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CONCAVITY, QUASICONCAVITY, AND

QUASILINEAR ELLIPTIC EQUATIONS

John McCuan

Abstract. Quasiconcavity, the condition that the level sets of a positive graph

are convex, is known to hold for solutions of certain semilinear equations. We

survey some techniques that can be used to show quasiconcavity for solutions

of quasilinear elliptic equations with form similar to the equation of constant

mean curvature.

INTRODUCTION

A calculus student should recognize that a condition like

∂2u

∂x2
+
∂2u

∂y2
< 0(1)

does not imply graph(u) is concave (down). Nevertheless, there are appropriate ad-
ditional conditions that one can impose which ensure upwardly “bulging” graphs—as

intuition might suggest—for solutions of elliptic equations that satisfy (1). One side

condition that is almost universally imposed in the literature is a constant Dirichlet

boundary condition on a convex domain. Accordingly, unless explicitly stated to

the contrary, we will assume any function called u is constant on the boundary of

a convex domain called Ω.
The literature, furthermore, focuses attention largely on solutions of semilinear

equations ∆u = f(u) and imposes the additional side condition u > 0 in Ω with

u|∂Ω
≡ 0. In this case, the appropriate notion of bulging, it seems, is power concavity

(i.e., that for some power p, one has up is concave – or convex if p < 0). As a
matter of terminology, such a graph is also said to be p-concave. This direction is
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introduced in the seminal paper of Brascamp and Lieb [2], and further developments

may be found in [6].

Our interest is in solutions of quasilinear equations of the form

∑
aij(Du)DiDju = −k < 0,(2)

where the coefficient matrix a = (aij) > 0 (i.e., is positive definite) and k is
constant. According to the comparison principle [5], one always has in this case,

u ≥ u|∂Ω
, and the (constant) value of u on ∂Ω, which plays no role in the equation,

may be prescribed. The form of the operator itself though, as we hope to indicate

below, is not well suited to power concavity.

The weakest form of power concavity is, nevertheless, conjectured to hold for

solutions of (2). This weakest form, associated to the exponent p = −∞, is called
quasiconcavity and is precisely the condition that the level sets Ωc = {x ∈ Ω :
u(x) ≥ c} are convex.

Conjecture. All solutions of (2) with constant boundary values are quasicon-
cave.

The conjecture holds in the constant coefficient case; this assertion follows easily

from the techniques presented in this paper, though our primary interest is in cases

with nontrivial gradient dependence. Furthermore, if Ω is a ball, it can be shown

that all solutions are concave. See the appendix to this paper.

The best known example of an equation of the form (2) is the equation of
constant mean curvature (CMC):

div

(
Du√

1 + |Du|2

)
= 2H.(3)

Sakaguchi [15] has shown that the conjecture holds for this equation when |H |
is small enough. Related results, may be found in [3] where it is shown that any

regions of negative Gauss curvature must be connected to ∂Ω and in [13] where it is
shown, for example, that small solutions (i.e., for |H | small) are concave when the
domain satisfies additional assumptions. Finally, it should be noted that the present

paper is primarily motivated by consideration of this particular equation.

The special divergence form and variational properties of (3) were used in most

of the papers mentioned above. We follow a different course in this paper and give

an exposition of two approaches that rely only on the comparison principle. The

first approach is made possible by recent work on fully nonlinear equations [1]. In

particular, this direction promises application to the more general class of equations

(2) and offers a framework in which one can, perhaps, organize and compare the

“strength” of various concavity maximum principle arguments which we describe
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by example in the following Section 1. In Section 2 we give some new results for

certain equations of the form (2). In Section 3 we describe some of the difficulties

encountered when the same techniques are applied to equation (3). In the final

section, we describe a second approach, which suggests a more general notion of

bulging (than quasiconcavity). This notion makes sense, in particular, for parametric

surfaces.

1. CONCAVITY MAXIMUM PRINCIPLES

If a graph is power concave for any power p, then it is quasiconcave (because

the level set Ωc = {x : u(x) ≥ c} is equal to some level set of φ(u) = up). More

generally, as noted by many authors, given any monotone function φ = φ(u), the
concavity of v = φ(u) implies the quasiconcavity of u. We are unaware of any
example in the literature, however, where the function φ is something other than a
power.

