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ON C¤-ALGEBRAS CUT DOWN BY CLOSED PROJECTIONS:
CHARACTERIZING ELEMENTS VIA THE EXTREME BOUNDARY

Lawrence G. Brown and Ngai-Ching Wong

Abstract. Let A be a C¤ -algebra. Let z be the maximal atomic projection and
p a closed projection in A¤ ¤ . It is known that x in A¤¤ has a continuous atomic
part, i.e., zx = za for some a in A, whenever x is uniformly continuous on the
set of pure states of A. Under some additional conditions, we shall show that
if x is uniformly continuous on the set of pure states of A supported by p, or
its weak* closure, then pxp has a continuous atomic part, i.e., zpxp = zpap
for some a in A.

1. INTRODUCTION

Let A be a C¤-algebra with Banach dual A¤ and double dual A¤¤. Let

Q(A) = f' 2 A¤ : ' ¸ 0 and k'k · 1g

be the quasi-state space of A. When A = C0(X) for some locally compact Haus-
dorff space X, the weak* compact convex set Q(C0(X)) consists of all positive
regular Borel measures ¹ on X with k¹k = ¹(X) · 1. In this case, the extreme
boundary of Q(C0(X)) »= X [f1g. The point 1 at infinity is isolated if and only
if X is compact. For a non-abelian C¤ -algebra A, the extreme boundary of Q(A)
is the pure state space P (A)[f0g, in which P(A) consists of pure states of A and
the zero functional 0 is isolated if and only if A is unital. In the Kadison function
representation (see, e.g., [16]), the self-adjoint part A¤¤

sa of the W ¤-algebra A¤¤

is isometrically and order isomorphic to the ordered Banach space of all bounded
affine real-valued functionals on Q(A) vanishing at 0. Moreover, x is in Asa if and
only if in addition x is weak* continuous on Q(A).
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Let z be the maximal atomic projection in A¤¤ . Note that A¤¤ = (1 ¡ z)A¤¤ ©
zA¤¤, in which zA¤¤ is the direct sum of type I factors and (1 ¡ z)A¤¤ has no
type-I-factor direct summand of A¤¤. In particular, z is a central projection in
A¤¤ supporting all pure states of A. In other words, '(x) = '(zx) for all x in
A¤¤ and all pure states ' of A. For an abelian C¤ -algebra C0(X), the enveloping
W ¤-algebra C0(X)¤¤ =

L
1fL1(¹) : ¹ 2 Cg © 1 `1(X), where C is a maximal

family of mutually singular continuous measures on X. In this way, every x in
C0(X)¤¤ can be written as a direct sum x = xd + xa of the diffuse part xd and
the atomic part xa, and zx = xa 2 `1(X). Note that a measure ¹ on X is atomic
if hx;¹i =

R
xad¹ = hzx; ¹i, or equivalently, ¹ is supported by z. Alternatively,

atomic measures are exactly countable linear sums of point masses. In general,
atomic positive functionals of a non-abelian C¤-algebra A are countable linear sums
of pure states of A [13, 14].

We call zA¤¤ the atomic part of A¤¤. An element x of A¤¤ is said to have a
continuous atomic part if zx = za for some a in A (cf. [18]). In this case, x and
a agree on P(A) [ f0g since '(x) = '(zx) = '(za) = '(a) for all pure states
' of A. In particular, ' 7¡! '(x) is uniformly continuous on P(A) [ f0g. Shultz
[18] showed that x in A¤¤ has a continuous atomic part whenever x, x¤x and xx¤

are uniformly continuous on P(A) [ f0g. Later, Brown [7] proved:

Theorem 1 [7]. Let x be an element of A¤¤. Then x has a continuous atomic
part (i.e., zx 2 zA) if and only if x is uniformly continuous on P(A) [f0g.

The Stone-Weierstrass problem for C¤-algebras conjectures that if B is a C¤-
subalgebra of a C¤-algebra A separating points in P(A) [ f0g; then A = B (see,
e.g., [11]). The facial structure of the compact convex set Q(A) sheds some light
on solving the Stone-Weierstrass problem. The classical papers of Tomita [19, 20],
Effros [12], Prosser [17], and Akemann, Andersen and Pedersen [5], among others,
have been exploring the interrelationship among weak* closed faces of Q(A), closed
projections in A¤¤ and norm closed left ideals of A, in the hope that this will help
to solve the Stone-Weierstrass problem.

