TAIWANESE JOURNAL OF MATHEMATICS

Vol. 6, No. 2, pp. 181-185, June 2002

This paper is available online at http://www.math.nthu.edu.tw/tjm/

A NEW PROOF OF $\ell_1 \overset{\vee}{\bigotimes} X \subseteq c_0 \overset{\wedge}{\bigotimes} X$

Qingying Bu

Abstract. In this paper, we first show that for any Banach space X, $\ell_1[X] \subseteq \ell_\infty\langle X\rangle$ by Khinchin's inequality. Then by the relationship between Banach-valued sequence spaces and tensor products, we show that for any Banach space X, $\ell_1 \overset{\vee}{\otimes} X \subseteq c_0 \overset{\wedge}{\otimes} X$.

Let X be a Banach space over the complex field $\mathbb C$ or the real field $\mathbb R$ and X^* its dual. B_X denotes the closed unit ball of X. For $1 \le p \le \infty$, let p' be its conjugate, i.e., 1/p + 1/p' = 1. For $1 \le p < \infty$, let $\ell_p[X]$ denote the space of weakly p-summable sequences on X, i.e.,

$$\ell_p[X] = \left\{ \overline{x} = (x_n)_n \in X^{\mathbb{N}} : \sum_{n=1}^{\infty} |x^*(x_n)|^p < \infty \text{ for all } x^* \in X^* \right\}$$

and for every $\overline{x} \in \ell_p[X]$, let

$$\|\overline{x}\|_{[p]} = \sup \left\{ \left(\sum_{n=1}^{\infty} |x^*(x_n)|^p \right)^{1/p} : x^* \in B_{X^*} \right\}.$$

For $p=\infty$, let

$$\ell_{\infty}[X] = \left\{ \overline{x} = (x_n)_n \in X^{\mathbb{N}} : \sup_{n \ge 1} |x^*(x_n)| < \infty \text{ for all } x^* \in X^* \right\}$$

and for every $\overline{x} \in \ell_{\infty}[X]$, let

$$\|\overline{x}\|_{[\infty]} = \sup\{|x^*(x_n)| : x^* \in B_{X^*}, n \in \mathbb{N}\}.$$

Then $(\ell_p[X], \|\cdot\|_{[p]})(1 \le p \le \infty)$ is a Banach space (cf. [1, 8]).

Received June 20, 2000; revised August 18, 2000.

Communicated by S.-Y. Shaw.

2000 Mathematics Subject Classification: Primary 46B28; Second 46B45.

Key words and phrases: Banach sequence space, tensor product, Khinchin's inequality.

For $1 \le p \le \infty$, let $\ell_p\langle X \rangle$ denote the space of strongly p-summable sequences on X, i.e.,

$$\ell_p\langle X\rangle = \Big\{\overline{x} = (x_n)_n \in X^{\mathbb{N}} : \sum_{n=1}^{\infty} |x_n^*(x_n)| < \infty \text{ for all } (x_n^*)_n \in \ell_{p'}[X^*]\Big\}$$

and for every $\overline{x} \in \ell_p \langle X \rangle$, let

$$\|\overline{x}\|_{\langle p\rangle} = \sup\Big\{|\sum_{n=1}^{\infty} x_n^*(x_n)| : (x_n^*)_n \in B_{\ell_{p'}[X^*]}\Big\}.$$

Then $(\ell_p\langle X\rangle, \|\cdot\|_{\langle p\rangle})$ is a Banach space (cf. [1]).

Lemma 1. Let X be a Banach space. Then for every $\overline{x} = (x_n)_n \in \ell_1[X]$ and every $\overline{x^*} = (x_n^*)_n \in \ell_1[X^*]$,

$$\sum_{i=1}^{\infty} \left(\sum_{k=1}^{\infty} |x_i^*(x_k)|^2 \right)^{1/2} \le \sqrt{2} \|\overline{x}\|_{[1]} \cdot \|\overline{x^*}\|_{[1]}.$$

Proof. Let $r_n(t)$ denote the Rademacher functions (see [5, p. 10]). For $n \in \mathbb{N}$, define functions f_n on [0, 1] by $f_n(t) = \sum_{k=1}^n r_k(t) x_k$. Then for every $n \in \mathbb{N}$ and every $t \in [0, 1]$,

$$||f_n(t)|| = \sup_{x^* \in B_{X^*}} |x^* \left(\sum_{k=1}^n r_k(t) x_k \right)| \le \sup_{x^* \in B_{X^*}} \sum_{k=1}^n |x^*(x_k)| \le ||\overline{x}||_{[1]}.$$

