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ON (d; 2)-DOMINATING NUMBERS OF BUTTERFLY NETWORKS¤y

Shao Rujun, Lu Changhong and Yao Tianxing

Abstract. In this paper, we study (d; 2)-dominating numbers for an important
class of parallel networks - butterfly networks B(n). The main result of this
paper is to determine their (d; 2)-dominating numbers for 2n¡1 ∙ d ∙ 2n+1.

1. INTRODUCTION

In this paper, we use graphs to represent networks. We use [1] for terminology
and notation not defined here. In addition, the length of a path P [v1; vp+1] := v1 !
v2 ! v3 ! ¢ ¢ ¢ ! vp ! vp+1 is the number p of edges of P and will be denoted by
j P j, where v1 and vp+1 are called end-vertices of P and v2; v3; ¢ ¢ ¢ ; vp are called
internal vertices. For a nonempty and proper subset S of the vertex set V (G) and
x 2 V (G¡ S), an (x; S)-path is a path in G connecting x to some vertex in S.

The butterfly network B(n) is the graph whose vertices are x = (x0; x1; ¢ ¢ ¢ ; xn)
with 0 ∙ x0 ∙ n and xi 2 f0; 1g for 1 ∙ i ∙ n, and two vertices x =
(x0; x1; ¢ ¢ ¢ ; xn) and y = (y0; y1; ¢ ¢ ¢ ; yn) are adjacent if and only if y0 = x0 + 1
and xi = yi for 1 ∙ i ∙ n with i 6= y0. Note that B(1) is a 4-cycle. For a vertex
x = (x0; x1; ¢ ¢ ¢ ; xn) in B(n), we say that x is in level x0 of B(n) and call xi the
ith coordinate of x. Fig. 1 shows an example of B(3), in which the top line indicates
the level numbers and the left column indicates the names (x1; x2; ¢ ¢ ¢ ; xn).

Let T denote the vertices in level 0, it is easy to know B(n)¡T is two disjoint
butterfly networks B(n ¡ 1), one denoted by B(n ¡ 1)1 has all vertices x with
x1 = 0 and x0 6= 0; the other denoted by B(n¡ 1)2 has all vertices x with x1 = 1
and x0 6= 0. Cao, Du, Hsu, and Wan [2] have shown that B(n) is 2-connected and
its diameter is equal to 2n.
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FIG. 1. The butterfly network B(3)

In order to characterize the reliability of transmission delay in a network, Hsu
and Lyuu [5] introduce m-diameter (i.e. wide-diameter) as follows: For any pair
(x; y) of vertices in a graph G, the minimum integer d suth that there are at least
m internally vertex-disjoint path of length at most d between x and y is called
the m-distance of x and y and is denoted by Dm(x; y)G. The m-diameter of G,
denoted by Dm(G), is the maximum of Dm(x; y)G over all pairs (x; y) of vertices
of G. General results on the m-diameters of m-connected graphs can be found in
[4] and [5]. Results for some particular classes of graphs can be also found in [6],
[7] and [9]. In particular, for a Butterfly network B(n), its 2-diameter is 2n + 2
for n ¸ 2. (see [9]).

Recently, H. Li and J. M. Xu in [8] define a new parameter (d; m)-dominating
number in m-connected graphs, in some sense, which can more accurately charac-
terize the reliability of networks than the wide-diameter can.

Definition. Let G be a m-connected graphs, S a nonempty and proper subset
of V (G), y a vertex in G¡S. For a given positive integer d, y is (d; m)-dominated
by S in the graph if there are at least m internally vertex-disjoint (y; S)-paths in G
such that each of which is of length at most d. S is said to be a (d; m)-dominating
set of G, denoted by Sd;m(G) if either S = V (G) or S can (d; m)-dominate every
vertex in G¡ S. The parameter

sd;m(G) = minfjSd;m(G)j : Sd;m(G) is a (d; m)¡ dominating set of Gg

will be called the (d; m)-dominating number of G.

Remark 1. (d; m)-dominating number can be used to explain such a quesition:
Let G be a communication network of the Department of National Defence. Given
integer d > 0 and m > 0. How many command centers are necessary and sufficient
such that there exist at least m internally disjoint paths of length at most d between
each fight unit and these command centers? And how to select these vertices in G
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as command centers? Results on (d; m)-dominating number can be found in [8],
[10], [11].

In this paper, we will prove for n ¸ 3, the (d; 2)-dominating number of B(n)
is 2 for 2n¡ 1 ∙ d ∙ 2n + 1.

2. PRELIMINARY RESULTS

In order to prove the theorem, we first give some lemmas.

