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ON C"-ALGEBRAS CUT DOWN BY CLOSED PROJECTIONS:
CHARACTERIZING ELEMENTS VIA THE EXTREME BOUNDARY

Lawrence G. Brown and Nga-Ching Wong

Abstract. Let A bea C"-algebra. Let z be the maximal atomic projection and
p aclosed projection in A®". It is known that x in A®® has a continuous atomic
pat, i.e, zx = za for some ain A, whenever X is uniformly continuous on the
set of pure states of A. Under some additional conditions, we shall show that
if X is uniformly continuous on the set of pure states of A supported by p, or
its weak* closure then pxp has a continuous atomic part, i.e, zpxp = zpap
for some a in A.

1. INTRODUCTION
Let A be a C"-algebrawith Banach dual A® and double dud A™. Let
QA)=F"2A%: " _ 0andk"k - 1g

be the quasi-state space of A. When A = Cy(X) for some locdly compact Haus-
dorff space X, the weak* compact convex st Q(Co(X)) consists of dl podtive
regular Borel measures  on X with ktk =1 (X) - 1. In this case the extreme
boundary of Q(Co(X)) 2= X [f1g. Thepoint 1 a infinity isisolaed if and only
if X is compact. For anon-abelian C"-algebra A, the extreme boundary of Q(A)
is the pure gate pace P (A) [ f0g, in which P (A) congsts of pure gates of A and
the zero functiond 0 isisolated if and only if A isunitd. In the Kadison function
representation (e, eg., [16]), the self-adjoint pat Ay of the W=-dgebra A™®
is isometrically and order isomorphic to the ordered Banach space of all bounded
affine real-vaued functionds on Q(A) vanishing & 0. Moreover, X isin As, if and
only if in addition x is weak* continuous on Q(A).
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Let z be the maxima aomic projection in A™. Notetha A™ = (1j 2)A™0
zA™, in which zA™ is the direct sum of type | factors and (1 j z)A" has no
type-l-factor direct summand of A®®. In particular, z is a central projection in
A™ supporting all pure dates of A. In other words, " (x) = "(zx) for dl x in
A™ and dl pure states "Lof A. For an abdian C"-algebra Cy(X), the envdoping
We-dgebraCo(X)™ = 1 fL1(*):2 2Cg0 1 ~1(X), where C isa maxima
family of mutually singular continuous messures on X. In this way, every x in
Co(X)"™" can be written as a direct sum X = Xq + X5 Of the diffuse part x4 and
the atomic part Xa, and zx = Xa 2 “1(X). Note that ameasure 2 on X is aomic
if hx;T1 = Xad* = hzx; 11, or equivalently, * is supported by z. Altemdively,
atomic messures are exactly countable liner sums of point masses. In generd,
atomi ¢ positive functionds of anon-abdian C"-agebra A are countable linear sums
of pure states of A [13, 14].

We cdl zA" the atomic part of A™. An dement x of A” is said to have a
continuous atomic part if zx = za for somea in A (cf. [18]). In this case, x and
a agreeon P(A) [ fOg since " (X) = "(zx) = "(za) = "(a) for dl pure states
" of A. Inparticular, = 7 ¥ "(x) isuniformly continuous on P(A) [ f0g. Shultz
[18] showed tha x in A®® has a continuous aomic part whenever x, x°x and xx°
are uniformly continuous on P (A) [ f0g. Later, Brown [7] proved:

Theorem 1 [7]. Let X be an element of A". Then x has a continuous atomic
part (i.e, zx 2zA) if and only if x is uniformly continuous on P (A) [ 0g.

The Stone-Weierstrass problem for C°-agebras conjectures that if B isa C”-
subd gebra of a C®-dgebra A separating points in P (A) [ fOg; then A = B (seg,
eg., [11]). The fadal structure of the compact convex st Q(A) sheds some light
on solving the Stone-Weierstrass problem. The classical pgpers of Tomita [19, 20],
Effros[12], Prosser [17], and Akemann, Andersen and Pedersen [ 5], anong others,
have been exploring the interrdationship among weak* dosed faces of Q(A), closed
projections in A®® and norm closed |eft ideals of A, in the hope that this will hep
to s0l ve the Stone-Weierdrass problem.