Recall that a projection p in A¤¤ is closed if the face

F(p) = f' 2 Q(A) : '(1 ¡ p) = 0g

of Q(A) supported by p is weak* closed (and thus weak* compact). In the abelian
case, A = C0(X), closed projections are in one-to-one correspondence with closed
subsets of X [f1g. In general, closed projections p in A¤¤ are also in one-to-one
correspondence with norm closed left ideals L of A via

L = A¤¤(1 ¡ p) \ A:
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Note also that the Banach double dual L¤¤ of L, identified with the weak* closure
of L in A¤¤, is a weak* closed left ideal of the W ¤ -algebra A¤¤ . More precisely, we
have L¤¤ = A¤¤(1¡ p). Moreover, we have isometrical isomorphisms a+L 7¡! ap
and x + L¤¤ 7¡! xp under which

A=L »= Ap and (A=L)¤¤ »= A¤¤=L¤¤ »= A¤¤p

as Banach spaces, respectively [12, 17, 1]. Similarly, we have Banach space isomor-
phisms between A=(L+L0) and pAp, and A¤¤=(L¤¤+L¤¤0) and pA¤¤p, respectively,
where B0 denotes the set fb¤ : b 2 Bg. The significance of these objects arises
from the following local versions of the Kadison function representation for pAp
and Ap.

Theorem 2 [6, 3.5; 21].

1. pAsap (resp.; pA¤¤
sa p) is isometrically order isomorphic to the Banach space

of all continuous (resp.; bounded) affine functions on F(p) which vanish at
zero.

2. Let xp be an element of A¤¤p. Then xp 2 Ap if and only if the affine
functions ' 7¡! '(x¤x) and ' 7¡! '(a¤x) are continuous on F(p); 8a 2 A.
Consequently,

xp 2 Ap , px¤xp 2 pAp and pa¤xp 2 pAp; 8a 2 A:

Denote the extreme boundary of F(p) by X0 = (P(A) [ f0g) \ F(p), which
consists of all pure states of A supported by p together with the zero functional.
Motivated by Theorem 1, we shall attack the following

Problem 3. Suppose that pxp in pA¤¤p is uniformly continuous on X0; or
continuous on its weak* closure, when we consider pxp as an affine functional
on F(p) (Theorem 2). Can we infer that pxp has a continuous atomic part as a
member of pA¤¤p; i.e.; zpxp = zpap for some a in A?

A quite satisfactory and affirmative answer for a similar question for elements
xp of the left quotient A¤¤p was obtained in [10]. Utilizing the technique and
repeating parts of the argument provided in [10], we will achieve positive results
here as well. We will impose conditions on the closed projection p (or, equivalently,
geometric conditions on F(p)) to ensure an affirmative answer to Problem 3. We
note that the counterexamples in [10] indicate that our results are sharp and Problem
3 does not always have an appropriate solution in general. For the convenience of
the readers, we borrow an example from [10] and present it at the end of this note.
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2. THE RESULTS

Let A be a C¤-algebra and p a closed projection in A¤¤ . Recall that Am
sa consists

of all limits in A¤¤
sa of monotone increasing nets in Asa and (Asa)m = ¡ Am

sa. While
Asa consists of continuous affine real-valued functions of Q(A) vanishing at 0 (the
Kadison function representation), the norm closure (Am

sa)
¡ of Am

sa consists of lower
semicontinuous elements and the norm closure (Asa)m of (Asa)m consists of upper
semicontinuous elements in A¤¤ . An element x of A¤¤

sa is said to be universally
measurable if for each ' in Q(A) and " > 0 there exist a lower semicontinuous
element l and an upper semicontinuous element u in A¤¤ such that u · x · l and
'(l ¡ u) < " [15].

We note that pAsap consists of continuous affine real-valued functions on F (p).
It was shown in [9] that every lower (resp., upper) semicontinuous bounded affine
real-valued function on F (p) vanishing at 0 is the restriction of a lower (resp.,
upper) semicontinuous element in A¤¤

sa to F (p); namely, it is of the form pxp for
some x in (Am

sa)
¡ or (Asa)m. Analogously, pxp in pA¤¤

sap is said to be universally
measurable on F (p) if for each ' in F(p) and " > 0, there exist an l in (Am

sa)
¡

and a u in (Asa)m such that pup · pxp · plp and '(l ¡ u) < ". And pxp in
pA¤¤p is said to be universally measurable on F(p) if both the real and imaginary
parts of pxp are.

