TAIWANESE JOURNAL OF MATHEMATICS Vol. 6, No. 4, pp. 523-532, December 2002 This paper is available online at http://www.math.nthu.edu.tw/tjm/

ON THE JENSEN'S EQUATION IN BANACH MODULES

Chun-Gil Park and Won-Gil Park

Abstract. We prove the Hyers-Ulam-Rassias stability of the Jensen's equation in Banach modules over a Banach algebra.

Let E_1 and E_2 be Banach spaces, and $f : E_1 \to E_2$ a mapping such that f(tx) is continuous in $t \in R$ for each fixed $x \in E_1$. Assume that there exist constants ${}^2 \ge 0$ and $p \in [0; 1)$ such that

$$||f(x + y) - f(x) - f(y)|| \le {}^{2}(||x||^{p} + ||y||^{p});$$

for all x; $y \in E_1$. Th.M. Rassias [7] showed that there exists a unique R-linear mapping $T : E_1 \rightarrow E_2$ such that

$$\|f(x) - T(x)\| \le \frac{2^2}{2 - 2^p} ||x||^p;$$

for all $x \in E_1$.

The stability problems of functional equations have been investigated in several papers ([2, 3, 4, 5]).

Throughout this paper, let B be a unital Banach algebra with norm $|\cdot|$, R⁺ the set of positive real numbers, and B₁ the set of all elements of B having norm 1, and let _BB₁ and _BB₂ be left Banach B-modules with norms $||\cdot||$ and $||\cdot||$, respectively.

We are going to prove the Hyers-Ulam-Rassias stability of the Jensen's equation in Banach modules over a Banach algebra.

Theorem 1. Let $f : {}_{B}B_{1} \rightarrow {}_{B}B_{2}$ be a mapping for which there exists a function $: {}_{B}B_{1} \setminus \{0\} \times {}_{B}B_{1} \setminus \{0\} \rightarrow [0; \infty)$ such that

Received March 30, 2001; revised May 16, 2001.

Communicated by S. Y. Shaw.

²⁰⁰⁰ Mathematics Subject Classification: Primary 39B22, 39B32; Secondary 46Bxx.

Key words and phrases: Jensen's equation, stability, Banach module over Banach algebra. This work was supported by grant No. 2000-015-DP0025 from the KRF.

C. Park and W. Park

$$e(x; y) = \frac{3}{2} 3^{i k'} (3^{k}x; 3^{k}y) < \infty;$$
$$|2f^{3} \frac{ax + ay}{2} - af(x) - af(y)|| \le '(x; y);$$

for all $a \in B_1 \cup R^+$ and all $x; y \in {}_BB_1 \setminus \{0\}$. Then there exists a unique B-linear mapping $T : {}_BB_1 \to {}_BB_2$ such that

$$\|f(x) - f(0) - T(x)\| \le \frac{1}{3}(e(x; -x) + e(-x; 3x));$$

for all $x \in {}_{\mathsf{B}}\mathsf{B}_1 \setminus \{0\}$.

I

Proof. By [6, Theorem 1], it follows from the inequality of the statement for a = 1 that there exists a unique additive mapping $T : {}_{B}B_{1} \rightarrow {}_{B}B_{2}$ satisfying the condition given in the statement.

By the assumption, for each $a \in B_1 \cup R^+$,

$$\|2f(3^{n}ax) - af(2 \cdot 3^{n_{i}} x) - af(4 \cdot 3^{n_{i}} x)\| \leq (2 \cdot 3^{n_{i}} x; 4 \cdot 3^{n_{i}} x);$$

for all $x \in {}_{B}B_1 \setminus \{0\}$. Using the fact that for each $a \in B$ and each $z \in {}_{B}B_2$ $||az|| \le K |a| \cdot ||z||$ for some K > 0,

$$\begin{split} \|f(3^{n}ax) - af(3^{n}x)\| &= \|f(3^{n}ax) - \frac{1}{2}af(2 \cdot 3^{n_{i}-1}x) - \frac{1}{2}af(4 \cdot 3^{n_{i}-1}x) \\ &+ \frac{1}{2}af(2 \cdot 3^{n_{i}-1}x) + \frac{1}{2}af(4 \cdot 3^{n_{i}-1}x) - af(3^{n}x)\| \\ &\leq \frac{1}{2} \cdot (2 \cdot 3^{n_{i}-1}x; 4 \cdot 3^{n_{i}-1}x) \\ &+ \frac{1}{2}K|a| \cdot \|2f(3^{n}x) - f(2 \cdot 3^{n_{i}-1}x) - f(4 \cdot 3^{n_{i}-1}x)\| \\ &\leq \frac{1 + K|a|}{2} \cdot (2 \cdot 3^{n_{i}-1}x; 4 \cdot 3^{n_{i}-1}x); \end{split}$$

