-mail: cgpark@math.chungnam.ac.kr \& wgpark@math.chungnam.ac.kr

[^0]: Received March 30, 2001; revised May 16, 2001.
 Communicated by S. Y. Shaw.
 2000 Mathematics Subject Classification: Primary 39B22, 39B32; Secondary 46Bxx.
 Key words and phrases: Jensen's equation, stability, Banach module over Banach algebra.
 This work was supported by grant No. 2000-015-DP0025 from the KRF.

