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ON THE COMPACTNESS AND THE MINIMIZATION

Hwai-Chiuan Wang

Abstract. In this article, we present various compactness and minimizations
from very classical theorems such as Bolzano–Weierstrass theorem to modern
theorems such as Palais–Smale conditions. Then apply them to assert the
existence and multiplicity of solutions of partial differential equations.

1. INTRODUCTION

In this article, we present various compactness and minimizations from the very
classical theorems such as Bolzana Weierstrass theorem to modern theorems such as
Palais–Smale conditions. Then we find various conditions and apply them to assert
the existence and multiplicity of solutions of partial differential equations.

In section 2, we present the compactness theorems in RN , general Banach
spaces, function spaces C(K), Lp spaces, and Sobolev spaces H1

0 (­). In section
3, we describe the minimizers and Lagrange multiplier theorem with application
to solve partial differential equations. In section 2, we need to investigate every
sequence to see if it is nice. This is not economic. For example, to solve the equation
(2) in Theorem 20. We associate the equation (2) with an energy functional J . The
critical points of J are exactly the same as the solutions of equation (2). Thus,
it suffices to find the critical points of J . Therefore, we need only to investigate
the sequences related to the functional J . On the other hand, in section 3, we
present the minimizers. In Theorem 16, we impose some coercive and weakly
lower semicontinuous conditions on the function f to assure that there is a u such
that

f(u) = min
v2M

f(v);
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then apply the Lagrange multiplier theorem 18 to find such u. But it does not work if
a function f satisfies neither the coercive condition nor weakly lower semicontinuous
condition. Instead of finding the minimizer

f(u) = min
v2M

f(v);

we try to find the saddle point u satisfying

f(u) = inf
°
max

t
f(°(t)):

Therefore, we need to consider the new compactness concepts and the new mini-
mizers in section 4: for example let f be of C1,

® = min
v2M

f(v) or ® = inf
°
max

t
f(°(t));

and for every minimizing sequence fung such that

f(un)! ®;

f 0(un)! 0;

there is a subsequence, again denoted by fung and u such that

un ! u:

Then f(un) ! ® = f(u). This is the Palais Smale conditions. In section 4, we
present various Palais Smale conditions, and apply them to assert the existence and
multiplicity of solutions of partial differential equations.

2. COMPACTNESS

Two main tools in analysis are the compactness and the minimization. The
fundamental theorem of algebra was proved by the compactness in analysis. The
fundamental and the most important compactness theorem is the following result in
RN :

Theorem 1. (Bolzana-Weierstrass) Let fung be a bounded sequence in RN ;
then there exist a subsequence funig and u 2 RN such that uni converges (strongly)
to u.

Proof. First, suppose that there are only finite different points in fung, then we
can find a v which occurs infinite many times in fung, take such a subsequence
fung by letting each un = v, then we are done. On the other hand, suppose that
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there are infinite many different point in fung. Let J1 be a closed cube with edge
length l in RN such that fung ½ J1. Bisecting each edge of J1, we obtain from it
2N closed subcubes of edge length l=2. One of the subcubes J2 should be contain
infinite un. If we continue bisecting, then we obtain a sequence of closed cubes
fJng such that J1 ¾ J2 ¾ ¢ ¢ ¢ and

lim
n!1diam(Jn) = 0:(1)

By the finite intersection property and (1), there is a u such that

fug =
1\

n=1

Jn:

Take a subsequence funig such that uni 2 Ji for each i. Then uni converges to u.

In the following we note that the strongly convergence and the weakly conver-
gence are equivalent in RN .

Theorem 2. Let fung and u be in RN , then kun ¡ uk ! 0 if and only if
un * u weakly.

Proof. It suffices to prove that if un converges weakly to u, then un converges
strongly to u. Suppose that un converges weakly to u and RN = he1; : : : ; eN i.
Then for each i;

hun ¡ u; eii = o(1) as n !1:

Now for ' =
PN

i=1 aiei;

kun ¡ uk= sup k'k ∙ 1hun ¡ u; 'i

= sup
k'k∙1

NX
i=1

aihun ¡ u; eii

∙
NX

i=1

jhun ¡ u; eiij

= o(1) as n !1:

From the following Theorem 3, we have that the only normed linear space with
compact balls is the Euclidean space RN :

Theorem 3. (Riesz) Let X be a normed linear space. If the unit sphere
fx 2 X j kxk ∙ 1g is compact, then X = RN :
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Proof. See Brézis [3, Theorem VI.5].

The compactness concepts can be extended to various infinite dimensional
spaces.

Theorem 4. (Banach – Alaoglu – Bourbaki) Let X be a separable Banach
Space and fung be a bounded sequence in X¤; then there exist a subsequence
fung and u 2 X¤ such that un * u weak¤.

Proof. See Brézis [3, Theorem III.15 and III.25] and Marsden-Hoffman [16,
Theorem 3.1.3].

If the spaces are reflexive Banach Spaces, then Theorem 4 can be simplified.

Theorem 5. Let X be a reflexive Banach Space and fung be a bounded
sequence in X; then there exist a subsequence fung and u 2 X such that un * u
weakly.

There is a nice extension of the classical compactness theorem 1 to the contin-
uous function space C(K).

Theorem 6. (Arzela-Ascoli) Let K be a compact metric space and C(K) the
set of all continuous functions in K. Let fung be a bounded and equicontinuous
sequence in C(K); then there exist a subsequence fung and u 2 C(K) such that
un ! u uniformly.