for all $a \in B_1 \cup R^+$ and all $x \in {}_BB_1 \setminus \{0\}$. So $3^i \ {}^n \|f(3^nax) - af(3^nx)\| \to 0$ as $n \to \infty$ for all $a \in B_1 \cup R^+$ and all $x \in {}_BB_1 \setminus \{0\}$. Hence

$$T(ax) = \lim_{n! \to 1} 3^{i} f(3^{n}ax) = \lim_{n! \to 1} 3^{i} af(3^{n}x) = aT(x);$$

for all $a \in B_1 \cup R^+$ and all $x \in {}_BB_1 \setminus \{0\}$. Since T is additive, T(0) = 0 and T(a0) = T(0) = 0 = a0 = aT(0) for all $a \in B_1 \cup R^+$. So T(ax) = aT(x) for all $a \in B_1 \cup R^+$ and all $x \in {}_BB_1$. Thus

$$T(ax) = T^{3}|a| \cdot \frac{a}{|a|}x = |a|T^{3}\frac{a}{|a|}x = aT(x);$$

for all $a \in B \setminus \{0\}$ and all $x \in {}_{B}B_{1}$. Note that T(0x) = T(0) = 0 = 0T(x) for all $x \in {}_{B}B_{1}$. So the unique additive mapping $T : {}_{B}B_{1} \rightarrow {}_{B}B_{2}$ is a B-linear mapping, as desired.

Corollary 1. Let $\tilde{A} : \mathbb{R}^+ \to \mathbb{R}^+$ be a function such that $\frac{\tilde{A}(3)}{3} < 1$ and $\tilde{A}(ts) \leq \tilde{A}(t)\tilde{A}(s)$;

for all $t; s \in R^+$. Let $f : {}_{B}B_1 \to {}_{B}B_2$ be a mapping such that

$$\|2f^{3}\frac{ax + ay}{2} - af(x) - af(y)\| \le \tilde{A}(||x||) + \tilde{A}(||y||);$$

for all $a \in B_1 \cup R^+$ and all $x; y \in {}_BB_1 \setminus \{0\}$. Then there exists a unique B-linear mapping $T : {}_BB_1 \to {}_BB_2$ such that

$$\|f(x) - f(0) - T(x)\| \le \frac{3\tilde{A}(||x||) + \tilde{A}(||3x||)}{3 - \tilde{A}(3)}$$

for all $x \in {}_{\mathsf{B}}\mathsf{B}_1 \setminus \{0\}$.

Proof. Let ' $(x; y) = \tilde{A}(||x||) + \tilde{A}(||y||)$ for all $x; y \in BB_1 \setminus \{0\}$. Then we get

$$\begin{aligned} \text{'e}(\mathbf{x};\mathbf{y}) &= \overset{\widehat{\mathsf{X}}}{\overset{\mathsf{k}=0}{3^{\mathsf{i}}}} 3^{\mathsf{i}} \overset{\mathsf{k}_{\mathsf{i}}}{(3^{\mathsf{k}}\mathbf{x};3^{\mathsf{k}}\mathbf{y})} \\ &= \overset{\mathsf{k}=0}{\overset{\mathsf{X}}{3^{\mathsf{i}}}} 3^{\mathsf{i}} \overset{\mathsf{k}}{(\tilde{\mathsf{A}}(||3^{\mathsf{k}}\mathbf{x}||) + \tilde{\mathsf{A}}(||3^{\mathsf{k}}\mathbf{y}||));} \\ &\leq \overset{\mathsf{k}=0}{\overset{\mathsf{X}}{3^{\mathsf{i}}}} (\frac{\tilde{\mathsf{A}}(3)}{3})^{\mathsf{k}} (\tilde{\mathsf{A}}(||\mathbf{x}||) + \tilde{\mathsf{A}}(||\mathbf{y}||)) \\ &= \frac{\tilde{\mathsf{A}}(||\mathbf{x}||) + \tilde{\mathsf{A}}(||\mathbf{y}||)}{1 - \frac{\tilde{\mathsf{A}}(3)}{3}} < \infty; \end{aligned}$$

for all $x, y \in {}_{B}B_1 \setminus \{0\}$. It follows from Theorem 1 that there exists a unique B-linear mapping $T : {}_{B}B_1 \to {}_{B}B_2$ such that

$$\|f(x) - f(0) - T(x)\| \le \frac{3\tilde{A}(||x||) + \tilde{A}(||3x||)}{3 - \tilde{A}(3)};$$

for all $x \in {}_{B}B_1 \setminus \{0\}$.

