
TAIWANESE JOURNAL OF MATHEMATICS
Vol. 6, No. 4, pp. 499-505, December 2002
This paper is available online at http://www.math.nthu.edu.tw/tjm/

APPROXIMATIONS IN Hv-MODULES

B. Davvaz

Abstract. In this paper we consider the relation ²! defined on an Hv-module
M and we interprete the lower and upper approximations as subsets of the
module M=²! and we give some results in this connection.

1. INTRODUCTION

The concept of hyperstructure first was introduced by Marty in [10] and has been
studied in the following decades and nowadays by many mathematicians. Vougiouk-
lis in the fourth A.H.A. congress (1990) [13], introduced the notion of Hv-structures.
The concept of Hv-structures constitutes a generalization of the well-known alge-
braic hyperstructures. The principal notions of Hv-structures can be found in [16].
Since then many papers concerning various Hv-structures have appeared in the lit-
erature, for example [4, 5, 6, 12, 14, 15]. According to [16], Hv-modules are
the largest class of multivalued systems that satisfy module-like axioms. In [15],
Vougiouklis defined the concept of Hv-vector space which is a generalization of
the concept of vector space. The notion of fuzzy Hv-submodules was introduced
by Davvaz in [6]. And in [4], Davvaz introduced Hv-module of fractions of a
hypermodule which is a generalization of the concept of module of fractions.

The notion of approximation spaces and rough sets were introduced by Pawlak
in his paper [11], and since then has been the subject of many papers. Some
authors for example, Bonikowaski [2], Iwinski [8], Biswas and Nanda [1], Comer
[3], Kurouki and Wang [9], studied algebraic properties of rough sets.

In [5], [7], the present author applied the concept of approximation spaces in the
theory of algebraic hyperstructures. In this paper we remark upon some relationships
between approximation spaces and Hv-modules.
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The main tools in the theory of hyperstructures are the fundamental relations.
These relations, on the one hand, connect this theory, in some way with the corre-
sponding classical theory and on the other hand, introduce new important classes.
In section 4 of this paper we consider the relation ²¤ defined on an Hv-module
M and we interprete the lower and upper approximations as subsets of the module
M=²¤ and we give some results in this connection.

2. BASIC DEFINITIONS

We first recall some basic definitions for the sake of completeness.

Definition 2.1. (Vougiouklis [16]). Let H be a non-empty set and ¢ : H£H ¡!
P¤(H) be a hyperoperation; where P¤(H) is the set of all non-empty subsets of H .
The (¢) is called weak associative if (x ¢ y) ¢ z \ x ¢ (y ¢ z) 6= ; for all x; y; z 2 H;
where

A ¢ B =
[
a2A
b2B

a ¢ b for all A; B µ H:

The (¢) is called weak commutative if x ¢ y \ y ¢ x 6= ; for all x; y 2 H . (H; ¢)
is called an Hv-group if, i) (¢) is weak associative, ii) a ¢ H = H ¢ a = H for all
a 2 H .

Definition 2.2. (Vougiouklis [16]). A multivalued system (R; +; ¢) is called
an Hv-ring if following axioms hold: i) (R; +) is a weak commutative Hv-group,
ii) (x ¢ y) ¢ z \ x ¢ (y ¢ z) 6= ; for all x; y; z 2 R, iii) (¢) is weak distributive
with respect to (+), i.e., for all x; y; z 2 R, x ¢ (y + z) \ (x ¢ y + x ¢ z) 6= ;,
(x + y) ¢ z \ (x ¢ z + y ¢ z) 6= ;.

Definition 2.3. (Vougiouklis [15, 16]). A non-empty set M is a left Hv-module
over an Hv-ring R if (M; +) is a weak commutative Hv-group and there exists the
map ¢ : R £ M ¡! P¤(M), (r; x) ¡! r ¢ x such that for all a; b in R and x; y
in M , we have a ¢ (x + y) \ (a ¢ x + a ¢ y) 6= ;; (a + b) ¢ x \ (a ¢ x + b ¢ x) 6= ;;
(ab) ¢ x \ a ¢ (b ¢ x) 6= ;.

