TAIWANESE JOURNAL OF MATHEMATICS
Vol. 6, No. 4, pp. 515-521, December 2002
This paper is available online at http://www.math.nthu.edu.tw/tjm/

ON (d; 2)-DOMINATING NUMBERS OF BUTTERFLY NETWORKS ${ }^{\text {ay }}$

Shao Rujun, Lu Changhong and Yao Tianxing

Abstract

In this paper, we study (d ; 2) -dominating numbers for an important class of parallel networks - butterfly networks $B(n)$. The main result of this paper is to determine their ($\mathrm{d} ; 2$)-dominating numbers for $2 \mathrm{n}-1 \leq \mathrm{d} \leq 2 \mathrm{n}+1$.

1. Introduction

In this paper, we use graphs to represent networks. We use [1] for terminology and notation not defined here. In addition, the length of a path $P\left[v_{1} ; v_{p+1}\right]:=v_{1} \rightarrow$ $\mathrm{V}_{2} \rightarrow \mathrm{~V}_{3} \rightarrow \cdots \rightarrow \mathrm{~V}_{\mathrm{p}} \rightarrow \mathrm{V}_{\mathrm{p}+1}$ is the number p of edges of P and will be denoted by $|\mathrm{P}|$, where v_{1} and $\mathrm{v}_{\mathrm{p}+1}$ are called end-vertices of P and $\mathrm{v}_{2} ; \mathrm{v}_{3} ; \cdots ; \mathrm{v}_{\mathrm{p}}$ are called internal vertices. For a nonempty and proper subset S of the vertex set $V(G)$ and $\mathrm{x} \in \mathrm{V}(\mathrm{G}-\mathrm{S})$, an $(\mathrm{x} ; \mathrm{S})$-path is a path in G connecting x to some vertex in S .

The butterfly network $B(n)$ is the graph whose vertices are $x=\left(x_{0} ; x_{1} ; \cdots ; x_{n}\right)$ with $0 \leq \mathrm{x}_{0} \leq \mathrm{n}$ and $\mathrm{x}_{\mathrm{i}} \in\{0 ; 1\}$ for $1 \leq \mathrm{i} \leq \mathrm{n}$, and two vertices $\mathrm{x}=$ $\left(x_{0} ; x_{1} ; \cdots ; x_{n}\right)$ and $y=\left(y_{0} ; y_{1} ; \cdots ; y_{n}\right)$ are adjacent if and only if $y_{0}=x_{0}+1$ and $x_{i}=y_{i}$ for $1 \leq i \leq n$ with $i \neq y_{0}$. Note that $B(1)$ is a 4 -cycle. For a vertex $x=\left(x_{0} ; x_{1} ; \cdots ; x_{n}\right)$ in $B(n)$, we say that x is in level x_{0} of $B(n)$ and call x_{i} the ith coordinate of x. Fig. 1 shows an example of $B(3)$, in which the top line indicates the level numbers and the left column indicates the names ($x_{1} ; x_{2} ; \cdots ; x_{n}$).

Let T denote the vertices in level 0 , it is easy to know $B(n)-T$ is two disjoint butterfly networks $B(n-1)$, one denoted by $B(n-1)^{1}$ has all vertices x with $x_{1}=0$ and $x_{0} \neq 0$; the other denoted by $B(n-1)^{2}$ has all vertices x with $x_{1}=1$ and $x_{0} \neq 0$. Cao, Du, Hsu, and Wan [2] have shown that $B(n)$ is 2 -connected and its diameter is equal to 2 n .

[^0]

FIG. 1. The butterfly network B (3)

In order to characterize the reliability of transmission delay in a network, Hsu and Lyuu [5] introduce m-diameter (i.e. wide-diameter) as follows: For any pair $(x ; y)$ of vertices in a graph G, the minimum integer d suth that there are at least m internally vertex-disjoint path of length at most d between x and y is called the m -distance of x and y and is denoted by $\mathrm{D}_{\mathrm{m}}(\mathrm{x} ; \mathrm{y})_{\mathrm{G}}$. The m -diameter of G , denoted by $D_{m}(G)$, is the maximum of $D_{m}(x ; y)_{G}$ over all pairs $(x ; y)$ of vertices of G. General results on the m-diameters of m-connected graphs can be found in [4] and [5]. Results for some particular classes of graphs can be also found in [6], [7] and [9]. In particular, for a Butterfly network $B(n)$, its 2-diameter is $2 n+2$ for $\mathrm{n} \geq 2$. (see [9]).