Corollary 2. Let p < 1 and $f:{}_BB_1 \rightarrow {}_BB_2$ a mapping such that

$$\|2f^{3}\frac{ax + ay}{2} - af(x) - af(y)\| \le \||x\||^{p} + \|y\|^{p};$$

for all $a \in B_1 \cup R^+$ and all $x; y \in {}_BB_1 \setminus \{0\}$. Then there exists a unique B-linear mapping $T : {}_BB_1 \to {}_BB_2$ such that

$$\|f(x)-f(0)-T(x)\| \leq \frac{3+3^p}{3-3^p}||x||^p;$$

for all $x \in {}_{\mathsf{B}}\mathsf{B}_1 \setminus \{0\}$.

Proof. Define $\tilde{A} : R^+ \to R^+$ by $\tilde{A}(t) = t^p$ and apply Corollary 1.

Theorem 2. Let B be a unital Banach *-algebra over C, and B_1^+ the set of positive elements of B having norm 1. Let $f : {}_BB_1 \to {}_BB_2$ be a mapping for which there exists a function ' : ${}_BB_1 \setminus \{0\} \times {}_BB_1 \setminus \{0\} \to [0; \infty)$ such that

$$\begin{aligned} & \text{'e}(x;y) = \overset{X}{\underset{k=0}{3}} 3^{i \ k} (3^{k}x;3^{k}y) < \infty; \\ & \|2f^{3}\frac{ax+ay}{2} - af(x) - af(y)\| \le \text{'} (x;y); \end{aligned}$$

for all $a \in B_1^+ \cup \{i\} \cup R^+$ and all $x; y \in {}_BB_1 \setminus \{0\}$. Then there exists a unique B-linear mapping $T : {}_BB_1 \to {}_BB_2$ satisfying the condition given in the statement of Theorem 1.

Proof. By the same reasoning as the proof of Theorem 1, there exists a unique additive mapping $T : {}_BB_1 \rightarrow {}_BB_2$ such that

$$\|f(x) - f(0) - T(x)\| \le \frac{1}{3}(e(x; -x) + e(-x; 3x));$$

for all $x\in {}_{\mathsf{B}}\mathsf{B}_1\setminus\{0\}.$ By the same method as the proof of Theorem 1, one can show that

$$T(ax) = \lim_{n! \to 1} 3^{i^{n}} f(3^{n}ax) = \lim_{n! \to 1} 3^{i^{n}} af(3^{n}x) = aT(x)$$

for all $a \in B_1^+ \cup \{i\} \cup R^+$ and all $x \in {}_BB_1 \setminus \{0\}$. So T(ax) = aT(x) for all $a \in (B^+ \setminus \{0\}) \cup \{i\}$ and all $x \in {}_BB_1$. For any element $a \in B$, $a = a_1 + ia_2$, where $a_1 = \frac{a+a^{\alpha}}{2}$ and $a_2 = \frac{a_i a^{\alpha}}{2i}$ are self-adjoint elements, furthermore, $a = a_1^+ - a_1^i + ia_2^+ - ia_2^i$, where a_1^+, a_1^i, a_2^+ , and a_2^i are positive elements (see [1, Lemma 38.8]). Since T is additive, T(x) = T(x - y + y) = T(x - y) + T(y) and T(x - y) = T(x) - T(y) for all x; $y \in {}_BB_1$. So

$$T (ax) = T (a_1^+ x - a_1^i x + ia_2^+ x - ia_2^i x)$$

= $(a_1^+ - a_1^i + ia_2^+ - ia_2^i)T (x)$
= $aT (x);$

for all $a \in B$ and all $x \in {}_BB_1$. Hence there exists a unique B-linear mapping $T : {}_BB_1 \to {}_BB_2$ such that

$$\|f(x) - f(0) - T(x)\| \le \frac{1}{3}(e(x; -x) + e(-x; 3x));$$

for all $x \in {}_{\mathsf{B}}\mathsf{B}_1 \setminus \{0\}$.