Definition 2.4. Let M and N be two Hv-modules over an Hv-ring R. A
mapping f : M ¡! N is called an Hv-homomorphism if, for all x; y 2 M and for
all r 2 R; the following relations hold: f(x + y) \ (f(x) + f(y)) 6= ;; f(r ¢ x) \ r ¢
f(x) 6= ;. f is called an inclusion homomorphism if; for all x; y 2 M and for all
r 2 R; the following relations hold: f(x + y) µ f(x) + f(y); f(r ¢ x) µ r ¢ f(x).
Finally, f is called a strong homomorphism if for all x; y 2 M and for all r 2 R,
we have f(x + y) = f(x) + f(y); f(r ¢ x) = r ¢ f(x). If there exists a strong one
to one homomorphism from M onto N , then M and N are called isomorphic.



Approximations in !v-modules 501

3. APPROXIMATIONS IN HV -MODULES

Let ½ be an equivalence relation defined on the Hv-module M and ½(x) be
the equivalence class of the relation ½ generated by an element x 2 M . Any
finite union of equivalence classes of M is called a definable set in M . Let A
be any subset of U . In general, A is not a definable set in M . However, the
set A may be approximated by two definable set in M . The first one is called
a ½-lower approximation of A in M , denoted by ½(A) and defined as follows:
½(A) = fx 2 M j ½(x) µ Ag. The second set is called a ½-upper approximation of
A in M , denoted by ½(A) and defined as follows: ½(A) = fx 2 M j ½(x)\A 6= ;g.
The ½-lower approximation of A in M is the greatest definable set in M contained in
A. The ½-upper approximation of A in M is the least definable set in M containing
A. The difference [½(A) = ½(A) ¡ ½(A) is called the ½-boundary region of A. In
the case when [½(A) = ; the set A is said to be ½-exact.

Let M1 and M2 be Hv-modules over an Hv-ring R and T be a strong homo-
morphism from M1 into M2. The relation T oT ¡1 is an equivalence relation ½ on
M1 (a½b if and only if T (a) = T (b)) known as the kernel of T .

Theorem 3.1. Let M1 and M2 be Hv-modules over an Hv-ring R and T be a
strong homomorphism from M1 into M2. If A is a non-empty subset of M1; then

T (½(A)) = T (A):

Proof. Since A µ ½(A), it follows that T (A) µ T (½(A)). To see that the
converse inclution holds, let y be any element of T (½(A)). Then there exists an
element x 2 ½(A) such that T (x) = y. Therefore there exists a 2 M1 such that
a 2 ½(x) \ A, and so T (a) = T (x) and a 2 A. Then we obtain y = T (x) =
T (a) 2 T (A), and so T (½(A)) µ T (A).

Theorem 3.2. Let ½; ¹ be equivalence relations on an Hv-module M . If A is
a non-empty subset of M; then (½ \ ¹)(A) µ ½(A) \ ¹(A).

Proof. Note that ½\¹ is also an equivalence relation on M . Let x 2 (½ \ ¹)(A).
Then (½\¹)(x)\A 6= ;, and so there exists a 2 (½\¹)(x)\A. Since (a; x) 2 ½\¹,
we have (a; x) 2 ½ and (a; x) 2 ¹. Therefore we have a 2 ½(x) and a 2 ¹(x).
Since a 2 A; then ½(x) \ A 6= ; and ¹(x) \ A 6= ;. Thus x 2 ½(A) and x 2 ¹(A).
Thus we obtain that (½ \ ¹)(A) µ ½(A) \ ¹(A): This complete the proof.

Theorem 3.3. Let ½; ¹ be equivalence relations on an Hv-module M . If A is
a non-empty subset of M; then (½ \ ¹)(A) = ½(A) \ ¹(A).
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Proof. We have

x 2 (½ \ ¹)(A)() (½ \ ¹)(x) µ (A) () ½(x) µ A and ¹(x) µ A

() x 2 ½(A) and x 2 ¹(A) () ½(A) \ ¹(A):

4. ON THE FUNDAMENTAL RELATION ²¤

Consider the left Hv-module M over an Hv-ring R. The relation °¤ is the
smallest equivalence relation on R such that the quotient R=°¤ is a ring. °¤ is called
the fundamental equivalence relation on R and R=°¤ is called the fundamental ring,
see [12], [16]. The fundamental relation ²¤ on M over R is the smallest equivalence
relation such that M=²¤ is a module over the ring R=°¤, see [15], [16].