A Borel measure on F(p) is a boundary measure if it is supported by the closure
of the extreme boundary X0 of F (p). A boundary measure m of F(p) with kmk =
m(F (p)) = 1 represents a unique point Á in F (p), where Á(a) =

R
Ã (a)dm(Ã ),

8a 2 A. An element pxp of pA¤¤
sa p is said to satisfy the barycenter formula if

Á(x) =
R

Ã (x)dm(Ã ) whenever m is a boundary measure of F(p) representing Á.
Semicontinuous affine elements in pA¤¤

sa p satisfy the barycenter formula, and so do
universally measurable elements.

Lemma 4. Let x be an element of A¤¤
sa and let X be the weak* closure of

X = F (p)\P (A) in F(p). If pxp satisfies the barycenter formula and is continuous
on X; then pxp 2 pAp.

Proof . We give a sketch of the proof here, and refer the readers to [10] in
which a similar result is given in full detail. In view of Theorem 2, we need only
verify that ' 7! '(x) is weak* continuous on F(p). Suppose '¸ and ' are in F (p)
and '¸ ¡! ' weak*. Since the norm of an element of pAsap is determined by the
pure states supported by p, we can embed pAsap as a closed subspace of the Banach
space CR(X) of continuous real-valued functions defined on X. Let m¸ be any
positive extension of '¸ from pAsap to CR(X) with km¸k = k'¸ k · 1. Hence,
(m¸)¸ is a bounded net in M(X), the Banach dual space of CR(X), consisting of



C ¤ -Algebras Cut Down by Closed Projection 437

regular finite Borel measures on the compact Hausdorff space X. Then, by passing
to a subnet if necessary, we have m¸ ! m in the weak* topology of M(X).
Clearly, m ¸ 0 and mjpAsap = '. Since pxp satisfies the barycenter formula and is
continuous on X, we have

'¸(x)=

Z

X
Ã (x) dm¸(Ã ) =

Z

X
Ã (pxp)dm¸(Ã ) ¡!

Z

X
Ã (pxp)dm(Ã )

=

Z

X

Ã (x) dm(Ã ) = '(x):

2.1. The case where p has MSQC

Let A be a C¤-algebra. Recall that a projection p in A¤¤ is closed if the
face F(p) = f' 2 Q(A) : '(1 ¡ p) = 0g is weak* closed. Analogously, p
is said to be compact [2] (see also [6]) if F (p) \ S(A) is weak* closed, where
S(A) = f' 2 Q(A) : k'k = 1g is the state space of A. Let p be a closed
projection in A¤¤. Then h in pA¤¤

sap is said to be q-continuous [3] on p if the
spectral projection EF(h) (computed in pA¤¤p) is closed for every closed subset
F of R. Moreover, h is said to be strongly q-continuous [6] on p if, in addition,
EF (h) is compact whenever F is closed and 0 =2 F . It is known from [6, 3.43]
that h is strongly q-continuous on p if and only if h = pa = ap for some a in Asa.
In general, h in pA¤¤p is said to be strongly q-continuous on p if both Re h and
Im h are.

Denote by SQC(p) the C¤-algebra of all strongly q-continuous elements on
p. We say that p has MSQC (“many strongly q-continuous elements”) if SQC(p)
is ¾ -weakly dense in pA¤¤p. Brown [8] showed that p has MSQC if and only
if pAp = SQC(p) if and only if pAp is an algebra. In particular, every central
projection p (especially, p = 1) has MSQC. We provide a partial answer to Problem
3 by the following:

Theorem 5. Let p have MSQC and x be in A¤¤. Let X0 = (F (p)\P(A))[f0g
be the extreme boundary of F(p). Then zpxp 2 zpAp if and only if pxp is uniformly
continuous on X0.

Proof . The necessities are obvious and we check the sufficiency. Note that
pAp is now a C¤-algebra with the pure state space P (pAp) = F(p) \ P(A). The
maximal atomic projection of pAp is zp. By Theorem 1, zpxp belongs to zpAp
whenever it is uniformly continuous on X0 .