Recently, H. Li and J. M. Xu in [8] define a new parameter ($\mathrm{d} ; \mathrm{m}$)-dominating number in m -connected graphs, in some sense, which can more accurately characterize the reliability of networks than the wide-diameter can.

Definition. Let G be a m -connected graphs, S a nonempty and proper subset of $V(G)$, y a vertex in $G-S$. For a given positive integer d, y is $(d ; m)$-dominated by S in the graph if there are at least m internally vertex-disjoint $(y ; S)$-paths in G such that each of which is of length at most d. S is said to be a $(d ; m)$-dominating set of G, denoted by $S_{d ; m}(G)$ if either $S=V(G)$ or S can $(d ; m)$-dominate every vertex in $G-S$. The parameter

$$
\mathrm{S}_{\mathrm{d} ; \mathrm{m}}(\mathrm{G})=\min \left\{\left|\mathrm{S}_{\mathrm{d} ; \mathrm{m}}(\mathrm{G})\right|: \mathrm{S}_{\mathrm{d} ; \mathrm{m}}(\mathrm{G}) \text { is a }(\mathrm{d} ; \mathrm{m})-\text { dominating set of } \mathrm{G}\right\}
$$

will be called the $(\mathrm{d} ; \mathrm{m})$-dominating number of G .
Remark 1. ($d ; m$)-dominating number can be used to explain such a quesition: Let G be a communication network of the Department of National Defence. Given integer $d>0$ and $m>0$. How many command centers are necessary and sufficient such that there exist at least m internally disjoint paths of length at most d between each fight unit and these command centers? And how to select these vertices in G
as command centers? Results on $(\mathrm{d} ; \mathrm{m})$-dominating number can be found in [8], [10], [11].

In this paper, we will prove for $\mathrm{n} \geq 3$, the ($\mathrm{d} ; 2$)-dominating number of $\mathrm{B}(\mathrm{n})$ is 2 for $2 n-1 \leq d \leq 2 n+1$.

2. Preliminary Results

In order to prove the theorem, we first give some lemmas.
Lemma 1. Let G be an m -connected $(\mathrm{m} \geq 2)$ graph of order n and $\mathrm{d} a$ positive integer; then
(a) If $\mathrm{d}=\mathrm{D}_{\mathrm{m}}(\mathrm{G})$; then $\mathrm{S}_{\mathrm{d} ; \mathrm{m}}(\mathrm{G})=1$;
(b) If $\mathrm{d}^{0}>\mathrm{d}^{\infty}$, then $\mathrm{S}_{\mathrm{d} 0} ; \mathrm{m}(\mathrm{G}) \leq \mathrm{S}_{\mathrm{d} 0} 0 \mathrm{~m}(\mathrm{G})$.

Proof. (a) and (b) can be obtained directly by the definitions.
Lemma 2. For butterfly networks $B(n) ;(n \geq 2) ; s_{2 n+2 ; 2}(B(n))=1$.
Proof. Since 2-diameter of $B(n)$ is $2 n+2$; it is easy to prove $S_{2 n+2 ; 2}$ $(B(n))=1$.

Lemma 2 shows that it is interesting to determine ($\mathrm{d} ; 2$)-dominating numbers of $B(n)$ when $d \leq 2 n+1$, and lemma 1 shows that it is sufficient to prove $S_{2 n i} 1 ; 2(B(n))=2$ and $S_{2 n+1 ; 2}(B(n))>1$ in order to prove the main results.

Lemma 3. For any $\mathrm{x}=\left(0 ; \mathrm{x}_{1} ; \mathrm{x}_{2} ; \cdots ; \mathrm{x}_{\mathrm{n}}\right)$ in $\mathrm{V}(\mathrm{B}(\mathrm{n})-\mathrm{S})$; where $\mathrm{S}=$ $\{(0 ; 0 ; \cdots ; 0) ;(0 ; 1 ; \cdots ; 1)\}$. If $\mathrm{X}_{\mathrm{n}}=1$, there exists a path of length no more than $2 \mathrm{n}-2$ between X and $(0 ; 1 ; \ldots ; 1)$; otherwise; there exists a path of length no more than $2 \mathrm{n}-2$ between X and $(0 ; 0 ; \cdots ; 0)$.