Recdl that a projection p in A™ isclosed if the face
F(p)=f"2Q(A): "(1i p) =0g

of Q(A) supported by p isweak* dosed (and thus weak* compact). In the abdian
case, A = Co(X), dosed projections are in one-to-one correspondence with closed
subsets of X [ f1g. In gened, closed projections p in A™ are als0 in one-to-one
correspondence with norm dosed left ided s L of A via

L=A"(1i p)\ A
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Note also tha the Banach double dual L™ of L, identified with the weak* closure
of Lin A™, isaweak* dosed I€ft ided of the W “-algebra A™. More precisdy, we
have L"® = A™(1j p). Moreover, we haveisometrical isomorphismsa+L 7 ¥ ap
and X +L"° 7 ¥ xp under which

AL 2 Ap and (A=L)™® 2 A™=|™ 2 A

as Banach gpaces, respectively [12, 17, 1]. Similarly, wehave Banach space isomor-
phisms between A=(L+L") and pAp, and A*2=(L® +L"*%) and pA™p, respectively,
where B’ denotes the set fh® : b 2 Bg. The significance of these objects arises
from the following locd versions of the Kadison function representation for pAp
and Ap.

Theorem 2 [6, 3.5; 21].

1 pAsap (resp.; pAgp) isisometrically order isomorphic to the Banach space
of all continuous (resp.; bounded) affine functions on F(p) which vanish at
zero.

2. Let xp be an dement of A™p. Then xp 2 Ap if and only if the affine
functions™ 7 ¥ "(X°x) and " 7 ¥ "(a’x) are continuouson F(p); 8a 2 A.
Consequently,

Xp 2Ap , px°xp 2 pAp and pa°xp 2pAp; 8a2 A

Dencte the extreme boundary of F(p) by Xo = (P(A) [ f0g) \ F(p), which
consists of all pure states of A supported by p together with the zero functiond.
Motivated by Theorem 1, we shdl atack the following

Problem 3. Suppose that pxp in pA™p is uniformly continuous on Xg; or
continuous on its weak* closure, when we consider pxp as an affine functional
on F(p) (Theorem 2). Can we infer that pxp has a continuous atomic part as a
member of pA™p; i.e.; zpxp = zpap for some a in A?

A quite satisfectory and affirmative answer for a similar quegtion for dements
xp of the le&ft quotient A"°p was obtained in [10]. Utilizing the technique and
repeating parts of the argument provided in [10], we will achieve positive results
hereaswdl. Wewill impose conditions on the closed proj ection p (or, equivalently,
geometric conditions on F(p)) to ensure an &firmative answer to Problem 3. We
note that the counterexamplesin [10] indicate that our results are sharp and Problem
3 does not dways have an gppropriate solution in general. For the convenience of
the readers, we borrow an example from [ 10] and present it & the end of this note.
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2. THE RESULTS

Let A bea C"-algebra and p a dosed projectionin A™. Recdl that AT} consists
of dl limitsin Agz of monotoneincressing netsin Asz and (Asa)m = i Afa. While
As congsts of continuous afine red-valued functions of Q(A) vanishing a 0 (the
Kadison function representation), the norm closure (Ag)# of AZ; consists of lower
semicontinuous eements and the norm closure (Asa)m 0Of (Asa)m consists of upper
smicontinuous elements in A*™. An element x of Ag; is sad to be universally
measurable if for each * in Q(A) and " > 0 there exig a lower semicontinuous
dement | and an upper semicontinuous dement u in A* suchthatu - x - | and

(i u)y<"[19.

We note that pAg,p consists of conti nuous affine red -valued functions on F (p).
It was shown in [9] that every lower (resp., upper) semicontinuous bounded &ffine
red-valued function on F (p) vanishing a O is the redriction of a lower (resp,,
upper) semicontinuous element in Ag; to F (p); namdly, it is of the form pxp for
ome x in (AQ)1 or (Asa)m. Andogoudy, pxp in pAszp is said to be universally
measurable on F (p) if for each ™ in F(p) and " > 0, there exist an | in (A])}
and au in (Asa)m such that pup - pxp - plpand *(1 j u) <™. And pxp in
pA°“p is sad to be universally messurable on F(p) if both the red and imaginary
parts of pxp are.

A Borel measure on F (p) isa boundary measure if it is supported by the closure
of the extreme boundary Xo of F (p). A boundary measure m of F (g with kmk =
m(F (p)) = 1 represents a unique point A in F (p), whereA(a) = A(a)dm(A),
E}a 2 Aq ~An elemgnt pxp of pAgp is sad to satisfy the barycenter formula jf
A(X) = A(Xx)dm(A) whenever m is a boundary measure of F(p) representing A.
Semicontinuous affine dements in pAg; p satisfy the barycenter formula, and so do
universally measurable e ements.

Lemma 4. Let x be an dement of AZ and let X be the weak* closure of
X =F(@E)\P(A)inF(p). If pxp satisfiesthe barycenter formula and is continuous
on X; then pxp 2 pAp.