Lemma 1. Let G be an m-connected (m ¸ 2) graph of order n and d a
positive integer; then

(a) If d = Dm(G); then sd;m(G) = 1;

(b) If d0 > d00; then sd0;m(G) ∙ sd00;m(G).

Proof. (a) and (b) can be obtained directly by the definitions.

Lemma 2. For butterfly networks B(n); (n ¸ 2); s2n+2;2(B(n)) = 1.

Proof. Since 2-diameter of B(n) is 2n + 2; it is easy to prove s2n+2;2

(B(n)) = 1.

Lemma 2 shows that it is interesting to determine (d; 2)-dominating numbers
of B(n) when d ∙ 2n + 1, and lemma 1 shows that it is sufficient to prove
s2n¡1;2(B(n)) = 2 and s2n+1;2(B(n)) > 1 in order to prove the main results.

Lemma 3. For any x = (0; x1; x2; ¢ ¢ ¢ ; xn) in V (B(n) ¡ S); where S =
f(0; 0; ¢ ¢ ¢ ; 0); (0; 1; ¢ ¢ ¢ ; 1)g. If xn = 1, there exists a path of length no more than
2n¡2 between x and (0; 1; ¢ ¢ ¢ ; 1); otherwise; there exists a path of length no more
than 2n¡ 2 between x and (0; 0; ¢ ¢ ¢ ; 0).

Proof. Without loss of generality, we assume that xn = 1 and let w denote
the binary string (x1; x2; ¢ ¢ ¢ ; xn). Let wi1i2¢¢¢ig = (x1; x2; ¢ ¢ ¢ ; xi1¡1, xi1 ; xi1+1;
¢ ¢ ¢ ; xi2¡1; xi2 ; xi2+1; ¢ ¢ ¢ ; xig¡1; xig ; xig+1; ¢ ¢ ¢ ; xn), where xi = 1¡xi. Suppose
that xi1 = xi2 = ¢ ¢ ¢ = xig = 0 and xig+1 = xig+2 = ¢ ¢ ¢ = xin = 1 where fi1; i2;
¢ ¢ ¢ ; ig; ig+1; ¢ ¢ ¢ ; ing = f1; 2; ¢ ¢ ¢ ; ng and i1 < i2 < ¢ ¢ ¢ < ig 6= n, We construct
the path between x and (0; 1; ¢ ¢ ¢ ; 1) as follows:

P : x! (1; w) ! ¢ ¢ ¢ ! (i1 ¡ 1; w) ! (i1; wi1) ! (i1 + 1; wi1) ! ¢ ¢ ¢
! (i2 ¡ 1; wi1) ! (i2; wi1i2) ! (i2 + 1; wi1i2) ! ¢ ¢ ¢ ! (ig; wi1i2¢¢¢ig)

! (ig ¡ 1; wi1i2¢¢¢ig) ! (ig ¡ 2; wi1i2¢¢¢ig) ! ¢ ¢ ¢ ! (0; wi1i2¢¢¢ig )

= (0; 1; ¢ ¢ ¢ ; 1):
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We easily know that jP j = 2ig ∙ 2n¡ 2.

Lemma 4. For u = (k ¡ 1; 0; ¢ ¢ ¢ ; 0) and v = (k + 1; 1; ¢ ¢ ¢ ; 1) in B(n)
(n ¸ 3; 1 ∙ k ∙ n

2 ); P [u; v] must pass the vertex w = (w0; w1; ¢ ¢ ¢ ; wn) if
jP [u; v]j ∙ 2n + 1; where w0 = k; w1 = ¢ ¢ ¢ = wk = 1 and wk+1 = ¢ ¢ ¢ = wn = 0.

Proof. First P [u; v] must pass some vertex x in level 0 of B(n) since the
first coordinates of u and v are distinct; Similarly, P [u; v] must pass some vertex
y in level n of B(n) since the last coordinates of u and v are distinct. If P [u; v]
first pass y then x, we easily know jP [u; v]j = jP [u; y]j + jP [y; x]j + jP [x; v]j
¸ (n¡k+1)+n+(k+1) = 2n+2, a contradiction. So, P [u; v] must first pass x then
y and jP [u; v]j is no less than 2n¡2 for jP [u; v]j = jP [u; x]j+ jP [x; y]j+ jP [y; v]j
¸ (k¡ 1) + n + (n¡ k¡ 1) = 2n¡ 2. If P [u; v] has only one vertex t in level k,
then tk+1 = ¢ ¢ ¢ = tn = 0 since all vertices of P [u; t] are in level less than k + 1 in
B(n) and uk+1 = ¢ ¢ ¢ = un = 0. We also know t1 = ¢ ¢ ¢ = tk = 1 since all vertices
of P [v; t] are in level no less than k and v1 = ¢ ¢ ¢ = vk = 1. i.e., t = w. Note that
it is impossible that P [u; v] has more than two vertices in level k. (If not, we easily
find jP [u; v]j is more than 2n + 1.) We assume P [u; v] has just two vertices t and
z in level k of B(n). Without loss of generality, we say t is the first vertex in level
k which is in P [u; v]. Obviously, z is the last vertex in level k which is in P [u; v].
If all vertices of P [v; t] are in level no less than k, then we know t = w as above.
If all vertices of P [u; z] are in level no more than k, then we also know z = w.