Proof. See Yosida [24, p. 85].

There is an analogue result of Theorem 6 in Lp(­) spaces.

Theorem 7. (Frechet – Kolmogorov) Let ­ be a domain in RN and Lp(­) the
set of all Lp-functions in ­; where 1 ∙ p < 1. Let fung be a bounded sequence
in Lp(­). Suppose that fung is an equicontinuous sequence in Lp(­), that is

( i ) for " > 0; ! ½½ ­; there exists ± > 0; ± < dist(!;­c) such that

k(un)h ¡ unkLp(!) < " for h 2 RN ; khk < ±; for n 2 N;

(ii) for " > 0; there exists ! ½½ ­ such that kunkLp(­n!) < " for n 2 N, then
there exist a subsequence fung and u 2 Lp(­) such that un ! u in Lp(­).
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Proof. See Brézis [3, Theorem IV.25].

The Lebesgue dominated convergence theorem also is a well-known compactness
theorem.

Theorem 8. (Lebesgue Dominated Convergence Theorem) Suppose ­ is a
domain in RN ; fung1n=1 and u are measurable functions in ­ such that un ! u
a.e. in ­. If there is a ' 2 L1(­) such that for each n 2 N

junj ∙ ' a:e: in ­;

then un ! u in L1(­):

Proof. See Wheeden-Zygmund [22, p. 173].

In Example 9 it shows that the converse of the Lebesgue dominated convergence
theorem fails.

Example 9. For n = 1; 2; : : : , let un : R ! R be defined by

un(x) =

8>><>>:
0; for x ∙ n
2; for x = n+ 1=2n
0; for x ¸ n+ 1=n
linear, otherwise.

Then we have Z
R

un(x)dx =
1

n
< 1 for each n 2 N:

Then un ! 0 a.e. in R and strongly in L1(R). Suppose that there exists a
' : R ! R satisfying

junj ∙ ' a.e. in R for each n 2 N:

Then 1 =
P 1

n =
R

R
P

un ∙
R

R '. Consequently, ' =2 L1(R).

However the Vitali convergence theorem provides a necessary and sufficient
result for L1 convergence.

Theorem 10. (Vitali Convergence Theorem for L1(­)) Suppose ­ is a domain
in RN ; fung1n=1 ½ L1(­); u 2 L1(­); and un ! u a.e. in ­:Thenkun¡ukL1 ! 0
if and only if the following two conditions hold :
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(UI) (Uniformly integrable condition) For each " > 0; there exists a measurable
set E ½ ­ such that jEj < 1 andZ

Ec

junjd¹ < " for each n 2 N;

(UC) (Uniformly continuous condition) For each " > 0; there exists a ± > 0 such
that jEj < ± impliesZ

E
junjd¹ < " for each n 2 N:

Proof. See Gariepy-Ziemer [13, p. 150].

Proposition 11. In the (UI) condition of the Vitali Convergence Theorem 10,
the condition jEj < 1 can be replaced by “E is bounded”.

Proof. Let En = E \ B(0;n) for n = 1; 2; : : : , then E1 ½ E2 ½ ¢ ¢ ¢ % E.
Thus, jE1j ∙ jE2j ∙ ¢ ¢ ¢ % jEj: For ± > 0 as in the (UC) condition of Theorem
10, there is a EN such that jEnEN j < ±. Now

R
Ec

N
junjdx =

R
Ec junjdx +R

EnEN
junjdx < 2" for each n 2 N.

If we replace L1(­) in the Vitali Convergence Theorem by H1
0 (­), we can drop

the (UC) condition.

Theorem 12. (i) (Rellich Theorem) Let ­ be a domain in RN of finite measure.
Then the embedding of H1

0 (­) into Lp(­) is compact; (ii) (Vitali Convergence
Theorem for H1

0 (­)) Let ­ be a domain in RN . Suppose that fung1n=1 ½ H1
0 (­)

is a bounded sequence such that un ! u a.e. in ­ for some u 2 H1
0 (­). If for each

" > 0; there exists a measurable set E such that jEj < 1 and
R

Ec junjpdx < "
for each n 2 N; then kun ¡ uk

Lp ! 0:

Proof. (i) Let F be the unit ball in H1
0 (­).

(a) For ² > 0, w ½½ ­, u 2 F , jhj < dist(w, ­c). For q 2 [1, 2¤), write

1

q
=

®

1
+
1¡ ®

2¤
for some ®; where 0 < ® ∙ 1:

By the interpolation property,

1

q
=
1
1
®

+
1
2¤
1¡®

;
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for f 2 L1(­) \ L2
¤
(­)

kfkLq ∙ k jf j®kL1=®k jf j1¡®kL2¤=(1¡®)

∙ kfk®
L1kfk1¡®

L2¤ :

That is,

k¿hu¡ ukLq(w)∙ k¿hu¡ uk®
L1(w)k¿hu¡ uk(1¡®)

L2¤(w)

∙ k¿hu¡ uk®
L1(w)

³
2kukL2¤(w)

´(1¡®)

∙ Ck¿hu¡ uk®
L1(w)2

(1¡®)kruk(1¡®)
L2(­)

;

where ¿hu(z) = u(z ¡ h). Now ­ is of finite measure, so u 2 H1
0(­) ½

W 1;1(­) and
k¿hu¡ ukL1(w)∙ jhj krukL1(­)