Proof. Without loss of generality, we assume that $\mathrm{x}_{\mathrm{n}}=1$ and let w denote the binary string $\left(x_{1} ; x_{2} ; \cdots ; x_{n}\right)$. Let $w^{i_{1} i_{2}}=\left(x_{1} ; x_{2} ; \cdots ; x_{i_{1} 1}, x_{i_{1}} ; x_{i_{1}+1}\right.$; $\left.\cdots ; x_{i_{2 i} 1} ; x_{i_{2}} ; x_{i_{2}+1} ; \cdots ; x_{i_{g i} 1} ; x_{i_{g}} ; x_{i_{g}+1} ; \cdots ; x_{n}\right)$, where $x_{i}=1-x_{i}$. Suppose that $x_{i_{1}}=x_{i_{2}}=\cdots=x_{i_{g}}=0$ and $x_{i_{g+1}}=x_{i_{g+2}}=\cdots=x_{i_{n}}=1$ where $\left\{i_{1} ; i_{2} ;\right.$ $\left.\cdots ; \mathrm{i}_{\mathrm{g}} ; \mathrm{i}_{\mathrm{g}+1} ; \cdots ; \mathrm{i}_{\mathrm{n}}\right\}=\{1 ; 2 ; \cdots ; \mathrm{n}\}$ and $\mathrm{i}_{1}<\mathrm{i}_{2}<\cdots<\mathrm{i}_{\mathrm{g}} \neq \mathrm{n}$, We construct the path between X and $(0 ; 1 ; \cdots ; 1)$ as follows:

$$
\begin{aligned}
P: \mathrm{x} & \rightarrow(1 ; w) \rightarrow \cdots \rightarrow\left(i_{1}-1 ; w\right) \rightarrow\left(i_{1} ; w^{i_{1}}\right) \rightarrow\left(i_{1}+1 ; w^{i_{1}}\right) \rightarrow \cdots \\
& \rightarrow\left(i_{2}-1 ; w^{i_{1}}\right) \rightarrow\left(i_{2} ; w^{i_{1} i_{2}}\right) \rightarrow\left(i_{2}+1 ; w^{i_{1} i_{2}}\right) \rightarrow \cdots \rightarrow\left(i_{g} ; w^{i_{1} i_{2}}\right) \\
& \rightarrow\left(i_{g}-1 ; w^{i_{1} i_{2}}\right) \rightarrow\left(i_{g}-2 ; w^{i_{1} i_{2}}\right) \rightarrow \cdots \rightarrow\left(0 ; w^{i_{1} i_{2}}\right) \rightarrow\left(i_{g}\right) \\
& =(0 ; 1 ; \cdots ; 1):
\end{aligned}
$$

We easily know that $|\mathbf{P}|=2 \mathrm{i}_{\mathrm{g}} \leq 2 \mathrm{n}-2$.
Lemma 4. For $\mathrm{u}=(\mathrm{k}-1 ; 0 ; \cdots ; 0)$ and $\mathrm{v}=(\mathrm{k}+1 ; 1 ; \cdots ; 1)$ in $\mathrm{B}(\mathrm{n})$ $\left(\mathrm{n} \geq 3 ; 1 \leq \mathrm{k} \leq \frac{\mathrm{n}}{2}\right) ; \mathrm{P}[\mathrm{u} ; \mathrm{v}]$ must pass the vertex $\mathrm{w}=\left(\mathrm{w}_{0} ; \mathrm{w}_{1} ; \cdots ; \mathrm{w}_{\mathrm{n}}\right)$ if $|\mathrm{P}[\mathrm{u} ; \mathrm{v}]| \leq 2 \mathrm{n}+1$; where $\mathrm{w}_{0}=\mathrm{k} ; \mathrm{w}_{1}=\cdots=\mathrm{w}_{\mathrm{k}}=1$ and $\mathrm{w}_{\mathrm{k}+1}=\cdots=\mathrm{w}_{\mathrm{n}}=0$.