Remark 2. We can easily find the following result from the proof of Lemma
4. For u = (k ¡ 1; u1; ¢ ¢ ¢ ; un) and v = (k + 1; u1; ¢ ¢ ¢ ; un) in B(n) (n ¸ 3,
1 ∙ k ∙ n¡ 1), P [u; v] must pass the vertex w = (k; u1; ¢ ¢ ¢ ; uk; uk+1; ¢ ¢ ¢ ; un) if
jP [u; v]j ∙ 2n + 1.

We can easily find the following mappings are automorphisms of B(n):

®i : (x0; x1; ¢ ¢ ¢ ; xn) ! (x0; x1; ¢ ¢ ¢ ; xi¡1; xi; xi+1; ¢ ¢ ¢ ; xn) (1 ∙ i ∙ n)

¯ : (x0; x1; ¢ ¢ ¢ ; xn) ! (n¡ x0; xn; ¢ ¢ ¢ ; x1)

These are useful in the proof of our main results.

3. THE MAIN RESULTS

Theorem 1. The (d; 2)-dominating number of Bn (n ¸ 3) is 2 for d = 2n¡1.

Proof. Now we prove S = fs1 = (0; 0; ¢ ¢ ¢ ; 0); s2 = (0; 1; ¢ ¢ ¢ ; 1)g is a
(2n ¡ 1; 2)-dominating set of B(n) (n ¸ 3). For any x 2 V (B(n) ¡ S), we
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shall construct two vertex-disjoint paths between x and S, each of which has length
no more than 2n¡ 1.

Case 1. x = (x0; x1; ¢ ¢ ¢ ; xn) with x0 ¸ 1.

Suppose that xi1 = xi2 = ¢ ¢ ¢ = xig = 0 and xig+1 = xig+2 = ¢ ¢ ¢ = xin =
1 where fi1; i2; ¢ ¢ ¢ ; ig; ig+1; ¢ ¢ ¢ ; ing = f1; 2; ¢ ¢ ¢ ; ng and i1 < i2 < ¢ ¢ ¢ < ig,
ig+1 < ig+2 < ¢ ¢ ¢ < in. Without loss of generality, we assume it¡1 ∙ x0 ∙ it

where it 2 fi1; i2; ¢ ¢ ¢ ; igg.

P1 : x! (x0 + 1; w) ! ¢ ¢ ¢ ! (it ¡ 1; w) ! (it; wit) ! (it + 1; wit) ! ¢ ¢ ¢
! (it+1 ¡ 1; wit) ! (it+1; witit+1) ! (it+1 + 1; witit+1) ! ¢ ¢ ¢
! (ig; witit+1¢¢¢ig) ! (ig ¡ 1; witit+1¢¢¢ig) ! (ig ¡ 2; witit+1¢¢¢ig) ! ¢ ¢ ¢
! (it¡1; witit+1¢¢¢ig ) ! (it¡1 ¡ 1; wit¡1it¢¢¢ig) ! (it¡1 ¡ 2; wit¡1it¢¢¢ig)

! ¢ ¢ ¢ ! (it¡2; wit¡1it¢¢¢ig ) ! (it¡2 ¡ 1; wit¡2it¡1¢¢¢ig) ! ¢ ¢ ¢
! (0; wi1i2¢¢¢ig) = (0; 1; ¢ ¢ ¢ ; 1):

Similarly, let im¡1 ∙ x0 ∙ im where im 2 fig+1; ig+2; ¢ ¢ ¢ ; ing, we can con-
struct a path P2 between x and s1.