∙ cjhj krukL2(­):

Hence

k¿hu¡ ukLq(w)∙ Cjhj®kruk®
L2(­)c 2

(1¡®)kruk(1¡®)
L2(­)

∙ Cjhj®krukL2(­)

∙ cjhj® since u 2 F :

If we take ± > 0, ±® = ²
c , ± < dist(w, ­c), then jhj < ± implies

k¿hu¡ ukLq(w) < ²:

(b) For ² > 0, u 2 F , and q 2 [1, 2¤), we have

kukLq(­nw)=

ÃZ
­nw

jujq
! 1

q

∙
ÃZ

­nw
jujqr

! 1
qr

(j­nwj) 1
r0 :

Take r = 2¤
q , then r0 = 2¤

2¤¡q , so

kukLq(­nw)∙ kukL2¤(­nw)j­nwj1¡
q

2¤

∙ krukLp(­)j­nwj1¡
q

2¤

∙ j­nwj1¡ q
2¤ (since u 2 F):
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If we choose
w = fx 2 ­ j dist (x; @­) > ±g

with ± small, then
kukLq(­nw) < ²:

By Theorem 7, F is relatively compact in Lp(­):

(ii) By the Fatou lemma,
R

Ec jujpdx ∙ ". Since jEj < 1; by part (i), we haveZ
E
jun ¡ ujpdx = o(1):

Therefore,Z
­
jun ¡ ujpdx =

Z
E
jun ¡ ujpdx+

Z
Ec

jun ¡ ujpdx = o(1):

Recall that a function u is radially symmetric if there is a function f such that
u(z) = f(jzj) for each z. Let H1

r (RN ) = fu 2 H1(RN) ju is radially symmetricg.
We state the following well-known result of Strauss [18].

Lemma 13. For N ¸ 2; every u 2 H1
r (RN) is equal to a continuous function

U in RNnf0g such that for z 6= 0

jU(z)j ∙
µ
2

!N

¶1=2
jzj 1¡N

2

ÃZ
jtj¸jzj

ju(t)j2dt

!1=4 ÃZ
jtj¸jzj

jru(t)j2dt

!1=4

:

Let A be an annulus, say A = fz 2 RN j 1 < jzjg with N ¸ 3. Let

H1
r (A) = fu 2 H1

0 (­) j u is radially symmetricg:

Moreover, if we replace L1(A) in the Vitali convergence theorem for H1
r (A), we

can drop both the (UI) and the (UC) conditions.

Theorem 14. (Vitali Convergence Theorem for H1
r (A)). The embedding of

H1
r (A) into Lp(A) is compact.

Proof. By Lemma 13, see Berestycki-Lions [2, p. 341].

3. MINIMIZERS

Since the maximum of the function ¡f is the minimum of f , we only need to
consider the minimum problems. First, let us see the classical minimizing problem.
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Theorem 15. If K ½ RN is compact and f : K ! R is continuous, then there
exists a u 2 K such that

f(u) = min
v2K

f(v):

Proof. Let ® = infv2K f(v) and fvng a minimizing sequence in K such that
f(vn) ! ®. Since K is compact, there are a subsequence fvng and u 2 K such
that

vn ! u weakly:

Since f is continuous, we have

f(vn)! f(u) = ®:

Thus,

f(u) = min
v2K

f(v):

For more applied analysis, we need the following minimizers in reflexive Banach
spaces.

Theorem 16. Let X be a reflexive Banach space; M ½ X a weakly closed
subset; and f : M ! R satisfying

( i ) f is coercive: if u 2 M; kuk ! 1; then f(u)!1;
(ii) f is weakly lower semicontinuous on M : if un ! u weakly in M; then

f(u) ∙ lim infn!1 f(un).

Then there exists a u 2 M such that

f(u) = min
v2M

f(v):

Proof. Let ® = infv2M f(v) and fvng a minimizing sequence in M such that
f(vn) ! ®. Since ® < 1; by the coercion of f , fvng is bounded. There exists a
subsequence fvng and u 2 X such that

vn * u:

Since M is weakly closed, u 2 M . From the assumption that f is weakly lower
semicontinuous on M , we have

f(u) ∙ lim inf
n!1 f(vn) = ®:

Thus,

f(u) = min
v2M

f(v):
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Theorem 17. (Implicit Function Theorem) Let E; F; G be Banach spaces; and
let U ½ E; V ½ F be open sets, and f : U£V ! G a C1 map. Assume that at (a;
b) 2 U£V; f(a; b) = 0; and the partial derivative D2f(a; b) 2 GL(F; G); where
GL(F; G) is the general linear group. Then there exist an open neighborhood A
of a; an open neighborhood B of b; and a unique C1 map g : A ! B such that½

g(a) = b
f(x; g(x)) = 0; for x 2 A;

and g0(x) = ¡[D2f(x; g(x))]¡1 ±D1f(x; g(x)) for all x 2 A:

Proof. See Dieudonne [11, p. 270].

In Theorem 16, we asserted that f(u) = minv2M f(v): In order to obtain such
u; we need the following Lagrange multiplier theorem.