Proof. First $\mathrm{P}[\mathrm{u} ; \mathrm{v}]$ must pass some vertex x in level 0 of $\mathrm{B}(\mathrm{n})$ since the first coordinates of u and v are distinct; Similarly, $\mathrm{P}[\mathrm{u} ; \mathrm{v}]$ must pass some vertex y in level n of $B(n)$ since the last coordinates of u and v are distinct. If $P[u ; v]$ first pass y then x, we easily know $|P[u ; v]|=|P[u ; y]|+|P[y ; x]|+|P[x ; v]|$ $\geq(n-k+1)+n+(k+1)=2 n+2$, a contradiction. So, $P[u ; v]$ must first pass x then y and $|\mathrm{P}[\mathrm{u} ; \mathrm{v}]|$ is no less than $2 \mathrm{n}-2$ for $|\mathrm{P}[\mathrm{u} ; \mathrm{v}]|=|\mathrm{P}[\mathrm{u} ; \mathrm{x}]|+|\mathrm{P}[\mathrm{x} ; \mathrm{y}]|+|\mathrm{P}[\mathrm{y} ; \mathrm{v}]|$ $\geq(k-1)+n+(n-k-1)=2 n-2$. If $P[u ; v]$ has only one vertex t in level k, then $t_{k+1}=\cdots=t_{n}=0$ since all vertices of $P[u ; t]$ are in level less than $k+1$ in $B(n)$ and $u_{k+1}=\cdots=u_{n}=0$. We also know $t_{1}=\cdots=t_{k}=1$ since all vertices of $P[v ; t]$ are in level no less than k and $v_{1}=\cdots=v_{k}=1$. i.e., $t=w$. Note that it is impossible that $\mathrm{P}[\mathrm{u} ; \mathrm{v}]$ has more than two vertices in level k . (If not, we easily find $|\mathrm{P}[\mathrm{u} ; \mathrm{v}]|$ is more than $2 \mathrm{n}+1$.) We assume $\mathrm{P}[\mathrm{u} ; \mathrm{v}]$ has just two vertices t and z in level k of $B(n)$. Without loss of generality, we say t is the first vertex in level k which is in $\mathrm{P}[\mathrm{u} ; \mathrm{v}]$. Obviously, z is the last vertex in level k which is in $\mathrm{P}[\mathrm{u} ; \mathrm{v}]$. If all vertices of $P[v ; t]$ are in level no less than k, then we know $t=w$ as above. If all vertices of $\mathrm{P}[\mathrm{u} ; \mathrm{z}]$ are in level no more than k , then we also know $\mathrm{z}=\mathrm{w}$.

Remark 2. We can easily find the following result from the proof of Lemma 4. For $u=\left(k-1 ; u_{1} ; \cdots ; u_{n}\right)$ and $v=\left(k+1 ; \bar{u}_{1} ; \cdots ; \bar{m}_{n}\right)$ in $B(n)(n \geq 3$, $1 \leq \mathrm{k} \leq \mathrm{n}-1), \mathrm{P}[\mathrm{u} ; \mathrm{v}]$ must pass the vertex $\mathrm{w}=\left(\mathrm{k} ; \overline{1}_{1} ; \cdots ; \overline{\mathrm{u}}_{\mathrm{k}} ; \mathrm{u}_{\mathrm{k}+1} ; \cdots ; \mathrm{u}_{\mathrm{n}}\right)$ if $|\mathrm{P}[\mathrm{u} ; \mathrm{v}]| \leq 2 \mathrm{n}+1$.

We can easily find the following mappings are automorphisms of $B(n)$:

$$
\begin{gathered}
\circledR\left(x_{0} ; x_{1} ; \cdots ; x_{n}\right) \rightarrow\left(x_{0} ; x_{1} ; \cdots ; x_{i_{i} 1} ; x_{i} ; x_{i+1} ; \cdots ; x_{n}\right) \quad(1 \leq i \leq n) \\
-\quad:\left(x_{0} ; x_{1} ; \cdots ; x_{n}\right) \rightarrow\left(n-x_{0} ; x_{n} ; \cdots ; x_{1}\right)
\end{gathered}
$$

These are useful in the proof of our main results.