P2 : x! (x0 + 1; w) ! ¢ ¢ ¢ ! (im ¡ 1; w) ! (im; wim) ! (im + 1; wim)

! ¢ ¢ ¢ ! (im+1 ¡ 1; wim) ! (im+1; wimim+1) ! (im+1 + 1; wimim+1) ! ¢ ¢ ¢
! (in; wimim+1¢¢¢in) ! (in ¡ 1; wimim+1¢¢¢in) ! (in ¡ 2; wimim+1¢¢¢in)

! ¢ ¢ ¢ ! (im¡1; wimim+1¢¢¢in) ! (im¡1 ¡ 1; wim¡1im¢¢¢in)

! (im¡1 ¡ 2; wim¡1im¢¢¢in) ! ¢ ¢ ¢ ! (im¡2; wim¡1im¢¢¢in)

! (im¡2 ¡ 1; wim¡2im¡1¢¢¢in) ! ¢ ¢ ¢ ! (0; wig+1ig+2¢¢¢in) = (0; 0; ¢ ¢ ¢ ; 0)

Note that if x0 > ig or x0 > in, we can construct P1 and P2 as above. We easily
know that jP1j = 2(ig¡x0)+x0 ∙ 2n¡1 and jP2j = 2(in¡x0)+x0 ∙ 2n¡1 since
x0 ¸ 1. For any vertices y = (y0; y1; ¢ ¢ ¢ ; yn) 2 V (P1) and z = (z0:z1; ¢ ¢ ¢ ; zn) 2
V (P2), we have the fact that

Pn
i=1 yi >

Pn
i=1 zi if y 6= x or z 6= x. Thus, P1 and

P2 are internally vertex-disjoint.

Case 2. x = (x0; x1; ¢ ¢ ¢ ; xn) with x0 = 0.

We consider two neighbors of x, x0 = (1; x1; ¢ ¢ ¢ ; xn) and x00 = (1; x1; x2; ¢ ¢ ¢ ;
xn). Without loss of generality, we assume x1 = 0. Thus x0 is in the level
0 of B(n ¡ 1)1 and x00 is in the level 0 of B(n ¡ 1)2. By lemma 3, there is
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a path P in B(n ¡ 1)1 of length no more than 2(n ¡ 1) ¡ 2 between x0 and
(1; 0; ¢ ¢ ¢ ; 0) or (1; 0; 1; ¢ ¢ ¢ ; 1). Since (1; 0; ¢ ¢ ¢ ; 0) is a neighbor of (0; 0; ¢ ¢ ¢ ; 0)
and (1; 0; 1; ¢ ¢ ¢ ; 1) is a neighbor of (0; 1; ¢ ¢ ¢ ; 1), we easily find a path between x
and (0; 0; ¢ ¢ ¢ ; 0) or (0; 1; ¢ ¢ ¢ ; 1), which includes P and has length no more than
2n¡ 2. Similarly, we have there exists a path P 0 in B(n ¡ 1)2 of length no more
than 2(n¡1)¡2 between x00 and (1; 1; 0 ¢ ¢ ¢ ; 0) or (1; 1; 1; ¢ ¢ ¢ ; 1) by lemma 3 and
we also find a path between x and (0; 0; ¢ ¢ ¢ ; 0) or (0; 1; ¢ ¢ ¢ ; 1), which includes
P 0 and has length no more than 2n ¡ 2. It is obvious that the paths are internally
vertex-disjoint.

Thus, s2n¡1;2(Bn) ∙ 2. For any vertex x = (x0; x1; ¢ ¢ ¢ ; xn), there exists a
vertex y = (x0; x1; x2; ¢ ¢ ¢ ; xn) such that dist(x; y) = 2n. So, it is impossible that
s2n¡1;2(Bn) = 1. Thus s2n¡1;2(Bn) = 2.

The proof of Theorem 1 is completed.

Theorem 2. The (d; 2)-dominating numbers of B(n) (n ¸ 3) are 2 for 2n ∙
d ∙ 2n + 1.

Proof. By Theorem 1 and Lemma 1(b), we know sd;2(B(n)) ∙ 2 for n = 2n
or 2n + 1. Suppose that s2n+1;2(B(n)) = 1. i.e., all vertices of B(n) can be
dominated by some vertex u. By some automorphisms of f®1; ¢ ¢ ¢ ; ®n; ¯g, we can
assume u = (k ¡ 1; 0; ¢ ¢ ¢ ; 0) with 1 ∙ k ∙ n

2 . But v = (k + 1; 1; ¢ ¢ ¢ ; 1) is
can’t dominating by u since any two paths between u and v with length no more
than 2n + 1 must be intersecting in the vertex w with w0 = k and w1 = ¢ ¢ ¢ =
wk = 1, wk+1 = ¢ ¢ ¢ = wn = 0 by Lemma 4. This is a contradiction. Thus,
s2n+1;2(B(n)) = 2.
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