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COERCIVE DIFFERENTIAL OPERATORS AND

FRACTIONALLY INTEGRATED COSINE FUNCTIONS

Quan Zheng

Abstract. We show that a class of abstract differential operators generates fraction-

ally integrated cosine functions, and give an application to partial differential

operators on many function spaces.

1. INTRODUCTION

The main motivation of studying semigroups of operators is due to their appli-

cations to partial differential operators (PDOs). However, many PDOs such as the

Schrödinger operator i∆ on Lp(Rn) (p 6= 2) [5] cannot be treated by strongly con-
tinuous semigroups (C0-semigroups). Recently, a generalization of C0-semigroups,

i.e., integrated semigroups and their application to PDOs have received much at-

tention (cf. [4]). Similarly, strongly continuous cosine functions cannot deal with

many PDOs, e.g., the Laplacian ∆ on Lp(Rn) (n > 1, p 6= 2) [6]. It thus seems to
be important to study the application of integrated cosine functions to PDOs.

In this paper, we will apply fractionally integrated cosine functions to nonelliptic

PDOs with real constant coefficients, and improve the corresponding results in [1,

3, 8]. To that purpose and to avoid troubles caused by different function spaces, an

abstract form of PDOs with constant coefficients will be introduced.

Let X be a Banach space with norm ‖ · ‖, and let B(X) be the space of all
bounded linear operators from X into itself. For a linear operator B on X , by D(B)
and ρ(B) we denote its domain and resolvent set, respectively. Y ↪→ X will mean

that Y is continuously embedded in X , while B|Y will denote the restriction of B
to Y . Let S(Rn) be the space of rapidly decreasing functions, and let C∞

c (Rn) be
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the space of C∞-functions with compact support. Moreover, let N0 = N∪{0}, and
denote by [α] the integral part of α ≥ 0.

The definition of (exponentially bounded) integrated cosine functions is as fol-

lows:

Definition. Let C : [0,∞) → B(X) be an exponentially bounded and strongly
continuous family, and let B be a linear operator on X. If there exists α ≥ 0 such
that for large λ ∈ R, λ2 ∈ ρ(B) and λ1−α(λ2 − B)−1 is the Laplace transform

of (C(t))t≥0, then we say that B generates an α-times integrated cosine function
(C(t))t≥0. If in addition C(·) ∈ C([0,∞), B(X)), then (C(t))t≥0 is said to be

norm-continuous.

We now introduce a functional calculus for commuting generators, iAj (1 ≤ j ≤
n), of bounded C0-groups on X . Write A

µ = Aµ1
1 · · ·Aµn

n (µ ∈ Nn
0). Similarly,

Dµ = Dµ1
1 · · ·Dµn

n , whereDj = −i∂/∂xj (1 ≤ j ≤ n). For a polynomial P (ξ) :=∑
|µ|≤m aµξ

µ (ξ ∈ Rn) with real coefficients, we define P (A) =
∑

|µ|≤m aµA
µ

with maximal domain. Then P (A) is closable. Let F be the Fourier transform. If

u ∈ FL1(Rn), then there exists a unique L1-function, written as F−1u (i.e., the
inverse Fourier transform of u in the distributional sense), such that u = F(F−1u).
We define u(A) ∈ B(X) by

u(A)x =
∫

Rn

(F−1u)(ξ)e−i(ξ,A)xdξ for x ∈ X,(1)

where (ξ, A) =
∑n

j=1 ξjAj . Note that P (A) cannot be defined by (1).
The following lemma will play a key role in our proof (cf. [9]).

Lemma. (a) FL1(Rn) is a Banach algebra under pointwise multiplication
and addition with norm ‖u‖FL1 := ‖F−1u‖L1 , and u 7→ u(A) is an algebra
homomorphism from FL1(Rn) into B(X) with ‖u(A)‖ ≤ M‖u‖FL1 for all u ∈
FL1(Rn) and some M > 0.