Corollary 3. Let E_1 and E_2 be complex Banach spaces. Let $f : E_1 \to E_2$ be a mapping for which there exists a function ' : $E_1 \setminus \{0\} \times E_1 \setminus \{0\} \to [0; \infty)$ such that

$$\begin{aligned} & e(x; y) = \bigwedge_{k=0}^{X} 3^{i k'} (3^{k}x; 3^{k}y) < \infty; \\ & |2f \frac{3}{2} \frac{x + y}{2} - f(x) - f(y)| \le (x; y); \end{aligned}$$

for $_{s} \in \{i\} \cup R^{+}$ and all $x; y \in E_1 \setminus \{0\}$. Then there exists a unique C-linear mapping $T : E_1 \to E_2$ such that

$$\|f(x) - f(0) - T(x)\| \le \frac{1}{3}(e(x; -x) + e(-x; 3x));$$

for all $x \in E_1 \setminus \{0\}$.

Proof. Since C is a Banach algebra, the Banach spaces E_1 and E_2 are considered as Banach modules over C. By Theorem 2, there exists a unique C-linear mapping $T : E_1 \rightarrow E_2$ satisfying the condition given in the statement.

Remark 1. Consider a unital Banach *-algebra B over C. In Corollary 1 and Corollary 2, when $a \in B_1 \cup R^+$ are replaced by $a \in B_1^+ \cup \{i\} \cup R^+$, the results do also hold.

Theorem 3. Let $f : {}_{B}B_1 \rightarrow {}_{B}B_2$ be a mapping for which there exists a function $: {}_{B}B_1 \setminus \{0\} \times {}_{B}B_1 \setminus \{0\} \rightarrow [0; \infty)$ such that

$$\begin{aligned} & \text{'e}(x;y) = \overset{X}{3} 3^{k} (3^{i} x; 3^{i} y) < \infty; \\ & \|2f \frac{3}{2} \frac{ax + ay}{2} - af(x) - af(y)\| \le '(x;y); \end{aligned}$$

for all $a \in B_1 \cup R^+$ and all $x; y \in {}_BB_1 \setminus \{0\}$. Then there exists a unique B-linear mapping $T : {}_BB_1 \to {}_BB_2$ such that

$$\|f(x) - f(0) - T(x)\| \le e^{3} \frac{x}{3}; \frac{-x}{3} + e^{3} \frac{-x}{3}; x$$

for all $x \in {}_{\mathsf{B}}\mathsf{B}_1 \setminus \{0\}$.

Proof. By [6, Theorem 6], it follows from the inequality of the statement for a = 1 that there exists a unique additive mapping $T : {}_{B}B_{1} \rightarrow {}_{B}B_{2}$ satisfying the condition given in the statement.

By the assumption, for each $a \in B_1 \cup R^+$,

$$\|2f(3^{i} {}^{n}ax) - af(2 \cdot 3^{i} {}^{n_{i}}{}^{1}x) - af(4 \cdot 3^{i} {}^{n_{i}}{}^{1}x)\| \leq '(2 \cdot 3^{i} {}^{n_{i}}{}^{1}x; 4 \cdot 3^{i} {}^{n_{i}}{}^{1}x);$$

for all $x \in {}_{B}B_1 \setminus \{0\}$. Using the fact that for each $a \in B$ and each $z \in {}_{B}B_2$ $||az|| \le K |a| \cdot ||z||$ for some K > 0,

$$\begin{split} \|f(3^{i} \ ^{n}ax) - af(3^{i} \ ^{n}x)\| &= \|f(3^{i} \ ^{n}ax) - \frac{1}{2}af(2 \cdot 3^{i} \ ^{n_{i}} \ ^{1}x) - \frac{1}{2}af(4 \cdot 3^{i} \ ^{n_{i}} \ ^{1}x) \\ &+ \frac{1}{2}af(2 \cdot 3^{i} \ ^{n_{i}} \ ^{1}x) + \frac{1}{2}af(4 \cdot 3^{i} \ ^{n_{i}} \ ^{1}x) - af(3^{i} \ ^{n}x)\| \\ &\leq \frac{1}{2}, \ (2 \cdot 3^{i} \ ^{n_{i}} \ ^{1}x; 4 \cdot 3^{i} \ ^{n_{i}} \ ^{1}x) \\ &+ \frac{1}{2}K|a| \cdot \|2f(3^{i} \ ^{n}x) - f(2 \cdot 3^{i} \ ^{n_{i}} \ ^{1}x) - f(4 \cdot 3^{i} \ ^{n_{i}} \ ^{1}x)| \\ &\leq \frac{1 + K|a|}{2}, \ (2 \cdot 3^{i} \ ^{n_{i}} \ ^{1}x; 4 \cdot 3^{i} \ ^{n_{i}} \ ^{1}x); \end{split}$$