Theorem 18. (Lagrange Multiplier Theorem) Let X be a Banach space; f; g :
X ! R be of C1 and M = fx 2 Xjg(x) = 0g. Let u 2 M such that f admits
a minimum at u constrained on M . Suppose that Dg(u) 6= 0; then there exists a
¸ 2 R; called the Lagrange multiplier; such that

Df(u) = ¸Dg(u):

Proof. Write
f(u+ h)¡ f(u) = Df(u)h+ r(h);

g(u+ h)¡ g(u) = Dg(u)h+ s(h);

where r(h) = o(khk); s(h) = o(khk) as h ! 0. We may assume dimX > 1,
and then take v, w 2 X, v 6= 0, w 6= 0 such that Dg(u)v = 1 and Dg(u)w = 0:
Consider the function ' : R£R!R defined by

'(t; ²) = g(u+ tv + ²w)¡ c; c = g(u):

Then ' 2 C1 satisfying '(0; 0) = 0 and D1'(0; 0) = Dg(u)v = 1: By Implicit
Function Theorem 17, there are open intervals I , J of 0, respectively, a unique C1

map t : J ! I such that

t(0) = 0;

t(²)! 0 as ² ! 0;

'(t(²); ²) = 0 for ² 2 J:
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Now
0= '(t(²); ²)

= g(u+ t(²)v + ²w)¡ g(u)

= Dg(u)[t(²)v + ²w] + s(t(²)v + ²w)

= t(²) + s(t(²)v + ²w):

For 0 < ± < kvk, there is a ²0 > 0 such that j²j < ²0 implies ks(t(²)v+²w)k
kt(²)v+²wk <

±
2kvk < 1=2. Therefore,

jt(²)j
j²j ∙ ks(t(²)v + ²w)k

kt(²)v + ²wk
k(t(²)v + ²wk

j²j <
1

2

jt(²)j
j²j +

±

2

kwk
kvk ;

or jt(²)j
j²j < c±. We hence have t(²) = o(j²j) as ² ! 0. Next we claim that

Df(u)w = 0. In fact, since g(u + t(²)v + ²w) = c for ² 2 J; we have that
fu+ t(²)v + ²w j j²j < ±g, for some ±, represents a curve on M through u. Now

f(u+ t(²)v + ²w)¡ f(a)= Df(u)(t(²)v) +Df(u)(²w) + o(t(²)v + ²w)

= t(²)Df(u)v + ²(Df(u)w) + o(²)

= ²Df(u)w + o(²):

Note that

o(t(²)v + ²w)

²
=

o(t(²)v + ²w)

t(²)v + ²w

t(²)v + ²w

²
! 0 as ² ! 0;

since t(²) = o(²), therefore o(t(²)v + ²w) = o(²). Since f attains its extremum at
u with respect to M;

Df(u)w = lim
²!0

f(u+ t(²)v + ²w)¡ f(u)

²
= 0:

We conclude that, for w 2 X

Dg(u)w = 0) Df(u)w = 0:

Now Dg(u), Df(u) 2 L(E, R) satisfy kerDg(u) ½ kerDf(u): Recall that if
T : X ! R is linear, then either kerT = X or X = hkerT; x0i for some x0 2
Xn kerT . Since Dg(u) 6= 0, there is a x0 =2 kerDg(u) with X = kerDg(u)©Rx0:

For any x 2 X , x = y + ¯x0 where y 2 kerDg(u). So, for ¸ = Df(u)(x0)
Dg(u)(x0)

,

Df(u)(x)= ¯Df(u)(x0) = ¯¸Dg(u)(x0)

= ¸Dg(u)(¯x0) = ¸Dg(u)(x);
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or Df(u) = ¸Dg(u).

We give here an application of Theorems 16 and 18: consider the semilinear
elliptic equation ( ¡¢u+ ¸u = jujp¡2u in ­;

u 2 H1
0 (­);

(2)

where ­ ½ RN is a bounded domain, N > 2, and 2 < p < 2N
N¡2 : Let the potential

operators a; b : H1
0(­) ! R; and the energy functional J : H1

0 (­) ! R be given
by

a(u)=

Z
­

¡jruj2 + ¸u2
¢

;

b(u)=

Z
­
jujp;

J(u)=
1

2
a(u)¡ 1

p
b(u):

Theorem 19.

(i) J is of C1;1;

(ii) J satisfies the mountain pass hypothesis: There are r; ± > 0 and e 2 H1
0(­);

such that e =2 B(0; r); f(e) = 0; f(u) ¸ ± > 0 for u 2 @B(0; r);

(iii) J is weakly lower semicontinuous.

Proof. See Rabinowitz [17, Theorem 2.15 and Proposition B.10].

Let 0 < ¸1 < ¸2 ∙ ¸3 ∙ ¢ ¢ ¢ denote the eigenvalues of ¡¢ on H1
0 (­):

Theorem 20. For any ¸ > ¡¸1; there exists a solution u 2 C2(­) \ C0(­)
of equation (2).

Proof. Let X = H1
0 (­); a Hilbert space and the manifold

M = fu 2 H1
0 (­) j b(u) = 1g:

By the Rellich compactness Theorem 12 (i), M is weakly closed. Moreover, a is
coercive: for ¸ > ¡¸1, from

¸1 = inf
u2H1

0 (­)nf0g

R
­ jruj2R
­ juj2

;
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we have
a(u) ¸ min

n
1;

³
1+

¸

¸1

´o
jjujjH1:

a is weakly lower semilinear continuous since a is a norm. By Theorem 16, there
exists a u 2 M such that

a(u) = min
v2M

a(v):

By the Lagrange multiplier Theorem 18, there exists a ¹ 2 R such that

a0(u)' = ¹b0(u)';

for each ' 2 H1
0(­); orZ

­
(rur'+ ¸u') = ¹

Z
­

ujujp¡1':

Let ' = u to get
a(u) = ¹b(u) = ¹:

Thus, ¹ > 0. Then w = ¹1=(p¡2)u solves equation (2).