(b) E := {φ(A)x; φ ∈ S(Rn), x ∈ X} ⊂ ∩µ∈Nn
0
D(Aµ), E = X , P (A)|E =

P (A), and φ(A)P (A) ⊆ P (A)φ(A) = (Pφ)(A) for φ ∈ S(Rn).
(c) If n/2 < j ∈ N, then Hj(Rn) ↪→ FL1(Rn) and there exists M > 0 such

that

‖u‖FL1 ≤M‖u‖1−n/2j
L2

∑

|µ|=j

‖Dµu‖n/2j
L2 for u ∈ Hj(Rn).

(d) Let ut ∈ C∞(Rn) (t ≥ 0). If there exist M, L, a > 0, b < (2a/n) − 1
such that |Dkut(ξ)| ≤ M(1 + t|k|)|ξ|b|k|−a (|ξ| ≥ L, t ≥ 0, |k| ≤ [n/2] + 1),
then there exist ψ ∈ C∞

c (Rn), M ′ > 0 such that ut(1 − ψ) ∈ FL1(Rn) and
‖ut(1− ψ)‖FL1 ≤M ′(1 + tn/2) (t ≥ 0).
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For r ∈ (0, m], the polynomial P (ξ) is called r-coercive if |P (ξ)|−1 = O(|ξ|−r)
as |ξ| → ∞. In the sequel, for convenience, we denote by M a general constant

independent of t and ξ. The following is the main result of this paper.

Theorem. Let P (ξ) be r-coercive for some r ∈ (0, m], ω := sup{P (ξ); ξ ∈
Rn} < ∞, and α > n(2m − r)/2r. If ρ(P (A)) 6= ∅, then P (A) generates a
norm-continuous, α-times integrated cosine function (C(t))t≥0 such that ‖C(t)‖ ≤
Mgn,α(t) (t ≥ 0), where

gn,α(t) =





(1 + tn/2)e
√

ωt for ω > 0,
1 + tα+n for ω = 0,
1 + tα+n/2 for ω < 0.

Proof. Let t ≥ 0 and |k| ≤ [n/2] + 1 (k ∈ Nn
0 ). Then an induction on |k| leads

to

DkU(t
√
P (ξ)) =

|k|∑

j=0

tjU (j)(t
√
P (ξ))Qj(ξ)(P (ξ))−|k|+j/2 for P (ξ) 6= 0,(2)

where Qj(ξ) is a polynomial of degree≤ (m−1)|k|, and U(·) = cosh(·) or sinh(·).
Let

vt = Γ(β)−1

∫ t

0
(t− s)β−1U(s

√
P )ds for β ∈ (0, 1).

By our assumptions on P (ξ), there exists a constant L ≥ 1 such that P (ξ) ≤
−M |ξ|r (|ξ| ≥ L). It thus follows from (2) that

|Dkvt(ξ)| ≤M

|k|∑

j=0

|ξ|(m−1−r/2)|k|
∣∣∣
∫ t

0
(t−s)β−1sjU (j)(s

√
P (ξ))ds

∣∣∣ for |ξ| ≥ L.

But, from an estimate of Kummer’s function (cf. [3, p.278]),

∣∣∣
∫ 1

0
(1− u)β−1ujeλudu

∣∣∣ ≤M(|λ|−βeRe λ + |λ|−j−β) for λ ∈ C \ {0}

and from Re
√
P (ξ) ∈ iR it follows that

|Dkvt(ξ)|≤M

|k|∑

j=0

tβ+j(|t
√
P (ξ)|−β + |t

√
P (ξ)|−j−β)|ξ|(m−1−r/2)|k|

≤M(1 + t|k|)|ξ|(m−1−r/2)|k|−rβ/2 for |ξ| ≥ L.