3. The Main Results

Theorem 1. The ($\mathrm{d} ; 2$)-dominating number of $\mathrm{B}_{\mathrm{n}}(\mathrm{n} \geq 3)$ is 2 for $\mathrm{d}=2 \mathrm{n}-1$.
Proof. Now we prove $S=\left\{s_{1}=(0 ; 0 ; \ldots ; 0) ; s_{2}=(0 ; 1 ; \ldots ; 1)\right\}$ is a (2n-1;2)-dominating set of $B(n)(n \geq 3)$. For any $x \in V(B(n)-S)$, we
shall construct two vertex-disjoint paths between x and S, each of which has length no more than $2 \mathrm{n}-1$.

Case 1. $x=\left(x_{0} ; x_{1} ; \cdots ; x_{n}\right)$ with $x_{0} \geq 1$.
Suppose that $x_{i_{1}}=x_{i_{2}}=\cdots=x_{i_{g}}=0$ and $x_{i_{g+1}}=x_{i_{g+2}}=\cdots=x_{i_{n}}=$ 1 where $\left\{i_{1} ; i_{2} ; \cdots ; i_{g} ; i_{g+1} ; \cdots ; i_{n}\right\}=\{1 ; 2 ; \cdots ; n\}$ and $i_{1}<i_{2}<\cdots<i_{g}$, $\mathrm{i}_{\mathrm{g}+1}<\mathrm{i}_{\mathrm{g}+2}<\cdots<\mathrm{i}_{\mathrm{n}}$. Without loss of generality, we assume $\mathrm{i}_{\mathrm{t}_{\mathrm{i}}} \leq \mathrm{x}_{0} \leq \mathrm{i}_{\mathrm{t}}$ where $i_{t} \in\left\{i_{1} ; i_{2} ; \cdots ; i_{g}\right\}$.

$$
\begin{aligned}
& \mathrm{P}_{1}: \mathrm{x} \rightarrow\left(\mathrm{x}_{0}+1 ; \mathrm{w}\right) \rightarrow \cdots \rightarrow\left(\mathrm{i}_{\mathrm{t}}-1 ; \mathrm{w}\right) \rightarrow\left(\mathrm{i}_{\mathrm{t}} ; \mathrm{w}^{\mathrm{i}_{\mathrm{t}}}\right) \rightarrow\left(\mathrm{i}_{\mathrm{t}}+1 ; \mathrm{w}^{\mathrm{i}_{\mathrm{t}}}\right) \rightarrow \cdots \\
& \rightarrow\left(\mathrm{i}_{\mathrm{t}+1}-1 ; w^{i_{t}}\right) \rightarrow\left(\mathrm{i}_{\mathrm{t}+1} ; w^{i_{t} i_{t+1}}\right) \rightarrow\left(\mathrm{i}_{\mathrm{t}+1}+1 ; w^{i_{t} i_{t+1}}\right) \rightarrow \cdots
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow\left(0 ; w^{i_{1} i_{2}}\right)=(0 ; 1 ; \ldots ; 1):
\end{aligned}
$$

Similarly, let $\boldsymbol{i}_{m_{i}} \leq x_{0} \leq i_{m}$ where $i_{m} \in\left\{i_{g+1} ; i_{g+2} ; \cdots ; i_{n}\right\}$, we can construct a path P_{2} between X and S_{1}.

$$
\begin{aligned}
& \mathrm{P}_{2}: \mathrm{x} \rightarrow\left(\mathrm{x}_{0}+1 ; \mathrm{w}\right) \rightarrow \cdots \rightarrow\left(\mathrm{i}_{\mathrm{m}}-1 ; \mathrm{w}\right) \rightarrow\left(\mathrm{i}_{\mathrm{m}} ; \mathrm{w}^{\mathrm{i}} \mathrm{~m}\right) \rightarrow\left(\mathrm{i}_{\mathrm{m}}+1 ; \mathrm{w}^{\mathrm{i}} \mathrm{~m}\right) \\
& \rightarrow \cdots \rightarrow\left(i_{m+1}-1 ; w^{i_{m}}\right) \rightarrow\left(i_{m+1} ; w^{i_{m} i_{m+1}}\right) \rightarrow\left(i_{m+1}+1 ; w^{i_{m} i_{m+1}}\right) \rightarrow \cdots \\
& \rightarrow\left(i_{n} ; w^{i_{m} i_{m+1}}{ }_{n}\right) \rightarrow\left(i_{n}-1 ; w^{i_{m} i_{m+1}}{ }_{n}\right) \rightarrow\left(i_{n}-2 ; w^{i_{m} i_{m+1}}{ }^{n}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow\left(i_{m i}-1 ; w^{i_{m i}} 2_{m_{i}}{ }_{n}\right) \rightarrow \cdots \rightarrow\left(0 ; w^{i_{g+1} i_{g+2}}{ }_{n}\right)=(0 ; 0 ; \cdots ; 0)
\end{aligned}
$$