According to [16] if U denotes the set of all expressions consisting of finite
hyperoperations of either on R and M or the external hyperoperation applied on
finite sets of R and M . Then a relation ² can be defined on M whose transitive
closure is the fundamental relation ²¤. The relation ² is as follows: x²y iff fx; yg µ
u for some u 2 U . Suppose °¤(r) is the equivalence class containing r 2 R and
²¤(x) is the equivalence class containing x 2 M . On M=²¤ the sum © and the
external product ¯ using the °¤ classes in R, are defined as follows:

²¤(x) © ²¤(y) = ²¤(c) for all c 2 ²¤(x) + ²¤(y);

°¤(r) ¯ ²¤(x) = ²¤(d) for all d 2 °¤(r) ¢ ²¤(x):

The kernel of the canonical map ' : M ¡! M=²¤ is called the core of M
and is denoted by !M . Here we also denote by !M the unit element of the group
(M=²¤; ©).

For a subset A µ M we define the approximations of A relative to the funda-
mental equivalence relation ²¤ as follows:

²¤(A) = fx 2 M j ²¤(x) µ Ag and ²¤(A) = fx 2 M j ²¤(x) \ A 6= ;g:

The proof of the following theorem is similar to the Theorem 1 of [5] and
Proposition 3.1 of [7].

Proposition 4.1. If A and B are non-empty subsets of M; then the following
hold :

1) ²¤(A) µ A µ ²¤(A); 2) ²¤(A [ B) = ²¤(A) [ ²¤(B);

3) ²¤(A \ B) = ²¤(A) \ ²¤(B); 4) A µ B implies ²¤(A) µ ²¤(B);

5) A µ B implies ²¤(A) µ ²¤(B); 6) ²¤(A) [ ²¤(B) µ ²¤(A [ B);

7) ²¤(A \ B) µ ²¤(A) \ ²¤(B); 8) ²¤(²¤(A)) = ²¤(A);

9) ²¤(²¤(A)) = ²¤(A):
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Similarly, for a subset X µ R we can define two approximations of X relative
to the fundamental relation °¤:

°¤(X) = fx 2 R j °¤(x) µ Xg and °¤(X) = fx 2 R j °¤(x) \ X 6= ;g:

Proposition 4.2. If A and B are non-empty subsets of M and X a non-empty
subset of R; then

i) ²¤(A) + ²¤(B) µ ²¤(A + B); ii) °¤(X) ¢ ²¤(A) µ ²¤(X ¢ A):

Proof. The proof of (i) is similar to the proof of Proposition 3.2 of [5]. We prove
only (ii). Suppose c is any element of °¤(X) ¢²¤(A). Then c 2 x¢a with x 2 °¤(X)
and a 2 ²¤(A). Thus there exist r 2 R and m 2 M such that r 2 °¤(x) \ X and
m 2 ²¤(a) \ A. Therefore r ¢ m µ °¤(x) ¢ ²¤(a) µ ²¤(x ¢ a). Since r ¢ m µ X ¢ A,
we get r ¢ m µ ²¤(x ¢ a) \ X ¢ A and so ²¤(x ¢ a) \ X ¢ A 6= ;. Therefore for every
c 2 x ¢ a we have ²¤(c) \ X ¢ A 6= ; which implies c 2 ²¤(X ¢ A). Thus we have
°¤(X) ¢ ²¤(A) µ ²¤(X ¢ A).