4. PALAIS SMALE CONDITIONS

In section 2, we presents the compactness. But in these compactness, we need to
investigate every sequence. It is not economic. For example, to solve the equation
(2) in Theorem 20, we associate the equation (2) with an energy functional J .
The critical points of J and the solutions of equation (2) are exactly the same.
Thus, it suffices to find the critical points of J . We conclude that we only need to
consider the sequences related to the functional J . On the other hand, in section 3,
we present the minimizers. In Theorem 16, we impose some coercive and weakly
lower semicontinuous conditions on the function f such as that ­ is an unbounded
domain to assure that there is a u such that

f(u) = min
v2M

f(v);

then we apply the Lagrange multiplier Theorem 18 to find such u. There are some
problems: if a function f satisfies neither the coercive condition nor weakly lower
semicontinuous condition, or instead of to finding the minimizer

f(u) = min
v2M

f(v);

we try to find the saddle point u satisfying

f(u) = inf
°
max

t
f(°(t)):
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Therefore we need to consider new compactness concepts and new minimizers: for
example, let f be of C1 and

® = min
v2M

f(v) or ® = inf
°
max

t
f(°(t));

and fung a minimizing sequence such that

f(un)! ®;

f 0(un)! 0:

If there is a subsequence fung and u such that

un ! u:

Then f(un) ! ® = f(u). This is the so called the (PS)¡conditions. In the
following we define the Palais¡Smale (simply by (PS)) sequences for J:

Definition 21.
(i) For ¯ 2 R; a sequence fung in H1

0 (­) is called a (PS)¯¡sequence for J if
J(un)! ¯ and J 0(un)! 0 strongly as n !1;

(ii) ¯ 2 R is called a (PS)¡value for J if there is a (PS)¯¡sequence for J ;
(iii) J satisfies the (PS)¯¡condition if every (PS)¯¡sequence for J contains a

convergent subsequence;
(iv) J satisfies the (PS)¡condition if, for every ¯ 2 R; every (PS)¯¡sequence for

J contains a convergent subsequence.

We may produce the (PS)¯¡sequence for J by the Ekeland variational principle
and the deformation lemma.

Theorem 22. (Ekeland’ Variational Principle) Let M be a complete metric
space with metric d. Let f : M ! (¡1;+1] satisfying

(i) f is lower semi-continuous;
(ii) f is bounded from below: ¯ = infM f > ¡1;
(iii) f 6´ +1.

Then, for each ²; ± > 0 and for each u 2 M such that f(u) ∙ ¯ + ², there exists
v 2 M such that

(a) f(v) ∙ f(u);

(b) dist(u; v) ∙ ±;

(c) f(v) < f(w) + "
±dist(w; v) for each w 2 M; w 6= v:
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Proof. See Chabrowski [7, p. 4].

Theorem 23. (Deformation Lemma) Let X be a Banach space; f 2 C1(X);
and ¯ 2 R. Then for each ± < 1

8 ; there exists a continuous deformation ´ :
X £ [0; 1]! X such that

(i) ´(u; 0) = u for u 2 X ;

(ii) ´(u; t) = u for t 2 [0; 1] if kf 0(u)k ∙ p±;
(iii) ´(u; t) = u for t 2 [0; 1] if jf(u)¡ cj ¸ 2±
(iv) t ! f(´(u; t)) is increasing in t;

(v) 0 ∙ f(u)¡ f(´(u; t)) ∙ 4± for u 2 X; t 2 [0; 1];
(vi) k´(u; t)¡ uk ∙ 16p± for u 2 X; t 2 [0; 1];

(vii) If u 2 fc+± then either (a) ´(u; 1) 2 fc¡± or (b) for some t1 2 [0; 1]; we
have kf 0(´(u; t1))k < 2

p
±, where fa = fu 2 X jf(u) ∙ ag;

(viii) More generally; let ¿ 2 [0; 1] and assume that for all t 2 [0; ¿ ]; ´(u; t)
belongs to the set

eN = fv 2 X j jf(v)¡ cj ∙ ± and kf 0(v)k ¸ 2
p

±g;

then f(´(u; ¿)) ∙ f(u)¡ ¿=4;

(ix) ´(´(u; t); s) = ´(u; t+ s) (which implies that; for fixed t; u ! ´(u; t) is a
homeomorphism of X onto X).

Proof. See Brézis-Nirerberg [4, p. 947].

We may also produce the (PS)¯¡sequence for J by methods other than the
Ekeland variational principle and the deformation lemma, see Lien-Tzeng-Wang
[15] and Chen-Wang [8].

The most important thing is to present various compactness: the (PS)¡conditions.
In order to present the (PS)¡conditions, we need to define the index of a domain
­ of a functional J .

Consider the following four important positive values.