Now for $n, m \in \mathbb{N}$, by Khinchin's inequality (cf. [9, 10]).

$$\sum_{i=1}^{m} (\sum_{k=1}^{n} |x_{i}^{*}(x_{k})|^{2})^{1/2} \leq \sum_{i=1}^{m} \sqrt{2} \int_{0}^{1} |\sum_{k=1}^{n} x_{i}^{*}(x_{k}) r_{k}(t)| dt$$

$$= \sqrt{2} \int_{0}^{1} \sum_{i=1}^{m} |\langle x_{i}^{*}, f_{n}(t) \rangle| dt$$

$$= \sqrt{2} ||\overline{x}||_{[1]} \int_{0}^{1} \sum_{i=1}^{m} |\langle x_{i}^{*}, f_{n}(t) / ||\overline{x}||_{[1]} \rangle| dt$$

$$\leq \sqrt{2} ||\overline{x}||_{[1]} \cdot \sup_{x \in B_{X}} \sum_{i=1}^{m} |\langle x_{i}^{*}, x \rangle|$$

$$\leq \sqrt{2} ||\overline{x}||_{[1]} \cdot ||\overline{x^{*}}||_{[1]}.$$

Letting $n, m \longrightarrow \infty$, we have

$$\sum_{i=1}^{\infty} \left(\sum_{k=1}^{\infty} |x_i^*(x_k)|^2 \right)^{1/2} \le \sqrt{2} \|\overline{x}\|_{[1]} \cdot \|\overline{x^*}\|_{[1]}.$$

The proof is completed.

Theorem 2. Let X be a Banach space. Then $\ell_1[X] \subseteq \ell_\infty \langle X \rangle$ with $\|\cdot\|_{\langle \infty \rangle} \le \sqrt{2} \|\cdot\|_{[1]}$.

Proof. For $i \in \mathbb{N}$, let P_i denote the ith coordinate projection on ℓ_2 . Then $\|P_i\| \leq 1$ for every $i \in \mathbb{N}$. Let $\overline{x} = (x_n)_n \in \ell_1[X]$ and $\overline{x^*} = (x_n^*)_n \in \ell_1[X^*]$. By Lemma 1,

$$\sum_{i=1}^{\infty} |x_i^*(x_i)| = \sum_{i=1}^{\infty} |P_i((x_i^*(x_k))_k| \le \sum_{i=1}^{\infty} |P_i| ||(x_i^*(x_k))_k||_{\ell_2}$$

$$\le \sum_{i=1}^{\infty} (\sum_{k=1}^{\infty} |x_i^*(x_k)|^2)^{1/2} \le \sqrt{2} ||\overline{x}||_{[1]} \cdot ||\overline{x}^*||_{[1]}.$$

Since $\overline{x^*}$ is arbitrary in $\ell_1[X^*]$, $\overline{x} \in \ell_\infty \langle X \rangle$ and

$$\|\overline{x}\|_{\langle \infty \rangle} = \sup \left\{ |\sum_{i=1}^{\infty} x_i^*(x_i)| : \overline{x^*} \in B_{\ell_1[X^*]} \right\} \le \sqrt{2} \|\overline{x}\|_{[1]}.$$

The proof is completed.

Let

$$\ell_1[X]_G = \{ \overline{x} \in \ell_1[X] : \lim_n \| \overline{x}(i > n) \|_{[1]} = 0 \},$$

where $\overline{x}(i > n) = (0, \dots, 0, x_{n+1}, x_{n+2}, \dots)$, and let

$$c_0\langle X\rangle:=(\ell_\infty\langle X\rangle)_G=\{\overline{x}\in\ell_\infty\langle X\rangle:\lim_n\|\overline{x}(i>n)\|_{\langle\infty\rangle}=0\}.$$

Then we have

Corollary 3. Let X be a Banach space. Then $\ell_1[X]_G \subseteq c_0\langle X \rangle$ with $\|\cdot\|_{\langle \infty \rangle} \le \sqrt{2} \|\cdot\|_{[1]}$.

Define

$$\psi: \ell_1 \otimes X(\operatorname{or} c_0 \otimes X) \longrightarrow X^{\mathbb{N}}$$

$$\sum_{k=1}^n s^{(k)} \otimes x_k \longmapsto (\sum_{k=1}^n s_i^{(k)} x_k)_i.$$

Then ψ is a well-defined linear map (cf. [2]).

