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\Y A
A NEW PROOF OF /; ® X Ccg ® X

Qingying Bu

Abstract. In this paper, we first show that for any Banach space X, ¢1[X] C
¢ (X) by Khinchin’s inequality. Then by the relationship between Banach-
valued sequence spaces and tensor products, we show that for any Banach

\ A
space X, /1 @ X C ¢y ® X.

Let X be a Banach space over the complex field C or the real field R and X*
its dual. Bx denotes the closed unit ball of X. For 1 < p < oo, let p’ be its
conjugate, i.e, 1/p+1/p’ = 1. For 1 < p < oo, let £,[X] denote the space of
weakly p-summable sequences on X, i.e.,

0,[X] = {T = (2)n € XN 3 |2 (2) P < oo for all 2* € X*}
n=1

and for every T € £,[X], let

ol = s { (0 o) o € By ).
n=1
For p = oo, let

o[ X] = {f = (@p)n € XN 1 sup 2% ()] < 00 for all 2* € X*}
n>1

and for every T € (o[ X], let
1Z[|{oc] = sup{|z™(zn)| : 2" € Bx+,n € N}.

Then (£,[X], || - |[p))(1 < p < 00) is a Banach space (cf. [1, 8]).
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For 1 < p < oo, let £,(X) denote the space of strongly p-summable sequences
on X, ie.,

0(X) = {x—(xn)neXN Z\x (2n)] < 0o for all (a), € £y[X ]}

n=1

and for every T € £,(X), let

7l = sup {| D" @h (@)l : @h)n € By, x-}-
n=1

Then (£,(X), || - [lp)) is a Banach space (cf. [1]).

Lemma 1. Let X be a Banach space. Then for every T = () € 1| X] and
every x* = (x7)n € £1[X7],

/ _
Z(Z\w @ol)" < V3l - 170

=1

Proof. Let ry,(t) denote the Rademacher functions (see [5, p. 10]). For n € N,
define functions f,, on [0, 1] by f,(t) = > j_; 7k(t)zx. Then for every n € N and
every t € [0, 1],

1)l = sup |a* (Zm i)l < sup 3 la* ()] < [

mEBx* *cB X*k‘ 1

Now for n, m € N, by Khinchin’s inequality (cf. [9, 10]).

i (ke |2 (@) )V < \/—fo\zk 1 25 (@) re(t)|dt
= \/§f0 1 1(2F, (1))t
= \/—HxH[ufo i1 [(@F, (/17 ) |de
< V2|7l - supsep, Sit (2], 2)]
< V2[Zlpy - 2 -

Letting n, m — oo, we have

/ _
Z(Z\w wol?) " < VaIEly - 17
i=1 =

The proof is completed. u
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Theorem 2. Let X be a Banach space. Then {1[X] C Loo(X) with || - || o0y <

VIl - iy

Proof. For i € N, let P; denote the ith coordinate projection on ¢5. Then
|P;]| <1 foreveryi € N. Let T = (x,), € ¢1]X] and z* = (z}),, € (1{X*]. By
Lemma 1,

2oy e ()| = 2072 1Pi(( () )kl < 32520 1Bl 11 (5 (on) el
< X 0 et (@) < V2|Elp - 117 -

Since z* is arbitrary in ¢1[X*], T € o(X) and
[0y = sup {I S i @0) | 7 € By} < V2|
i=1

The proof is completed. u

Let
6[X]e = {z € 6[X] : lm [Z(i > n)||py = 0},

where Z(i > n) = (0,---,0,Zp11, Tpto2, -+ ), and let
co{X) = (loo( X)) = {T € Loo(X) : Im [|Z(i > )| (oq) = O}
Then we have

Corollary 3. Let X be a Banach space. Then (1[X]c C co(X) with || - ||(s) <

vVl - .

Define
il @ X(oreg® X) — XN
k
=1 s® @z, — (Xt 32 )xk)i-
Then ) is a well-defined linear map (cf. [2]).
A
Let /1 ® X denote the completion of /1 ® X with respect to the injective tensor

A
norm || - ||y, and let ¢p ® X denote the completion of ¢y @ X with respect to the
projective tensor norm || - ||o (cf. [6, p. 223-227]). Then by [3, Proposition 8.2]
or [11], we have

A
Proposition 4. Let X be a Banach space. Then ({1 @ X) = 1[X]|q with
the isometry 1.
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y, A
Theorem 5. Let X be a Banach space. Then {1 @ X C ¢y @ X with

V
Proof. Let u € {1 ® X. Then there exist u, = Y ,_, s® @ e ®X,
n=1,2,- -, such that V—lim,, u, = u. By Proposition 4, there exists T € ¢1[X]q
such that T = ¢ (u). By Corollary 3, T € ¢o(X). So by Theorem 9 in [2],

U € cg (§A§> X**. Now for every n € N,
lw =l n = 19 () = 9 (un) o0y < V2[190(u) = ¢ (un) |l = V2llu =t v-

AN
Notice that u, € /1 RX CcyRX forn=1,2,---. Sou=A—lim, u, € cg @ X
and ||ul[x < v/2]||ul|y. The proof is completed. |

Remarks. (i) The result of Theorem 5 is also obtained by A. Grothendieck in
[7] in a different way (also see [4]). (ii) By Proposition 10.8 in [3, p. 124], we
have for each T € (1[X], |Z () < [|Zl/[1)- So V2 in the inequality in Theorem 5
can be replaced by 1, the best coefficient for the inequality.
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