Corollary 6. Let p have MSQC and x be in A¤¤. If pxp is continuous on
X = F(p) \ P (A) then zpxp 2 zpAp.
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Proof . We simply note that either 0 belongs to X or 0 is isolated from X =
F(p) \ P (A) in X0 = (F(p) \ P(A)) [ f0g. Consequently, continuity on the
compact set X ensures uniform continuity on X0 .

2.2. The case where p is semiatomic

Let A be a C¤-algebra and p a closed projection in A¤¤ . Recall that A is
said to be scattered [13, 14] if Q(A) µ zQ(A) and p is said to be atomic [8]
if F(p) µ zF(p), or equivalently if p = zp. If A is scattered then every closed
projection in A¤¤ is atomic. Moreover, A is said to be semiscattered [4] if P (A) µ
zQ(A). Analogously, we say that a closed projection p is semiatomic if the weak*
closure of F (p) \ P(A) contains only atomic positive linear functionals of A, i.e.,
F(p) \ P(A) µ zF (p). It is easy to see that if A is semiscattered then every closed
projection in A¤¤ is semiatomic.

The following is a generalization of [7, Theorem 6], in which p = 1.

Lemma 7 [10]. Let x in zpA¤¤p be uniformly continuous on X0 = (F(p) \
P(A)) [ f0g. Then x is in the C¤-algebra B generated by zpAp. In particular;
x = zy for some universally measurable element y of pA¤¤p.

We provide another partial answer to Problem 3 by the following

Theorem 8. Let p be semiatomic and x be in A¤¤ . Let X = F(p) \ P(A).
Then zpxp 2 zpAp if and only if pxp is continuous on X .

Proof . We prove the sufficiency only. Let x in A¤¤ satisfy the stated condition.
Since zpxp is uniformly continuous on X0 = (P(A) \ F(p)) [ f0g, by Lemma
7, there is a universally measurable element y of pA¤¤p such that zpxp = zy.
Since p is assumed to be semiatomic, each ' in X = P(A) \ F(p) is atomic and
thus '(x) = '(zpxp) = '(zy) = '(y). In particular, the universally measurable
element y is continuous on X. It follows from Lemma 4 that y 2 pAp. As a
consequence, zpxp 2 zpAp.

Example 9. (the full version appeared in [10]). This example tells us that p
having MSQC is necessary in Theorem 5 and the continuity on X is necessary in
Theorem 8.

Let A be the scattered C¤-algebra of sequences of 2 £ 2 matrices x = (xn)1n=1

such that

xn =

µ
an bn

cn dn

¶
¡! x1 =

µ
a 0
0 d

¶
entrywise,
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equipped with the `1-norm. Note that the maximal atomic projection z = 1 in this
case. Let

pn =
1

2

µ
1 1
1 1

¶
; n = 1; 2; : : : ; and p1 =

µ
1 0
0 1

¶
:

Then p = (pn)1
n=1 is a closed projection in A¤¤. We claim that p does not have

MSQC. In fact, suppose x = (xn)1n=1 in A is given by

xn =

µ
an bn

cn dn

¶
; n = 1;2; : : : ; and x1 =

µ
a 0
0 d

¶

such that xn ! x1. Then (pxp)n = ¸npn, n = 1;2; : : : , and (pxp)1 =

µ
a 0
0 d

¶
,

where ¸n = (an + bn + cn + dn)=2 ! (a + d)=2. Consequently, (pxp)2n = ¸2
npn,

n = 1; 2; : : : , and (pxp)21 =

µ
a2 0
0 d2

¶
. If (pxp)2 2 pAp, we must have ¸2

n !
(a2 + d2)=2. This occurs exactly when a = d. In particular, pAp is not an algebra
and thus p does not have MSQC.

On the other hand, the set X = P (A)\F(p) of all pure states in F(p) consists
exactly of 'n, Ã1 and Ã 2 which are given by

'n(x) = tr(xnpn); n = 1;2; : : : ;

and
Ã 1(x) = a; Ã2(x) = d;

where x = (xn)1
n=1 2 A and x1 =

µ
a 0
0 d

¶
. Since 'n ! 1

2 (Ã 1 + Ã2) 6= 0,

X0 = X [ f0g is discrete. Consider y = (yn)1
n=1 in A¤¤ given by

yn =

µ
0 0
0 0

¶
; n = 1; 2; : : : ; and y1 =

µ
1 0
0 1

¶
:

Now, the universally measurable element pyp is uniformly continuous on X0 but
zpyp =2 zpAp.
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