(3)
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Let ω′ > ω and β = α− [α]. Define

ut =
{

Γ(β)−1
∫ t
0 (t− s)β−1W (s

√
P )ds(ω′ − P )−〈α〉 for β > 0,

W (t
√
P )(ω′ − P )−〈α〉 for β = 0,

where 〈α〉 = [[α]/2] and

W (t
√
P ) =

{
cosh(t

√
P ) for even [α],∑∞

j=0
t2j+1

(2j+1)!P
j for odd [α].

A direct computation yields that

|Dk(ω′ − P (ξ))−〈α〉| ≤M |ξ|(m−1−r)|k|−r〈α〉 for |ξ| ≥ L.(4)

If [α] is even, then by (3), (4) and Leibniz’s formula we obtain

|Dkut(ξ)| ≤M(1 + t|k|)|ξ|(m−1−r/2)|k|−rα/2 for t ≥ 0 and |ξ| ≥ L.(5)

If [α] is odd, we note the facts that

W (t
√
P (ξ)) = sinh(t

√
P (ξ))/

√
P (ξ) for |ξ| ≥ L

and

|Dk(P (ξ))−1/2| ≤M |ξ|(m−1−r)|k|−r/2 for |ξ| ≥ L.

Combining these with (3)-(4), we find that (5) is also true for odd [α]. Hence, by
α > n(2m−r)/2r and Lemma (d), there exists ψ ∈ C∞

c (Rn) such that ut(1−ψ) ∈
FL1(Rn) and

‖ut(1 − ψ)‖FL1 ≤M(1 + tn/2).(6)

Also, one can show as in the proof of (16) in [8] that

|Dk(ut(ξ)ψ(ξ))| ≤
{
Mtβ+1(1 + t2|k|) for ω = 0 and odd [α],
Mg2|k|,β(t) otherwise.

Using Lemma (c) and then combining it with (6), we obtain that ut ∈ FL1 and

‖ut‖FL1 ≤
{
Mtβ+1(1 + tn) for ω = 0 and odd [α],
Mgn,β(t) otherwise.

(7)

We now construct (C(t))t≥0. Let C = (r− P (A))−〈α〉 for some r ∈ ρ(P (A)).
Then C1 := (ω′ − P (A))〈α〉C ∈ B(X). Define

C(t)x =
〈α〉∑

j=0

(
〈α〉
j

)
r〈α〉−j(−1)j

{∫ t

0
· · ·

∫ t

0
ut(A)C1x(dt)2〈α〉−2j

−
j−1∑

k=0

tα+2k−2j

Γ(α + 2k − 2j + 1)
P (A)

k
Cx

}
for t ≥ 0 and x ∈ X.

(8)
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Obviously, C : [0,∞) → B(X) is strongly continuous. By (7) and a simple
computation, one finds that ‖C(t)‖ ≤Mgn,α(t) (t ≥ 0). Meanwhile, from (8) and
Lemma (a)-(b) we deduce that

C(t)φ(A) =
(∫ t

0

(t− s)α−1

Γ(α)
cosh(s

√
P )dsφ

)
(A) for φ ∈ S and t ≥ 0.(9)

In view of E = X , one has that

C(t)x =
∫ t

0

(t − s)α−γ−1

Γ(α− γ)
Cγ(s)xds for t ≥ 0 and x ∈ X,

where (Cγ(t))t≥0 is the strongly continuous family (C(t))t≥0 in which α is replaced
by γ ∈ (n(2m − r)/2r, α). The norm-continuity of (C(t))t≥0 now follows from

this. Finally, let Lλ (λ > {max(0, ω)}1/2) be the Laplace transform of (C(t))t≥0.

Then from Lemma (a)-(b), Fubini’s theorem and (9), one can deduce that

(λ2 − P (A))Lλφ(A)= Lλ(λ2 − P (A))φ(A)

=
(∫ ∞

0
e−λtwtdt(λ2 − P )φ

)
(A)

= λ1−αφ(A) for φ ∈ S,

where

wt =
∫ t

0

(t− s)α−1

Γ(α)
cosh(s

√
P )ds for t ≥ 0.