Having chosen φ, one wishes to show that the graph of v = φ(u) is concave.
A concavity maximum principle argument can be viewed as doing this by showing

the concave envelope v∗ of v is a subsolution of an elliptic equation satisfied by
v and then applying a maximum principle to conclude v∗ ≤ v. Since v∗ ≥ v by

definition (see below), one has that v is concave.
This strategy was first applied successfully by Korevaar [9] (though he did not

describe it in this way), and using it, he was able to give an alternative proof [10] of

the result of Brascamp and Lieb mentioned above. Kennington [7] later generalized

the basic argument of Korevaar and was able to treat the Poisson equation∆u = −k.
In their recent paper [1], Alvarez, Lazry and Lions prove all of Korevaar’s and

Kennington’s results from a more general perspective, and we begin our exposition

from their point of view.

Accordingly, let us assume that v is a smooth solution of

F (v,Dv,D2v) = 0(4)

where F is defined on R × Rn × Mn (the last factor being n × n matrices),
smooth on the closure of v(Ω)×Dv(Ω)×D2v(Ω), and elliptic in the sense that if
(z, p) ∈ v(Ω) ×Dv(Ω) is fixed and A − B is positive semidefinite (i.e., A ≥ B),
then

F (z, p, A) ≥ F (z, p, B).(5)

We furthermore assume that v satisfies the Neumann condition ∂v/∂n = −∞
with respect to the outward normal on ∂Ω. The Neumann condition may also hold
for (4) in the generalized sense that for (some points) x ∈ ∂Ω one has v(x) = −∞.
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The concave envelope v∗ of v is given by

v∗(x) = max{λ1v(x1) + · · ·+ λkv(xk)}

where the maximum is taken over all λ1, . . . , λk ≥ 0 and all x1, . . . , xk ∈ Ω such

that λ1 + · · ·+ λk = 1 and x = λ1x1 + · · ·+ λkxk . At a point x ∈ Ω for which

v∗(x) > v(x), one has that Dv(x1) = · · · = Dv(xk) and D2v(xj) ≤ 0 for each j.
The key estimate for the applications we describe below is

Lemma 1.1. If w is a smooth function satisfying w ≥ v∗ on Ω with equality

at x, then

D2w(x) ≥ lim
δ→0

[∑
λj(D2v(xj) − δI)−1

]−1
.(6)

Notes. The presence of a smooth function w standing in for a merely continuous

function v∗ is typical of the theory of viscosity solutions. One should think of (6)
as an estimate for “D2v∗.”

Note also that the nonpositivity of D2v(xj) implies the matrix D2v(xj)− δI is
invertible. Moreover, the limiting term in (6) is increasing in δ (with respect to the

usual partial order on matrices) so that the limit exists. Here also, the presence of

the limit and the δI is a technicality, and one should think of the estimate without
them.

An estimate like (6) is a natural point of departure for showing that v∗ constitutes

a subsolution in the viscosity sense, which means that for any x ∈ Ω and any smooth
w ≥ v∗ on Ω (with equality at x as before) one has

F (v∗(x), Dw(x),D2w(x)) ≥ 0.(7)

We mention, for the moment, that if (7) can be established, the viscosity theory

provides a nice array of comparison principles with which one can often conclude

v∗ ≤ v. We come back to this point below, but first we illustrate the general use of

(6). Applying the ellipticity, we have

F (v∗(x), Dw(x), D2w(x))

≥ F

(
v∗(x), Dw(x), lim

δ→0

[∑
λj(D2v(xj) − δI)−1

]−1
)

= lim
δ→0

F

(∑
λjv(xj), Dv(xj),

[∑
λj(D2v(xj) − δI)−1

]−1
)
.

As pointed out by Alvarez, Lazry and Lions, the form of the limiting term in the

Hessian slot suggests a desirable structure condition on F , namely, for every fixed

p,

(z, A) 7→ F (z, p, A−1) is concave.(8)
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More precisely, the concavity is required on v(Ω)×Sym− where Sym− denotes the

negative definite, symmetric n × n matrices. Given this condition, one obtains

F (v∗(x), Dw(x), D2w(x))

≥ lim
δ→0

∑
λjF

(
v(xj), Dv(xj),

[
(D2v(xj)− δI)−1

]−1
)

= lim
δ→0

∑
λjF (v(xj), Dv(xj), D2v(xj) − δI)

=
∑

λjF (v(xj), Dv(xj), D2v(xj)).

Since v is a solution, this establishes (7). Unfortunately, we are often not given (8),

as indicated in the following example.

Example 1.1 (Kennington’s theorem). Assume∆u+2k = 0 with k a positive
constant. Let v2 = u. It follows that

{
v∆v + |Dv|2 + k = 0 on Ω,
∂v
∂n = −∞ on ∂Ω.