The lower and upper approximations can be presented in an equivalent form as
shown below. Let X be a non-empty set of R and A be a non-empty subset of M .
Then

°¤(X) = f°¤(x) 2 R=°¤j°¤(x) µ Xg and °¤(X) = f°¤(x) 2 R=°¤j°¤(x)\X 6= ;g;

and

²¤(A) = f²¤(a) 2 M=²¤ j ²¤(x) µ Ag and ²¤(A) = f²¤(a) 2 M=²¤j ²¤(x)\A 6= ;g:

Now, we discuss these sets as subsets of the fundamental ring R=°¤ and the
fundamental module M=²¤.

Theorem 4.3 [5]. If X is an Hv-ideal of R; then °¤(X) is an ideal of R=°¤.

Theorem 4.4. If A is an Hv-subgroup of (M; +); then ²¤(A) is a subgroup of
(M=²¤; ©).

Proof. The proof is similar to the proof of Theorem 7 of [7], by concerning the
suitable modifications with using the definition of ²¤.

Lemma 4.5. If A and B are non-empty subsets of M; then ²¤(A) © ²¤(B) µ
²¤(A + B).
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Proof. We have

²¤(A) © ²¤(B) = f²¤(a) © ²¤(b) j ²¤(a) 2 ²¤(A); ²¤(b) 2 ²¤(B)g
= f²¤(a) © ²¤(b) j ²¤(a) \ A 6= ;; ²¤(b) \ B 6= ;g:

Therefore (²¤(a) + ²¤(b)) \ (A + B) 6= ;. Since ²¤(a) + ²¤(b) µ ²¤(a + b) we
obtain ²¤(a + b) \ (A + B) 6= ;: Thus ²¤(a + b) = ²¤(a) © ²¤(b) 2 ²¤(A + B) and
so ²¤(A) © ²¤(B) µ ²¤(A + B).

Lemma 4.6. If X be a non-empty subset of R and A be an Hv-submodule of
M; then °¤(X) ¯ ²¤(A) µ ²¤(A).

Proof. We have

°¤(X) ¯ ²¤(A)=
n

©
X

finite

(°¤(x) ¯ ²¤(a))j°¤(x) 2 °¤(X); ²¤(a) 2 ²¤(A)
o

=
n

©
X

finite

(°¤(x) ¯ ²¤(a))j°¤(x) \ A 6= ;; ²¤(a) \ A 6= ;
o

:

Therefore °¤(x) ¢ ²¤(a) \ X ¢ A 6= ;. Since °¤(x) ¢ ²¤(a) µ ²¤(x ¢ a), we obtain
²¤(x ¢ a) \ X ¢ A 6= ;: Since A is an Hv-submudule of M , we have X ¢ A µ A
and so ²¤(x ¢ a) \ A 6= ;. Thus ²¤(x ¢ a) = °¤(x) ¯ ²¤(a) 2 ²¤(A). Since A is
an Hv-subgroup of (M; +), by Theorem 4.4, ²¤(A) is a subgroup of (M=²¤; ©),
therefore © P

finite

°¤(x) ¯ ²¤(a) 2 ²¤(A) and so °¤(X) ¯ ²¤(A) µ ²¤(A).

Theorem 4.7. If A is an Hv-submudule of M; then ²¤(A) is a submodule of
M=²¤.

Proof. Suppose that A is an Hv-submodule of M , then by Theorem 4.4,
(²¤(A); ©) is a subgroup of (M=²¤; ©). Note that ²¤(M) = M=²¤. Then we
have

M=²¤ ¯ ²¤(A) = ²¤(M) ¯ ²¤(A) µ ²¤(A):

Definition 4.8. Let A, B and C be Hv-submodules of M . The sequence of
strong homomorphisms A

f¡! B
g¡! C is said to be exact if for every x 2 A,

gof(x) 2 !M .

Theorem 4.9. Let A
f¡! B

g¡! C be an exact sequence of Hv-submodules
of M . Then the sequence ²¤(A)

F¡! ²¤(B)
G¡! ²¤(C) is an exact sequence of

submodules of M=²¤ where F (²¤(a)) = ²¤(f(a)); G(²¤(b)) = ²¤(g(b)) for all
a 2 A; b 2 B.

Proof. The proof is similar to the proof of Theorem 4.8 of [5].
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