Let $\ell_1 \overset{\wedge}{\otimes} X$ denote the completion of $\ell_1 \otimes X$ with respect to the injective tensor norm $\|\cdot\|_{\vee}$, and let $c_0 \overset{\wedge}{\otimes} X$ denote the completion of $c_0 \otimes X$ with respect to the projective tensor norm $\|\cdot\|_{\wedge}$ (cf. [6, p. 223-227]). Then by [3, Proposition 8.2] or [11], we have

Proposition 4. Let X be a Banach space. Then $\psi(\ell_1 \overset{\wedge}{\otimes} X) = \ell_1[X]_G$ with the isometry ψ .

184 Qingying Bu

Theorem 5. Let X be a Banach space. Then $\ell_1 \overset{\vee}{\otimes} X \subseteq c_0 \overset{\wedge}{\otimes} X$ with $\|\cdot\|_{\wedge} \leq \sqrt{2} \|\cdot\|_{\vee}$.

Proof. Let $u \in \ell_1 \overset{\vee}{\otimes} X$. Then there exist $u_n = \sum_{k=1}^n s^{(k)} \otimes x_k \in \ell_1 \otimes X$, $n = 1, 2, \cdots$, such that $\forall -\lim_n u_n = u$. By Proposition 4, there exists $\overline{x} \in \ell_1[X]_G$ such that $\overline{x} = \psi(u)$. By Corollary 3, $\overline{x} \in c_0\langle X \rangle$. So by Theorem 9 in [2], $u \in c_0 \overset{\wedge}{\otimes} X^{**}$. Now for every $n \in \mathbb{N}$,

$$||u - u_n||_{\wedge} = ||\psi(u) - \psi(u_n)||_{\langle \infty \rangle} \le \sqrt{2} ||\psi(u) - \psi(u_n)||_{[1]} = \sqrt{2} ||u - u_n||_{\vee}.$$

Notice that $u_n \in \ell_1 \otimes X \subseteq c_0 \otimes X$ for $n=1,2,\cdots$. So $u=\wedge -\lim_n u_n \in c_0 \overset{\wedge}{\otimes} X$ and $\|u\|_{\wedge} \leq \sqrt{2} \|u\|_{\vee}$. The proof is completed.

Remarks. (i) The result of Theorem 5 is also obtained by A. Grothendieck in [7] in a different way (also see [4]). (ii) By Proposition 10.8 in [3, p. 124], we have for each $\overline{x} \in \ell_1[X]$, $\|\overline{x}\|_{\langle \infty \rangle} \leq \|\overline{x}\|_{[1]}$. So $\sqrt{2}$ in the inequality in Theorem 5 can be replaced by 1, the best coefficient for the inequality.

REFERENCES

- 1. H. Apiola, Duality between spaces of p-summable sequences, (p, q)-summing operators and characterization of nuclearity, Math. Ann. 219 (1976), 53-64.
- 2. Q. Y. Bu, On a sequential representation of the projective tensor product of ℓ_p and X, 1 , Quaestiones Math., to appear.
- 3. A. Defant and K. Floret, *Tensor Norms and Operator Ideals*, North-Holland, Amsterdam, 1993.
- 4. J. Diestel, J. Fourie and J. Swart, The Metric Theory of Tensor Products, to appear.
- 5. J. Diestel, H. Jarchow, and A. Tonge, *Absolutely Summing Operators*, Cambridge Univ. Press, Cambridge, 1995.
- J. Diestel and J. Uhl, *Vector Measures*, Math. Surveys Vol. 15, Amer. Math. Soc., Providence, 1977.
- 7. A. Grothendieck, Résumé de la théorie métrique des produits tensoriels topologiques, *Bol. Soc. Mat. São Paulo* **8** (1956), 1-79.
- 8. M. Gupta and Q. Y. Bu, On Banach-valued GAK-sequence spaces $\ell_p[X]$, J. Anal. **2** (1994), 103-113.
- 9. R. Latala and K. Oleszkiewicz, On the best constant in the Khinchin-Kahane inequality, *Studia Math.* **109** (1994), 101-104.
- 10. S. J. Szared, On the best constants in the Khinchin inequalty, *Studia Math.* **58** (1976), 197-208.

185

11. C. X. Wu and Q. Y. Bu, Köthe dual of Banach sequence spaces $\ell_p[X]$ and Grothendieck space, *Comment. Math. Univ. Carolin.* **34** (1993), 265-273.

Qingying Bu
Department of Mathematics and Computer Science
Kent State University
Kent, Ohio 44242, USA
E-mail: qbu@mcs.kent.edu