Note that if $x_{0}>i_{g}$ or $x_{0}>i_{n}$, we can construct P_{1} and P_{2} as above. We easily know that $\left|P_{1}\right|=2\left(i_{g}-x_{0}\right)+x_{0} \leq 2 n-1$ and $\left|P_{2}\right|=2\left(i_{n}-x_{0}\right)+x_{0} \leq 2 n-1$ since $x_{0} \geq 1$. For any vertices $\left.y=p y_{0} ; y_{1} ; \cdots \dot{p} y_{n}\right) \in V\left(P_{1}\right)$ and $z=\left(z_{0}: z_{1} ; \cdots ; z_{n}\right) \in$ $V\left(P_{2}\right)$, we have the fact that $\sum_{i=1}^{n} y_{i}>\sum_{i=1}^{n} z_{i}$ if $y \neq x$ or $z \neq x$. Thus, P_{1} and P_{2} are internally vertex-disjoint.

Case 2. $x=\left(x_{0} ; x_{1} ; \cdots ; x_{n}\right)$ with $x_{0}=0$.
We consider two neighbors of $x, x^{0}=\left(1 ; x_{1} ; \cdots ; x_{n}\right)$ and $x^{\oplus}=\left(1 ; x_{1} ; x_{2} ; \cdots\right.$; x_{n}). Without loss of generality, we assume $x_{1}=0$. Thus x^{0} is in the level 0 of $B(n-1)^{1}$ and x^{Φ} is in the level 0 of $B(n-1)^{2}$. By lemma 3, there is
a path P in $B(n-1)^{1}$ of length no more than $2(n-1)-2$ between x^{0} and $(1 ; 0 ; \cdots ; 0)$ or $(1 ; 0 ; 1 ; \cdots ; 1)$. Since $(1 ; 0 ; \cdots ; 0)$ is a neighbor of $(0 ; 0 ; \cdots ; 0)$ and $(1 ; 0 ; 1 ; \ldots ; 1)$ is a neighbor of $(0 ; 1 ; \ldots ; 1)$, we easily find a path between x and $(0 ; 0 ; \cdots ; 0)$ or $(0 ; 1 ; \cdots ; 1)$, which includes P and has length no more than $2 n-2$. Similarly, we have there exists a path P^{0} in $B(n-1)^{2}$ of length no more than $2(n-1)-2$ between x^{\oplus} and $(1 ; 1 ; 0 \cdots ; 0)$ or $(1 ; 1 ; 1 ; \cdots ; 1)$ by lemma 3 and we also find a path between x and $(0 ; 0 ; \cdots ; 0)$ or $(0 ; 1 ; \cdots ; 1)$, which includes P^{0} and has length no more than $2 \mathrm{n}-2$. It is obvious that the paths are internally vertex-disjoint.

Thus, $S_{2 n_{i} 1 ; 2}\left(B_{n}\right) \leq 2$. For any vertex $x=\left(x_{0} ; x_{1} ; \cdots ; x_{n}\right)$, there exists a vertex $\mathrm{y}=\left(\mathrm{x}_{0} ; \mathrm{x}_{1} ; \mathrm{x}_{2} ; \cdots ; \mathrm{x}_{\mathrm{n}}\right)$ such that $\operatorname{dist}(\mathrm{x} ; \mathrm{y})=2 \mathrm{n}$. So, it is impossible that $S_{2 n_{i} 1 ; 2}\left(B_{n}\right)=1$. Thus $S_{2 n_{i} 1 ; 2}\left(B_{n}\right)=2$.