(The boundary condition follows from the Hopf boundary point lemma.) We set

F (v,Dv,D2v) = v tr[D2v]+ |Dv|2 +k and since v ≥ 0 ellipticity holds. We have
then from Lemma 1.1,

v∗(x)∆w(x) + |Dw(x)|2 + k

≥ lim
δ→0

v∗(x)tr
[∑

λj(D2v(xj) − δI)−1
]−1

+ |Dw(x)|2 + k.
(9)

It is easily verified that (v, A) 7→ v trA−1 is not concave on [0,∞)×Sym−. In fact,
restricting to the span of the identity (or equivalently considering the case n = 1),
we can think of A = α as a scalar, and the relevant 2 × 2 Hessian has determinant

det
(

0 −1/α2

−1/α2 2v/α3

)
< 0.

This means the eigenvalues have different signs and, hence, the Hessian is not

nonpositive.

Consider, however, the mapping (v, A) 7→ v2trA−1. We will show below

(Lemma 1.3) that this mapping is concave. Therefore,

[v∗(x)]2tr
[∑

λj(D2v(xj) − δI)−1
]−1

≥
∑

λj [v(xj)]2(D2v(xj) − δI).
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Multiplying both sides of (9) by v∗(x), substituting the last inequality, and evaluating
the limit, we have

[v∗(x)]2∆w(x) + (|Dw(x)|2 + k)v∗(x)

≥
∑

λj [v(xj)]2∆v(xj) + (|Dw(x)|2 + k)v∗(x).

Since v∗(x) =
∑
λjv(xj) and v is a solution, we get

[v∗(x)]2∆w(x) + (|Dw(x)|2 + k)v∗(x) ≥ 0.

The extra factor v∗(x) may now be harmlessly canceled, and one sees that v∗ is a
subsolution.

We will generalize several aspects of this example to equations of the form

(2). The general consideration of comparison principle in that discussion will imply

v∗ = v.

Looking back at Example 1.1 and forward to more general operators, one would

like to know when the operator

F (v,Dv,D2v) = ψ′tr[a(ψ′Dv)D2v] + ψ′′tr[a(ψ′Dv)DvDvT ] + k(10)

satisfies (8) where ψ = φ−1 is the inverse of a monotone rearrangement φ. (We
obtain (10) by substituting u = ψ(v) in (2).)

In Example 1.1, ψ′(v) = v, and the first term v∆v failed to have the required
concavity. This failure occurs quite generally for 1/2-power rearrangement (which

turns out to be a useful fact to know).

Lemma 1.2. The mapping (v, A) 7→ vΦ(A) is never concave on [0,∞)×Sym−

unless Φ is constant.

Proof. Assume by way of contradiction that the mapping is concave and

∂Φ/∂αij is nonzero at some negative definite A = (αij). Let Eij be the ma-

trix with 1 at entry ij and 0 elsewhere. For α ∈ R small, A + αEij is negative,

so the restriction (v, α) 7→ vΦ(A+ αEij) is concave. The Hessian of this map at
α = 0 is (

0 〈DΦ(A), Eij〉

〈DΦ(A), Eij〉 〈D2Φ(A)Eij, Eij〉

)
.

This matrix has determinant

−
[
∂Φ
∂αij

(A)
]2
< 0,
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which is a contradiction.

One would like to understand the structure of all operators satisfying (8). A

modest result in this direction is suggested by the appendix to [1]:

Lemma 1.3. If µ : [0,∞) → [0,∞) is a function for which
√
µ is convex, then

(v, A) 7→ µ tr(aA−1) is concave on [0,∞)× Sym− where a is a constant positive

definite coefficient matrix.

We obtain Lemma 1.3 as a corollary of a somewhat technical generalization that

we use for certain applications.

Lemma 1.4. Let a = a(v, p) be a positive definite matrix with the following
property:

If N is orthogonal, C is symmetric, and b denotes a diagonal element

of NCaCNT , then for fixed p ∈ Rn,
√
b is a convex function of v.

Then for fixed p, the map (v, A) 7→ tr[a(v, p)A−1] is concave on [0,∞)× Sym−.

Note that taking a = µa0 where a0 is a constant matrix, we get Lemma 1.3 as a

corollary.

Proof of Lemma 1.4. First note that b ≥ 0 so that
√
b makes sense. In fact,

b = bjj = 〈NCaCNT ej , ej〉 = 〈aCNT ej , CN
Tej〉 ≥ 0

where e1, . . . , en denote the standard basis vectors of Rn.