for all $a \in B_1 \cup R^+$ and all $x \in {}_BB_1 \setminus \{0\}$. So $3^n \|f(3^i \ ^n ax) - af(3^i \ ^n x)\| \to 0$ as $n \to \infty$ for all $a \in B_1 \cup R^+$ and all $x \in {}_BB_1 \setminus \{0\}$. Hence

$$T(ax) = \lim_{n! \to 1} 3^{n}f(3^{i} ax) = \lim_{n! \to 1} 3^{n}af(3^{i} x) = aT(x);$$

for all $a \in B_1 \cup R^+$ and all $x \in {}_BB_1 \setminus \{0\}$. By the same reasoning as the proof of Theorem 1, the unique additive mapping $T : {}_BB_1 \to {}_BB_2$ is a B-linear mapping, as desired.

Corollary 4. Let $\tilde{A} : \mathbb{R}^+ \to \mathbb{R}^+$ be a function such that $\frac{\tilde{A}(3)}{3} > 1$ and $\tilde{A}(ts) \ge \tilde{A}(t)\tilde{A}(s)$;

for all $t; s \in \mathbb{R}^+$. Let $f : {}_{B}B_1 \to {}_{B}B_2$ be a mapping such that

$$\|2f \frac{dx + dy}{2} - af(x) - af(y)\| \le \tilde{A}(||x||) + \tilde{A}(||y||);$$

for all $a \in B_1 \cup R^+$ and all $x; y \in {}_BB_1 \setminus \{0\}$. Then there exists a unique B-linear mapping $T : {}_BB_1 \to {}_BB_2$ such that

$$\|f(x) - f(0) - T(x)\| \le \frac{3\tilde{A}(||\frac{x}{3}||) + \tilde{A}(||x||)}{1 - \frac{3}{A(3)}}$$

for all $x \in {}_{\mathsf{B}}\mathsf{B}_1 \setminus \{0\}$.

Proof. Let ' $(x; y) = \tilde{A}(||x||) + \tilde{A}(||y||)$ for all $x; y \in {}_{\mathsf{B}}\mathsf{B}_1 \setminus \{0\}$. Then we get

for all $x; y \in {}_{B}B_1 \setminus \{0\}$: It follows from Theorem 3 that there exists a unique B-linear mapping $T : {}_{B}B_1 \to {}_{B}B_2$ such that

$$\|f(x) - f(0) - T(x)\| \le \frac{3\tilde{A}(||\frac{x}{3}||) + \tilde{A}(||x||)}{1 - \frac{3}{A(3)}};$$

for all $x \in {}_{\mathsf{B}}\mathsf{B}_1 \setminus \{0\}$.

Corollary 5. Let p > 1 and $f : {}_{B}B_{1} \rightarrow {}_{B}B_{2}$ a mapping such that $\|2f^{3}\frac{ax + ay}{2} - af(x) - af(y)\| \le ||x||^{p} + ||y||^{p};$

for all $a \in B_1 \cup R^+$ and all $x; y \in {}_BB_1 \setminus \{0\}$. Then there exists a unique B-linear mapping $T : {}_BB_1 \to {}_BB_2$ such that

$$\|f(x) - f(0) - T(x)\| \le \frac{3^p + 3}{3^p - 3} ||x||^p;$$

for all $x \in BB_1$.

Proof. Define $\tilde{A} : \mathbb{R}^+ \to \mathbb{R}^+$ by $\tilde{A}(t) = t^p$ and apply Corollary 4.

Theorem 4. Let B be a unital Banach *-algebra over C. Let $f : {}_{B}B_{1} \rightarrow {}_{B}B_{2}$ be a mapping for which there exists a mapping ' : ${}_{B}B_{1} \setminus \{0\} \times {}_{B}B_{1} \setminus \{0\} \rightarrow [0; \infty)$ such that

$$\begin{aligned} & \text{'e}(x; y) = \overset{X}{3^{k'}} 3^{k'} (3^{i k}x; 3^{i k}y) < \infty; \\ & 2f \frac{3}{2} \frac{ax + ay}{2}^{k=0} - af(x) - af(y) \| \le \text{'} (x; y); \end{aligned}$$

for all $a \in B_1^+ \cup \{i\} \cup R^+$ and all $x; y \in {}_BB_1 \setminus \{0\}$. Then there exists a unique B-linear mapping $T : {}_BB_1 \to {}_BB_2$ satisfying the condition given in the statement of Theorem 3.