The proof of Theorem 1 is completed.
Theorem 2. The $(\mathrm{d} ; 2)$-dominating numbers of $\mathrm{B}(\mathrm{n})(\mathrm{n} \geq 3)$ are 2 for $2 \mathrm{n} \leq$ $d \leq 2 n+1$.

Proof. By Theorem 1 and Lemma 1(b), we know $\mathrm{S}_{\mathrm{d} ; 2}(\mathrm{~B}(\mathrm{n})) \leq 2$ for $\mathrm{n}=2 \mathrm{n}$ or $2 n+1$. Suppose that $S_{2 n+1 ; 2}(B(n))=1$. i.e., all vertices of $B(n)$ can be dominated by some vertex u. By some automorphisms of $\left\{\mathbb{R}_{1} ; \cdots ; \mathbb{R}^{\prime} ;{ }^{-}\right\}$, we can assume $u=(k-1 ; 0 ; \cdots ; 0)$ with $1 \leq k \leq \frac{n}{2}$. But $v=(k+1 ; 1 ; \cdots ; 1)$ is can't dominating by u since any two paths between u and V with length no more than $2 n+1$ must be intersecting in the vertex w with $w_{0}=k$ and $w_{1}=\cdots=$ $\mathrm{w}_{\mathrm{k}}=1, \mathrm{w}_{\mathrm{k}+1}=\cdots=\mathrm{w}_{\mathrm{n}}=0$ by Lemma 4. This is a contradiction. Thus, $S_{2 n+1 ; 2}(B(n))=2$.

References

1. J. A. Bondy and U.S.R. Murty, Graph Theory with Applications, Macmillan Press, London, 1976.
2. F. Cao. D. Z. Du, D. F. Hsu and P. Wan, Fault-tolerant routing in butterfly networks, Technical Report TR 95 - 073; Department of Computer Science; University of Minnesota (1995).
3. D. F. Hsu, On container width and length in graphs, groups, and networks. IEICE Trans. Fundam. E(77A) (1994), 668-680.
4. D. F.Hsu and Y. D. Lyuu, A graph-tyeoratical study of transmission delay and faulttolerance. Proc. of 4th ISMM International Conference on Paralled and Distributed Computing and Systems, (1991), 20-24.
5. D. F. Hsu and T. Luszak, Note on the k-diameter of k-regular k-connected graphs, Disc. Math. 132 (1994), 291-296.
6. Y. Ishigami, The wide-diameter of the n-dimensionml toroidal mesh, Networks, 27 (1996), 257-266.
7. Q. Li, D. Sotteau and J. M. Xu, 2-diameter of de Bruijn graphs, Networks, 28 (1996), 7-14.
8. H. Li and J. M. Xu, (d; m) -dominating number of m-connected graphs, Rapport de Recherche; LRI; URA 410 du CNRS Universite de paris-sud No. 1130 (1997).
9. S. C. Liaw and G. J. Chang, Wide diameter of butterfly networks, Taiwanese Journal of Mathematics 3 (1999), 83-88.
10. C. H. Lu, J. M. Xu and K. M. Zhang, On (d; 2)-dominating numbers of binary undirected de Bruijn graphs, Disc. Appl. Maths 105 (2000), 137-145.
11. C. H. Lu, Graph theoretical studies on reliability of networks and minimum broadcast graphs, Ph.D. Thesis, Nanjing Unversity, 2000.

Shao Rujun
Department of Mathematics, Yangzhou Educational College
Yangzhou, 225000, China
Lu Changhong
Department of Mathematics, Hunan Normal University
Changsha, 410081, China
Yao Tianxing
Department of Mathematics, Nanjing University
Nanjing, 210093, China

[^0]: Received July 17, 2000; revised January 20, 2001.
 Communicated by F. Hwang.
 2000 Mathematics Subject Classification: 05C40, 68M10, 68R10.
 Key words and phrases: Butterfly networks, Dominating number, Reliablity.
 ${ }^{x}$ The project supported by NSFC.
 ${ }^{\mathrm{y}}$ Corresponding author: Lu Changhong.