Next, note that the convexity of
√
b implies the joint concavity of (v, α) 7→ b/α

on [0,∞)× (−∞, 0). (This can be used as an alternative hypothesis in the lemma.)
To see that this joint concavity is an equivalent condition, compute the Hessian

S =

(
b′′/α −b′/α2

−b′/α2 2b/α3

)
.

Since (
√
b)′′ = (2bb′′ − b′2)/(4b3/2) ≥ 0 and b ≥ 0, we see that b and b′′ are

nonnegative and, hence, trS is nonpositive. Furthermore, det S ≥ 0, so (v, α) 7→
b/α is concave as stated. Here we wrote b(v) = b(v, p) since the p dependence is
relatively unimportant.

For the main assertion, we need to show

tr[a((1− λ)v + λw)[(1− λ)A+ λB]−1]

≥ (1− λ)tr[a(v)A−1] + λtr[a(w)B−1].
(11)
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Since A−1 is symmetric and negative definite, there is a symmetric matrix C such

that A−1 = −C2. If we replace A by −C−2 and write B̃ = CBC, we see that
(11) follows if

tr[a((1− λ)v + λw)C[−(1− λ)I + λB̃]−1C]

≥ (1 − λ)tr[−a(v)C2] + λtr[a(w)CB̃−1C]

for every negative symmetric B̃. On the other hand, B̃ can be diagonalized by an

orthogonal matrix. Writing B̃ = NTDN , we need to show

tr[a((1− λ)v + λw)CNT [−(1 − λ)I + λD]−1NC]

≥ (1− λ)tr[−a(v)C2] + λtr[a(w)CNTD−1NC].

That is,
tr[b((1− λ)v + λw)[−(1− λ)I + λD]−1]

≥ (1 − λ)tr[−b(v)I ] + λtr[b(w)D−1]

where b = NCaCNT . Since the inverted matrices are now diagonal, we want

∑ bjj((1 − λ)v + λw)
−(1 − λ) + λDjj

≥
∑

(1− λ)
bjj(v)
−1

+ λ
bjj(w)
Djj

.

Since by assumption bjj/α is concave, we have that the inequality just stated holds
termwise (without the summations), so the lemma follows.

At least Lemma 1.4 provides a criterion we can use in trying to analyze (10)

or some “equivalent” operator. More precisely we formalize the procedure used in

Example 1.1:

Definition 1. Given a subsolution v of F (v,Dv,D2v) = 0 where F is given in
(10) and φ is a rearrangement of v(Ω), an elliptic operator F̃ = F̃ (v,Dv,D2v) is
called φ-adequate (or ψ-adequate if we wish to stress specification of the inverse)
if

( i ) A continuous function w is a subsolution of F̃ (w,Dw,D2w) = 0 if and only
if w is a subsolution of F (w,Dw,D2w) = 0.

(ii) F̃ satisfies the concavity condition (8).

In Example 1.1 the ψ-adequate operator was F̃ = v2∆v + (|Dv|2 + k)v.
We will now allow the strong comparison properties of (2) to guide our dis-

cussion in two respects. The first involves a simplification achieved by restricting

attention to (smooth) increasing rearrangements φ : [0,∞) → [0,∞) for which
φ(0) = 0 and φ′(0) = ∞ (or equivalently, ψ(0) = 0 = ψ′(0)). The Hopf boundary
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point lemma then implies ∂v/∂n = −∞ on ∂Ω. The second fact that simplifies
our discussion is the following:

Lemma 1.5. If v∗ is a (viscosity) subsolution of F (v,Dv,D2v) = 0 with F
given in (10), then u(∗) = ψ(v∗) is a subsolution of tr[a(Du)D2u] + k = 0, which
clearly admits a comparison principle. Consequently, u is quasiconcave.

Proof. If w is a smooth function with w ≥ u(∗) and w(x) = u(∗)(x) at some
x ∈ Ω, then w = ψ(w0) for some smooth w0 ≥ v∗ and w0(x) = v∗(x). It follows
that

F (w0(x), Dw0(x), D2w0(x)) ≥ 0.

The left side of this inequality is exactly tr[a(Dw(x))D2w(x)]+k. Therefore, u(∗)

is a subsolution as claimed. If follows from Theorem 3.3 of [4] that u(∗) ≤ u, and
consequently, v∗ ≡ v.