(i) The constrained value ®µ = (
1
2 ¡ 1

p)µ
2p

2¡p ; where

µ = sup
©kukLp(­) j u 2 H1

0 (­); a(u) = 1
ª

:

Clearly, ®µ is a positive value.
(ii) The Nehari value ®M = infu2M(­) J(u), where
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M(­) =
©

u 2 H1
0 (­)nf0g j a(u) = b(u)

ª
:

As a consequence of the following lemma, ®M is a positive value.

Lemma 24. Let S(­) = fu 2 H1
0 (­) j kukH1 = 1g be the unit sphere. Then

there is a bijective C1;1 map m from S(­) to M(­). Moreover; M(­) is path-
connected and there exists a constant c > 0 such that for u 2 M(­); kukH1 ¸ c
and J(u) ¸ c.

Proof. See Chen-Wang [8, Lemma 2.2].

(iii) The minimax value ®¡ = infv2¡maxt2[0;1] J(v(t)); where

¡ = fv 2 C([0; 1]; H1
0 (­)) j v(0) = 0; v(1) = eg and J(e) = 0:

Since J satisfies the mountain pass hypothesis, ®¡ is a positive value.
(iv) The minimal value ®P = inf¯2P (­) ¯, where P (­) is the set of all positive

(PS)¡values for J in ­: As a consequence of the following lemma, ®P is a
positive value.

Lemma 25. There is a ¯0 > 0 such that ¯ ¸ ¯0 for every positive (PS)¡value
¯:

Proof. See Chen-Lin-Wang [10, Lemma 11].

We state the following useful lemma.

Lemma 26. Let fung ½ H1
0 (­) be a (PS)¯¡sequence for J with ¯ > 0: Then

there is a sequence fsng in R+ such that fsnung ½ M(­) and J(snun) = ¯+o(1):

Proof. See Wang [20, Lemma 8].

Now we now study several important (PS)¡values.

Lemma 27. ®µ; ®M; ®¡ and ®P are positive (PS)¡values for J: Moreover,
every minimizing sequence for ®M is a (PS)®M¡sequence for J .

Proof.
(i) By Lien-Tzeng-Wang [15, Theorem 2.1], ®µ is a positive (PS)–value for J:

(ii) By Stuart [19, Lemma 3.4], ®M is a positive (PS)–value for J:

(iii) By Brézis-Nirenberg [4], ®¡ is a positive (PS)¡value for J:

(iv) For each n 2 N; take un 2 H1
0 (­) and ¯n 2 P (­) such that
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j¯n ¡ ®P j <
1

2n
; jJ(un)¡ ¯nj <

1

2n
; kJ 0(un)k <

1

2n
:

Then J(un) = ®P + o(1) and J 0(un) = o(1) strongly in H¡1(­). Thus, ®P 2
P (­).

In the following, we present a comparison lemma.

Lemma 28. Let fung ½ H1
0 (­) be a (PS)¯¡sequence for J with ¯ > 0:

Then ¯ ¸ ®µ; ¯ ¸ ®M; ¯ ¸ ®¡ and ¯ ¸ ®P :

Proof. By Wang [20, Lemma 9], ¯ ¸ ®µ; ¯ ¸ ®M and ¯ ¸ ®¡. Clearly,
¯ ¸ ®P :

By Lemma 27 and 28, we have the following interesting result.

Theorem 29. Four important (PS)¡values are equal: ®µ = ®M = ®¡ = ®P :

Remark 1. For the equalities ®µ = ®M = ®¡; see also Willem [23].

Definition 30. By Theorem 29, the positive (PS)–values ®µ; ®¡; ®M and ®P

for J are the same. Any one of them is called the index of J in ­ and denoted by
®(­) (simply by ®). By the definition of ®M; if u is a nonzero solution of equation
(2), then J(u) ¸ ®. Follows from Berestycki-Lions [2], we call that a solution u
of equation (2) is a ground state solution if J(u) = ® and u is a higher energy
solution if J(u) > ®:

Let ­1 and ­2 are two domains in RN ; ­1 $ ­2 and ®i = ®(­i) for i = 1; 2,
then clearly ®2 ∙ ®1: If ®2 = ®1, then we have the following useful results.

Lemma 31. Let ­1 $ ­2 and J : H1
0 (­

2) ! R be the energy functional.
Suppose that ®2 = ®1: Then

(i) J does not satisfy the (PS)®1¡condition in ­1;
(ii) ®1 does not admit any ground state solution;
(iii) J does not satisfy the (PS)®2¡condition in ­2:

Proof. See Chen-Lin-Wang [10, Lemma 20] and Wang-Wu [21, Lemma 22].

Let ­ be an unbounded domain in RN and ­i a proper subdomain of ­ for
i = 1; 2; ¢ ¢ ¢ ; k such that ­i \ ­j is bounded if i 6= j and ­ = ­1 [ ¢ ¢ ¢ [ ­k. Let
® = ®(­), ®i = ®(­i), M(­) = fu 2 H1

0 (­) nf0g j a(u) = b(u)g and M(­i) =
fu 2 H1

0 (­
i)nf0g j a(u) = b(u)g for i = 1; 2; ¢ ¢ ¢ , k. Since H1

0 (­
i) ½ H1

0 (­) and
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M(­i) ½ M(­), for i = 1; 2; ¢ ¢ ¢ , k, we have ® ∙ minf®1; ®2; ¢ ¢ ¢ ; ®kg: If one
of ­i is bounded, say ­1 is bounded, then J satisfies the (PS)®1¡condition. Let

e­n= ­ n BN(0;n) $ ­;fMn=
n

u 2 H1
0 (

e­n)nf0g j a(u) = b(u)
o

;

e®n= ®(e­n) = inf
u2fMn

J(u):

If fung ½ H1
0 (­) is a (PS)®¡sequence for J , then fung is bounded. There

are a subsequence fung and u 2 H1
0 (­) such that un * u weakly in H1

0 (­); a.e.
in ­ and strongly in Lp

loc(­): Define ®1 = lim
R!1

lim sup
n!1

R
­\fjxj>Rg junjp: For the

quantity ®1, which measures a loss of mass at infinity of a weakly convergent
sequence, see Chabrowski [5], Ben-Naoum-Troestler-Willem [1], and Willem [23].
A lot of information on ®1 and its significance for weak convergence methods can
be found in the book of Chabrowski [6].