In view of P (A)|E = P (A), we obtain that λ2 ∈ ρ(P (A)) and Lλ = λ1−α(λ2 −
P (A))−1. The desired conclusion now follows from Definition.

By [2, Lemma 3.1], we easily obtain that a sufficient condition for ρ(P (A)) 6= ∅
is r > nm/(n + 2). In particular, ρ(P (A)) 6= ∅ if P (ξ) is elliptic (i.e., r = m).
Moreover, we remark that ω < ∞ and r = m is equivalent to the strong ellipticity

of P (ξ).

Corollary. Let P (ξ) be bounded above and r-coercive for some r ∈ (nm/(n+
2), m]. Then P (A) generates a norm-continuous, α-times integrated cosine function
for every α > n(2m− r)/2r. In particular, if P (ξ) is strongly elliptic, then P (A)
generates a norm-continuous,α-times integrated cosine function for every α > n/2.

In the sequel, X will be Lp(Rn) (1 ≤ p < ∞) or one of the following
spaces of continuous functions: {f ∈ C(Rn); lim|x|→∞ f(x) = 0}, {f ∈ C(Rn);
lim|x|→∞ f(x) exists}, {f ∈ C(Rn); f is bounded and uniformly continuous},
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{f ∈ C(Rn); f is 1-periodic}, {f ∈ C(Rn); f is almost periodic} with sup-
norms. Assume that all partial differential operators have the maximal domains in

the distributional sense, and so they are closed and densely defined on X . Since

iDj is the generator of the translation group with respect to the jth variate for every
1 ≤ j ≤ n, the above theorem and its corollary can be applied to P (D) on X ,
immediately. In particular, when X = Lp(Rn) (1 < p < ∞), by the method of
Fourier multipliers we can show sharper results (cf. [3, 9]). Indeed, the following

statements are true:

(i) Suppose P (ξ) satisfies the conditions of Theorem with α = (2m− r)nX/r,

and

nX

{
= n|12 − 1

p | if X = Lp (1 < p <∞),
> n/2 otherwise.

If ρ(P (D)) 6= ∅, then P (D) generates a norm-continuous, (2m − r)nX/r-times
integrated cosine function on X .

(ii) If P (D) is strongly elliptic, then P (D) generates a norm-continuous, nX -

times integrated cosine function on X .

We remark that conclusion (ii) improves the corresponding results in [1,3,8]. In

fact, only the case that P (D) generates an integrally integrated cosine function is
considered in [1, 8], while Theorem 6.5 in [3] is related to a special form of P (ξ),
i.e., P (ξ) = −(q(ξ))2 for some real elliptic polynomial q(ξ). By the method of
Fourier multipliers we can show that conclusions (i) and (ii) are also are true on

L∞(Rn) and {f ∈ C(Rn); f bounded} (cf. [3]). Moreover, if P (ξ) is bounded
above, then P (D) generates a strongly continuous cosine function on L2(Rn).

Example. (a) It was proved by Littman [6] that ∆ does not generate a cosine

function on Lp(Rn) (n > 1, p 6= 2). But ∆ generates by conclusion (ii) an nX -

times integrated cosine function on X . We refer to Hieber [3] for an improvement
of this result.

(b) Consider the semi-elliptic differential operator P (D) (cf. [7, pp.70-72]).
Let P (ξ) =

∑
|µ/e|≤1 aµξ

µ (ξ ∈ Rn), where |µ/e| =
∑n

k=1 µk/ek (µ ∈ Nn
0 ,

e ∈ Nn). We say P (ξ), and so P (D), is semi-elliptic if
∑

|µ/e|=1 aµξ
µ 6= 0

(ξ 6= 0). In this case, P (ξ) is an r-coercive polynomial of degree m, where
r = min{ek; 1 ≤ k ≤ n} and m = max{ek; 1 ≤ k ≤ n}. If P (ξ) is real and
bounded above, and ρ(P (D)) 6= ∅, then P (D) generates a (2m − r)nX/r-times
integrated cosine function on X .
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