The discussion of this section, in summary, reduces verification of the main

Conjecture to finding an appropriate rearrangement ψ : [0,∞) → [0,∞) such that
ψ(0) = 0 = ψ′(0) and

F (v, p, A) = ψ′tr[a(ψ′p)A] + ψ′′tr[a(ψ′p)ppT ] + k

admits a ψ-adequate operator.

We note furthermore that any operator

F̃ = Q(tr[ψ′a(ψ′p)A] + R) + Q(tr[ψ′′a(ψ′p)ppT ] + k −R),

where R is any function of v and Q is any positive increasing function (which

may also have an auxiliary v dependence, satisfies condition (i) in the definition of
ψ-adequate. Thus, within this (very general) family of operators, concavity is the

only condition to be verified.

2. TWO EXAMPLES

In this section we attempt to verify the hypotheses outlined in the last section

(i.e., we try to find a ψ and a ψ-adequate operator F̃ ) for the equations

(1 + |Du|2)3/2div

(
Du√

1 + |Du|2

)
= −2k(12)

and

∆u
(1 + |Du|2)3/2

= −k.(13)



166 John McCuan

It will be noted immediately that the mean curvature operator appears in (12),

though the factor (1 + |Du|2)3/2 eliminates the scaling that makes mean curvature

a curvature. Equation (13) retains the appropriate scaling, but the numerator takes

the degenerate form of the standard Laplacian, so that (13) only gives curvature in

dimension one.

We begin by establishing

Theorem 2.1. Any solution u of (12) with zero boundary values on a convex
domain is quasiconcave.

Proof. Setting u = ψ(v), the associated equation for v is given by

ψ′
∑

i,j

[
δij(1 + ψ′2)|Dv|2)− ψ′2DivDjv

]
DiDjv + ψ′′|Dv|2 + 2k = 0,

which we may write as

ψ′ tr[aD2v] + ψ′′|Dv|2 + 2k = 0(14)

where a = I + ψ′2(|Dv|2I − DvDvT). In this case, we take ψ(v) = v2 as in

Example 1.1, and it is easy to see that the operator

F̃ = v2 tr[aD2v] + (|Dv|2 + k)v(15)

is elliptic and satisfies condition (i) of Definition 1. To see that condition (ii) holds

as well, we look at the diagonal elements of NCaCN−1 and apply Lemma 1.4:

NCaCN−1 = NC2NT + 4v2(|p|2NC2NT −NCppTCNT)

= (CNT)TCNT + 4v2[|p|2(CNT)TCNT − (pTCNT)TpTCNT].

The i-th diagonal element is therefore

bii = | i-th column of CNT|2 + 4v2[|p|2| i-th column of CNT|2

−( i-th entry of pTCNT)2]

= |CNi|2 + 4v2(|p|2|CNi|2 − 〈p, CNi〉2)

whereNi is the i-th row of N . Therefore, by Schwarz’s inequality bii is of the form

P1+P2v
2 where P1 and P2 are nonnegative numbers depending only on p = Dv. It

is easily checked that the square root of such an expression is convex in v (and so is
the same expression times v2). By the discussion in the last section, this establishes

quasiconcavity for solutions u of (12).
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The initial operator associated to equation (13) is

F (v,Dv,D2v) =
ψ′∆v + ψ′′|Dv|2

(1 + ψ′2|Dv|2)3/2
+ k.

After rearrangement of the equation, we obtain the auxiliary operator

F̃ = − 1
∆v

− ψ′

k(1 + ψ′2|Dv|2)3/2 + ψ′′|Dv|2
.(16)

A similar rearrangement may be found in [1] where it is shown that Φ(A) =
−1/trA is elliptic and satisfies the concavity condition (8). It remains for us to

choose ψ so that the remainder of the expression is concave.

Ideally, our choice of ψ would provide that condition (ii) of Definition 1 holds
for all positive v and P = |Dv|2. Since we do not know how to make such a choice,
we use elliptic theory to restrict these values in a natural way. To be precise, the

methods of [13] can be extended to obtain

Lemma 2.1. There are positive constants K > 0 and Λ > 0 depending on the
domain Ω such that every solution of the zero Dirichlet boundary value problem

for (13) with k ≤ K satisfies

|u| = |ψ(v)| ≤ Λk and Pψ′2 ≤ Λ2k2.(17)

Thus, we redefine our aim to show convexity of the function

f(v) =
g

Pg′ + k(1 + Pg2)3/2
,

where g = ψ′ and P = |Dv|2, for small enough k, where we understand from the
bounds of the lemma that this will also force v and Pg2 to be small. Given a choice

of ψ and the condition that g(0) = ψ′(0) = 0, we also obtain from (17) another
bound for g(v) independent of P but depending on ψ.