We have the following characterization of compactness.

Theorem 32. The following properties are equivalent :
(i) J satisfies the (PS)®¡condition;
(ii) For every (PS)®¡sequence fung ½ H1

0 (­) for J; there exists a subsequence
fung and u 6= 0 in H1

0 (­) such that un * u weakly in H1
0 (­);

(iii) For every (PS)®¡sequence fung ½ H1
0 (­) for J; there are a c > 0; a

subsequence fvmg of fung; a positive integer K > 0 such that for each
k ¸ K there is a positive integer N(k) such that for m ¸ N(k); we haveZ

­k

jvmjp ¸ c;

(iv) For every (PS)®¡sequence fung ½ H1
0 (­) for J; there is a subsequence

fung such that for " > 0 there is a measurable set E such that jEj < 1
and

R
Ec junjpdx < " for each n 2 N;

(v) ® < ~®n for each n 2 N;
(vi) ® < minf®1; ®2; ¢ ¢ ¢ ; ®kg;
(vii) ®1 < 2p

p¡2®:

Proof. See Chen-Lin-Wang [10, Theorem 23].

In the following we give one application of Theorem 32. Let z = (x; y) 2
RN¡1 £ R and ­ is a domain in RN . Define the ball BN(z0; s) in the Euclidean
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space RN ; the infinite strip Ar, the upper semi-strip Ar
0; the finite strip Ar

s;t for
s; t 2 R; and the interior flask domain Fr

s for s > 0 as follows:

BN(z0; s) = fz 2 RN j jz ¡ z0j < sg;
Ar = f(x; y) 2 RN j jxj < rg;
Ar
0 = f(x; y) 2 Ar j 0 < yg;

Ar
s;t = f(x; y) 2 Ar j s < y < tg;

Fr
s = Ar

0 [BN(0; s):

Esteban-Lions [12, Theorem I.1]es-li proved the following:

Theorem 33. Equation (2) in Ar
0 does not admit any nontrivial solution.

However, in the following Theorem 34 we apply Theorem 32 to assert that
Equation (2) in a perturbation of the upper semi-strip Ar

0 admits a ground state
solution.

Theorem 34. There exists s0 > 0 such that equation (2) has a ground state
solution in Fr

s if s > s0; but does not have any ground state solution if s < s0:

Proof. Let ­ = Fr
s; ­1 = Ar

0, and ­2 = B(0; s): By Lien-Tzeng-Wang
[15], equation (2) has a ground state solution in Ar. By Lemma 31, we have
®(Ar) > ®(RN): Note that ®(Ar) = ®(Ar

0) and lims!1 ®(BN(0; s)) = ®(RN):
Take s large enough such that

®(B(0; s)) < ®(Ar) = ®(Ar
0):

It is well-known that there is a ground state solution of equation (2) in BN (0; s).
By Lemma 31, we have

®(­) = ®(Fr
s) < ®(BN (0; s)):

We conclude that

®(­) = ®(Fr
s) < ®(BN(0; s)) = ®(­2) < ®(Ar

0) = ®(­1):

By Theorem 32, equation (2) has a ground state solution in Fr
s for large s. If equation

(2) has a ground state solution in Fr
s1

and s1 < s2, then Fr
s2
= Fr

s1
[ BN(0; s2).

By Lemma 31, ®(Fr
s2
) < ®(BN(0; s2)) and ®(Fr

s2
) < ®(Fr

s1
). By Lemma 31,

equation (2) has a ground state solution in Fr
s2

: Let

s0 = inffs > r j equation (2) has a ground state solution in Fr
sg:
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We then conclude that equation (2) has a ground state solution in Fr
s if s > s0; and

equation (2) has no ground state solution in Fr
s if s < s0:

Let z = (x; y) 2 RN¡1 £ R and ­ be a domain in RN .

Definition 35.
(i) ­ is y¡symmetric provided z = (x; y) 2 ­ if and only if (x; jyj) 2 ­;
(ii) A domain ­ in Ar is large if for any m > 0 there exists s < t such that

t¡ s = m and Ar
s;t ½ ­;

(iii) Let ­ be an y¡symmetric domain in RN . A function u : ­ ! R is
y¡symmetric (axially symmetric) if there is a function f : RN¡1£ [0;1)!
R such that u(x; y) = f(x; jyj) for (x; y) 2 ­:

For 0 < r1 < r and t > 0; consider the finite strip with a hole,

­t = Ar
¡t;t n BN((x; 0); r1);

and the exterior domain ArnBN ((X; 0); r1). Then Ar and ­t are y¡symmetric
domains and the exterior domain Arn BN((x; 0); r1) is a large y¡symmetric do-
main.