Proof. The proof is similar to the proof of Theorem 2.

Corollary 6. Let E_1 and E_2 be complex Banach spaces. Let $f : E_1 \to E_2$ be a mapping for which there exists a function ' : $E_1 \setminus \{0\} \times E_1 \setminus \{0\} \to [0; \infty)$ such that

$$\begin{aligned} & e(x; y) = \frac{X}{3^{k'}} \frac{3^{k'}}{3^{k'}} (3^{i'k}x; 3^{i'k}y) < \infty; \\ & \|2f^{3} \frac{x + y}{2} - f(x) - f(y)\| \le (x; y) \end{aligned}$$

for $_{s} \in \{i\} \cup R^{+}$ and all $x; y \in E_1 \setminus \{0\}$. Then there exists a unique C-linear mapping $T : E_1 \to E_2$ such that

$$\|f(x) - f(0) - T(x)\| \le e(\frac{x}{3}; \frac{-x}{3}) + e(\frac{-x}{3}; x)$$

for all $x \in E_1 \setminus \{0\}$.

Proof. The proof is similar to the proof of Corollary 3.

Remark 2. Consider a unital Banach *-algebra B over C. In Corollary 4 and Corollary 5, when $a \in B_1 \cup R^+$ are replaced by $a \in B_1^+ \cup \{i\} \cup R^+$, the results do also hold.

Remark 3. If the inequalities

$$\|2f^{3}\frac{ax + ay}{2} - af(x) - af(y)\| \le (x; y)$$

in the statements are replaced by

$$\|2f^{3}\frac{ax+y}{2} - af(x) - f(y)\| \le (x;y);$$

$$\begin{aligned} \|2f^{3}\frac{ax + ay}{2} - af(x) - f(ay)\| &\leq '(x; ay); \\ \|2f^{1}\frac{ax + ay}{2} - f(ax) - af(y)\| &\leq '(ax; y); \\ \|2f^{3}\frac{ax + ay}{2} - f(ax) - f(ay)\| &\leq '(ax; ay): \end{aligned}$$

then

So

$$\|2f^{3}\frac{ax+ay}{2} - af(x) - af(y)\| \le (x;ay) + (ax;y) + (ax;ay);$$

hence the results do also hold.

Remark 4. When the inequalities

$$\|2f^{3}\frac{ax + ay}{2} - af(x) - af(y)\| \le (x; y)$$

in the statements of Theorem 1 and Theorem 3 are replaced by

$$\|2f^{3}\frac{a^{m}x + a^{m}y}{2} - a^{d}f(x) - a^{d}f(y)\| \leq (x; y)$$

for nonnegative integers m and d, by similar methods to the proofs of Theorem 1 and Theorem 3, one can show that there exist unique additive mappings $T : {}_{B}B_1 \rightarrow {}_{B}B_2$, satisfying the conditions given in the statements of Theorem 1 and Theorem 3, such that

$$T(a^m x) = a^d T(x)$$

for all $a \in B_1 \cup R^+$ and all $x \in {}_BB_1$.

REFERENCES

- F. Bonsall and J. Duncan, *Complete Normed Algebras*, Springer-Verlag, New York, Heidelberg and Berlin, 1973.
- 2. J. Brzdęk, On the Cauchy difference on normed spaces, *Abh. Math. Sem. Hamburg* **66** (1996), 143-150.
- 3. S. Czerwik, On the stability of the quadratic mapping in normed spaces, *Abh. Math. Sem. Hamburg* **62** (1992), 59-64.
- 4. G. L. Forti, The stability of homomorphisms and amenability, with applications to functional equations, *Abh. Math. Sem. Hamburg* **57** (1987), 215-226.
- 5. D. H. Hyers, G. Isac and Th.M. Rassias, *Stability of Functional Equations in Several Variables*, Birkhäuser, 1998.
- 6. Y. Lee and K. Jun, A generalization of the Hyers-Ulam-Rassias stability of Jensen's equation, *J. Math. Anal. Appl.* **238** (1999), 305-315.
- Th.M. Rassias, On the stability of the linear mapping in Banach spaces, *Proc. Amer. Math. Soc.* 72 (1978), 297-300.

Chun-Gil Park and Won-Gil Park Department of Mathematics, Chungnam National University TaeJon 305-764, South Korea E-mail: cgpark@math.chungnam.ac.kr & wgpark@math.chungnam.ac.kr