Having made these observations, we calculate f ′′. The expression for f ′′, though

not suitable for the printed page, turns out to yield the following information con-

cerning an adequate choice of g:

1. One must have g′′(v) positive when v is small. (The sign of f ′′ is determined
by g′′ when P = 0, which evidently occurs for arbitrarily small values of v.)

2. By considering small values of v under the assumption that Pg2 is only

bounded, one obtains the necessary conditions g′(0) = 0 and g′′(0) = +∞.
(Boundedness is a reasonable apriori assumption since the exact relationship

between the decay of v and that of Pg2 depends on ψ which we are trying
to choose.)
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3. It will be convenient if g′′′ is negative. (In the expression for f ′′, the terms

involving g′′′ all appear with a negative sign.)

Evidently, any positive multiple of g(v) = v3/2 satisfies these requirements.

Indeed, having made this choice, Pg2 = Pv3, and one sees that the sign of f ′′ is
determined by

3kPv3 − 156kP 2v6 − 240kP 3v9 + 6k2
√

1 + Pv3v5/2

−162k2Pv3
√

1 + Pv3v5/2 − 72k2P 2v6
√

1 + Pv3v5/2

+96k2P 3v9
√

1 + Pv3v5/2 ≥ 2kPv3 ≥ 0

as long as Pv3 < 1/(4 · 156), k < 1/(8 · 162), and v < 1. The 1/4 in the required
bound on Pv3 came from the fact that there were four negative terms to be absorbed;

the extra factor of 1/2 in the k bound is used to cover the square root factor in the
third negative term; two positive terms are thrown away.

We arrive then at the following result.

Theorem 2.2. Small solutions of (13) satisfying a zero Dirichlet boundary

condition on a convex domain are 2/5-concave.

The small data result just stated differs significantly from those in [15] or [13].

The most obvious difference is that arguments like those in the papers mentioned

require estimates like those in Lemma 2.1 for u, |Du|, and the second derivatives
|D2u|. Furthermore, the former results, being tied to the solution of a linear PDE,
only give a conclusion for u, |Du|, and |D2u| small enough. The proof of Theo-
rem 2.2, however, being based essentially on an algebraic equation, gives explicitly

(in terms of the domain) how small u and |Du| must be for the conclusion to hold.
As a final note, we mention that Alvarez, Lazry, and Lions also show ellipticity

and concavity for the more general operator Φ(A) = −1/tr[aA] where a is any
positive definite constant coefficient matrix. We could, thus, have replaced the

Laplacian in equation (13) with a general constant coefficient operator. Another

consequence is that repeating the reasoning above for the special case of equation

(2) in which the coefficients are constant, one sees that (16) becomes

F̃ = − 1
tr[aD2v]

− ψ′

k + ψ′′|Dv|2
.

One only needs to choose ψ so that the expression above is concave in v. Evidently
ψ(v) = v2 qualifies. We state for completeness

Theorem 2.3. Any solution of a constant coefficient equation of the form (2)

satisfying a zero Dirichlet condition on a convex domain is 1/2-concave.
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3. THE MEAN CURVATURE EQUATION

We now make some brief observations on why the two concavity maximum

principle arguments of the previous section do not apply directly to the equation of

constant mean curvature. Roughly speaking, we obtained Theorem 2.1 by supplying

“enough convexity” to make the mapping

(v, A) 7→ ψ′(v)tr[a(v)A−1]

concave; see (14). This was accomplished by choosing ψ(v) = v2 and multiplying

the equation by v. The resulting v dependence separated naturally into two terms.

One was linear and we showed that the other was jointly concave much like (v, α) 7→
v2/α.

A similar situation occurs if we replace a(v) by a/(1 + ψ′2|Dv|2)3/2. Trying

again the choice ψ(v) = v2 and multiplying by v, one term is is again positive

linear. The other term, however, looks like

v2

(1 + 4v2|Dv|2)3/2
tr[aA−1].

It is clear that the square root of the leading factor is not convex. Since the coefficient

matrix is just (δij) when |Du| = 0, this suggests that one does not have “enough
convexity” to make the mapping concave. This point can be made rigorous. On the

other hand, multiplying by an additional factor, say a power of v, to overcome this
problem will destroy the concavity of the linear term:

(v, A) 7→ v2+ε

(1 + 4v2|Dv|2)3/2
tr[aA−1] − 2Hv1+ε.