Throughout this article, we let Hs(­) be the H1¡closure of the fu 2 C1
0 (­) ju

is y–symmetricg. Then Hs(­) is a closed linear subspace of H1
0 (­): In Definition

21, we may replace H1
0 (­) by Hs(­) to get

Definition 36. We define
(i) For ¯ 2 R; a sequence fung in Hs(­) is a symmetric (PS)¯¡sequence for J

if J(un)! ¯ and J 0(un)! 0 strongly as n !1;
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(ii) ¯ 2 R is a symmetric (PS)¡value for J if there is a symmetric (PS)¯¡sequence
for J ;

(iii) J satisfies the symmetric (PS)¯¡condition if every symmetric (PS)¯¡sequence
for J contains a convergent subsequence;

(iv) J satisfies the symmetric (PS)¡condition if, for every ¯ 2 R; every symmetric
(PS)¯¡sequence for J contains a convergent subsequence.

We may replace H1
0 (­) in the definitions of the four (PS)¡values ®µ, ®M, ®¡,

®P by Hs(­) to get the four symmetric (PS)¡values ®s
µ, ®s

M, ®s
¡, and ®s

P . By
Wang-Wu [21, Theorem 16], we have

Theorem 37. Four symmetric (PS)¡values are equal: ®s
µ = ®s

M = ®s
¡ = ®s

P :

Definition 38. By Theorem 37; the positive symmetric (PS)¡values ®s
µ; ®s

M;
®s
¡; and ®s

P for J in Hs(­) are the same. Any one of them is called the symmetric
index of J in ­ and denoted by ®s(­) (simply by ®s). By the definition of ®s

M, if u
is a nonzero y¡symmetric solution of equation (1), then J(u) ¸ ®s. Follows from
Berestycki-Lions [2], we call that a nonzero y¡symmetric solution u of equation
(1) is a symmetric ground state solution if J(u) = ®s and is a symmetric higher
energy solution if J(u) > ®s:

Let X(­) be either H1
0 (­) or Hs(­) with the index ®X(­). Then we have the

following lemma.

Lemma 39. Let u 2 X(­) be a change sign solution of equation (2). Then
J(u) > 2®X(­).

Proof. See Wang-Wu [21, Lemma 20].

The following Lemma 40 asserts that a bounded domain in RN has nice property
for PS–condition.

Lemma 40. Let­ be a bounded domain in RN . Then the (PS)®X(­)¡condition
holds in X(­) for J .

Proof. See Wang-Wu [21, Lemma 25].

Lemma 41. If ­ is a large domain in Ar; then ®(­) = ®(Ar):

Proof. See Lien-Tzeng-Wang [15, Lemma 2.5].

Proposition 42. We have that ®s(A
r¡t;t) = ®(Ar¡t;t) and ®s(A

r) = ®(Ar):



462 Hwai-Chiuan Wang

Proof. By Gidas-Ni-Nirenberg [14] and Chen-Chen-Wang [9], we have that
every positive solution of equation (2) in a finite strip Ar¡t;t and in an infinite strip
Aris y¡symmetric.

Corollary 43. If ­ is a proper y¡symmetric large domain in Ar; then ®(Ar) <
®s(­).

Proof. See Wang-Wu [21, Corollary 33].

Finally, we apply Corollary 43 to prove the existence of three solutions of (2).

Theorem 44. There exists t0 > 0 such that for t ¸ t0; the equation (2) on
­t has three positive solutions in which one is y¡symmetric and the other two are
nonaxially symmetric.

Proof. Let ­ = Ar nBN ((x; 0); r1), then ­ is an y¡symmetric large domain
in Ar. By Corollary 43, we have ®(Ar) < ®s(­): By Lemma 40 and Lien-Tzeng-
Wang [15], equation (2) admits a ground state solution in Ar

0;t and in Ar, we have
that ®(Ar

0;t) is strictly decreasing as t is strictly increasing and

®(Ar
0;t)& ®(Ar) as t !1:

Take t1 > 0 such that for t ¸ t1;

®(Ar) < ®(Ar
0;t) < ®s(­):(3)

Note that Ar
r1;t1+r1

$ ­t $ Ar for t ¸ t0 = t1 + r1. By Lemma 31, we conclude
that

®(Ar) < ®(­t) < ®(Ar
r1;t1+r1

):(4)

By Lien-Tzeng-Wang [15], if ­ is a domain of RN , then ®(­) is invariant by rigid
motions. Thus,

®(Ar
r1;t1+r1

) = ®(Ar
0;t1
):(5)

Therefore, by (3)-(5)

®(Ar) < ®(­t) < ®(Ar
0;t1
) < ®s(­):(6)

Since ­t ½ ­, we have

®s(­) ∙ ®s(­t):(7)
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By (6) and (7), we obtain

®(­t) < ®s(­t):(8)

By Lemma 41, there exist an y¡symmetry solution u1 and a solution u2 of equation
(2) in domain ­t such that

J(u1) = ®s(­t);

J(u2) = ®(­t):

By Lemma 39, we may take u1 and u2 to be positive. Let

u3(x; y) = u2(x;¡y);

then u3 is the third solution. By (8), u1, u2 and u3 are different. Moreover, u1 is
an y¡symmetric solution while both u2 and u3 are nonaxially symmetric solutions
of equation (2) in domain ­t.
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