Multiplying the equation by (1 + ψ′2|Dv|2)3/2 clearly has a similar effect. We

have not given a formal proof that no choice of ψ leads to a ψ-adequate operator,

but simply supplying factors as in the proof of Theorem 2.1 leads to the unhappy

balance described above. It should be emphasized that this difficulty results exactly

from the presence of the scaling (1+ψ′2|Dv|2)−3/2. Consequently, exactly the same

difficulty is encountered in connection with equation (13). In view of Theorem 2.2,

one is inclined to view the reciprocal Laplacian argument as a “stronger” concavity

maximum principle. Heuristically, it should provide quasiconcavity for constant

mean curvature graphs with small mean curvature, but another difficulty arises in

practice.

The argument used to obtain Theorem 2.2 relies critically upon the ability to

separate the Hessian dependence from the v dependence. This observation is made
precise by Lemma 1.2. In fact, if one considers any map

(v, A) 7→ 1
tr[aA−1]
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along the subspace {A = αI}, then one is led to

(v, A) 7→ α

tra
,

which is concave only when a is independent of v. Since such separation is evidently

impossible for the mean curvature operator, it is not immediately clear how to

proceed.

4. ANOTHER APPROACH

Continuing our discussion of the CMC equation, it is well known that positive

solutions exist as graphs for H in some interval [−Hmax, 0], and that there are
parametric CMC surfaces S = SH , in the same half space as the graphs and with

∂S = ∂Ω, that naturally extend the family of graph solutions. See [14, 8, 11,
16, 12]. We now describe an extension of the quasiconcavity conjecture to these

solutions.

We first wish to define a general quasiconcave envelope of a surface S. Roughly
speaking, this is a surface Σ that is (i) ruled in a particular way and (ii) is tangent

to S along its boundary. We now make this notion precise. Let S be a smooth

surface in R3 and P = {Πα} a foliation of R3 by parallel planes. Given a point

p ∈ S, one can express S locally near p as the graph of a function u on TpS. We
will always call such a function u, though the point p in question will be dictated

by context.

Definition 2. An embedded, connected C0 surface Σ is called a quasiconcave
envelope on S with respect to P if:

( i ) For each α, one finds Σ∩Πα is a (possibly empty) collection of disjoint line

segments with endpoints in S.
( ii ) ∂Σ ⊂ S and for each p ∈ ∂Σ, one has that Σ is the graph of a function v

locally near p on some subset Dom(v) in TpS. Furthermore, one can find a
smooth function w such that w ≥ u, w(p) = u(p), and, on Dom(v), there
holds u ≤ v ≤ w.

(iii) Σ and a portion of S bound an open, connected (possibly empty) volume in
R3.

A quasiconcave envelope is called transverse if Πα is transverse to S at p
whenever p ∈ ∂Σ ∩ Πα.

An envelope is called simple if ∂Σ ⊂ int(S) and the volume in condition (iii)
is simply connected.

Finally, an envelope is called non-empty if the enclosed volume is non-empty.

Examples. A cylinder is an empty quasiconcave envelope on itself.
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If one takes a portion of an unduloid that contains two bulges of maximum radius

r, then there is a section of a cylinder of radius r (with boundary the circles of radius
r on two consecutive bulges) that is a quasiconcave envelope on the unduloid with

respect to any foliation of parallel planes one of which contains the common axis of

the unduloid and the cylinder. In this case, the envelope is non-empty, but neither

transverse nor simple.

Given a CMC surface S with boundary a convex planar curve, one can take for
the foliation P the planes parallel to the plane Π of the boundary. If S lies in a
half space determined by Π, then replacing each level set of S (with respect to P)
by its convex hull induces a quasiconcave envelope on S.

In the case of graphs, the result of Sakaguchi shows that the envelope is trans-

verse. We conjecture further that the envelope is simple. The full conjecture, of

course, is that the envelope must be empty. This can clearly be extended to the

CMC surfaces in a half space referenced above.

We can connect the simplicity conjecture to the full conjecture explicitly as

follows:

Conjecture. There is no non-empty, simple, transverse quasiconcave envelope

on a CMC surface.

We conclude with the proof of the conjecture in a very special case:

Theorem 4.1. There is no non-empty quasiconcave envelope Σ above a CMC
graph with respect to vertical planes if H ≥ 0 and ∂Σ is smooth and transverse to
the ruling segments of Σ.

Proof. Consider any point p ∈ int(Σ). Denote the endpoints of the segment
containing p by q0 and q1. After a rigid motion and a homothety, we may assume

that P is a foliation by planes {x = const.}, q0 = (0, 0, 0), and q1 = (0, 1, u(0, 1)).
For simplicity, we assume that ∂Σ is parameterized locally near qj by (x, j, fj(x))
where fj is smooth. We can then express a strip of Σ containing p as the graph of

v(x, y) = (1− y)f0(x) + yf1(x).

It follows that the mean curvature Hv of Σ is given locally by

2Hv =
(1 + (f1 − f0)2)((1− y)f ′′0 + yf ′′1 )− 2((1− y)f ′0 + yf ′1)(f1 − f0)(f ′1 − f ′0)

[1 + ((1− y)f ′0 + yf ′1)2 + (f1 − f0)2]3/2
.

Evaluating at x = 0, we obtain

2Hv(y) =
(1 − y)[1 + f ′0

2 + (f1 − f0)2]3/22Hv(0) + y[1 + f ′1
2 + (f1 − f0)2]3/22Hv(1)

[1 + ((1− y)f ′0 + yf ′1)2 + (f1 − f0)2]3/2
.
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It follows from the Hopf boundary point lemma, the smoothness of ∂Σ, and
condition (ii) of Definition 2 that Hv(0), Hv(1) ≥ H . Thus,

2Hv(y)≥ 2H

{
(1− y)[1 + f ′0

2 + (f1 − f0)2]3/2 + y[1 + f ′1
2 + (f1 − f0)2]3/2

[1 + ((1− y)f ′0 + yf ′1)2 + (f1 − f0)2]3/2

}

≥ 2H,

since the map y 7→ [1+((1−y)f ′0 +yf ′1)
2 +(f1 −f0)2]3/2 is convex. In particular,

the mean curvature of Σ at p is greater than or equal to H .

A slightly more complicated argument using the transversality assumption on

∂Σ yields the general inequality Hv ≥ H for the mean curvature of Σ.
To finish the proof, we assume the assertion of the theorem is false. Then, since

the enclosed volume above S and below Σ is non-empty, we can lower Σ until it is
below S but still touching S at some interior point p. This contradicts the maximum
principle.

The assumptions on the smoothness and transversality of ∂Σ are only technical-
ities that greatly simplify the proof of Theorem 4.1. A proof of this result under the

assumption that H < 0 would be fundamentally different from the one presented
here, and of fundamental interest.

APPENDIX: THE MAIN CONJECTURE ON A BALL

It is well known that a CMC graph with zero boundary values on a ball Ba(0) =
{x : |x| < a} is a spherical cap and is thus concave. We extend this to the class of
equations (2).

Theorem. If
∑
aij(Du)DiDju = −k < 0 on Ω = Ba(0) and u|∂Ω = 0, then

u is rotationally symmetric and concave.

Proof. As noted in the introduction, it follows from the maximum principle that

u > 0 on Ω. One can therefore apply an Alexandrov reflection argument as, for
example, in [17] to see that u is rotationally symmetric. Thus u(x) = ϕ(|x|) for
some smooth ϕ defined by ϕ(r) = u(re1) on [−a, a] where e1 = (1, 0 . . . , 0) as
before.

One finds that ϕ satisfies the ordinary differential equation

p1ϕ
′′ + p2

ϕ′

r
= −k, −a < r < a(18)

where p1 = p1(ϕ′) = a11(ϕ′e1) > 0 and p2 = p2(ϕ′) =
∑

i 6=1 aii(ϕ′e1) > 0. We
then have

p1(0)ϕ′′(0) + p2(0)L = −k
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where L = limr→0[ϕ′(r)/r]. On the other hand, L’Hopital’s rule provides that

L = lim
r→0

ϕ′′(r) = ϕ′′(0).

Thus,

ϕ′′(0) = L = − k

p1(0) + p2(0)
< 0.

We assume by contradiction the existence of a smallest positive r0 for which
ϕ′′(r0) = 0. We know then that ϕ′(r) < 0 for 0 < r ≤ r0 and ϕ

′′(r) < 0 for
0 ≤ r < r0. Differentiating (18) and evaluating at r = r0, we obtain

p1ϕ
′′′(r0) = p2(r0)

ϕ′(r0)
r2

< 0,

which contradicts the sign of ϕ′′.
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