Proof. We give a sketch of the proof here, and refer the readers to [10] in
which a similar result is given in full detal. In view of Theorem 2, we need only
verify that = @ " (X) is wesk* continuous on F(p). Suppose * and " aeinF (p)
and " j ¥ " weak*. Sincethe norm of an dement of pAsap is determined by the
pure states supported by p, we can embed pAsap as a closed subspace of the Banach
space Cr(X) of continuous real-valued functions defined on X. Let m_ be any
positive extenson of _ from pAgap to Cr(X) with km k = k™ k - 1. Hence
(m_)_ is abounded net in M(X), the Banach dual space of Cr(X), consisting of
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regular finite Borel measures on the compact Hausdorff space X. Then, by passng
to a subnet if necessary, we have m_ ¥ m in the weak* topology of M (X).
Cealy, m , 0 and mjpa,,p = *. Since pxp sdisfies the barycenter formula and is
continuous on X, we have

z z z

"= _A(dm (A)= _A(pxp)dm (A) i ¥ _ A(pxp)dm(A)
X X X
=  A@E)dm(A)= "(x): (]
X

21. The case wherep hasMSQC

Let A be a C"-dgebra Recdl that a projection p in A* is dosed if the
face F(p) = f* 2 Q(A) : "(1j p) = Og is weak* dosed. Andogously, p
is sad to be compact [2] (see a0 [6]) if F(p) \ S(A) is wesk* closed, where
S(A) = 1% 2 Q(A) : k"k = 1g is the date space of A. Let p be a closed
projection in A", Then h in pAgip is sad to be g-continuous [3] on p if the
spectral projection Eg(h) (computed in pA™p) is closed for every dosed subset
F of R. Moreover, h is said to be strongly g-continuous [6] on p if, in addition,
Er (h) is compact whenever F isdosed and 0 2 F. It is known from [6, 3.43]
that h is strongly g-continuous on p if and only if h = pa = ap for some a in Aga.
In generd, h in pA™p is said to be strongly g-continuous on p if both Re h and
Im h are

Denote by SQC(p) the C"-algebra of dl grongly g-continuous dements on
p. We say that p has MSQC (“many grongly g-continuous elements”) if SQC(p)
is %-weakly dense in pA™p. Brown [8] showed that p has MSQC if and only
if pAp = SQC(p) if and only if pAp is an algebra. In particular, every central
projection p (especidly, p = 1) has MSQC. We provide apartid answer to Problem
3 by the following:

Theorem 5. Letp have MSQC and x bein A, Let Xo = (F (p)\P(A)) [f0g
be the extreme boundary of F (p). Then zpxp 2 zpAp if and only if pxp isuniformly
continuous on X.

Proof. The necessties are obvious and we check the sufficiency. Note that
pAp is now a C°-dgebra with the pure gate space P (pAp) = F(p) \ P(A). The
maximal atomic projection of pAp is zp. By Theorem 1, zpxp bdongs to zpAp
whenever it is uniformly continuous on Xo. [ ]

~_ Cordllary 6. Let p have MSQC and x be in A™. If pxp is continuous on
X =F(p) \ P (A) then zpxp 2 zpAp.
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Proof. We simply note that either 0 belongs to X or 0 is isolated from X =
F(P)\NPA) inXo = (F(p) \P(A)) [ f0g. Consequently, continuity on the
compact set X ensures uniform continuity on Xo. [ ]

2.2. The case where p is semiatomic

Let A be a C®-dgebra and p a closed projection in A™. Recdl tha A is
said to be scattered [13, 14] if Q(A) 4 zQ(A) and p is said to be aomic [§]
if F(p) 4 zF(p), or equivalently if p = zp. If A is scattered then every closed
projection in A°® isaomic. Moreover, A is said to be semiscattered [4] if P (A) U
zQ(A). Andogoudy, we say that a dosed projection p is semiatomic if the weak*
cosure of F(p) \ P(A) contains only aomic positive linear functionals of A, i.e,
F(P)\P(A) U zF (p). Itiseasy to seethat if A issemiscatered then every closed
projection in A°° is semiatomic.

The following is a generalization of [7, Theorem 6], in which p = 1.

Lemma 7 [10]. L& x in zpA™p be uniformly continuous on X, = (F(p) \
P(A)) [ T0g. Then x isin the C"-algebra B generated by zpAp. In particular;
x = zy for some universally measurable element y of pA®“p.

We provide another partial answer to Problem 3 by the following

Theorem 8. Let p be semiatomic and x be in A™. Let X = F(p) \ P(A).

Then zpxp 2 zpAp if and only if pxp is continuous on X.

Proof. We provethe sufficiency only. Let x in A"° satiy the stated condition.
Since zpxp is uniformly continuous on X, = (P(A) \ F(p)) [ f0g, by Lemma
7, there is a universally measurable dement y of pA®™p such that zpxp = zy.
Since p is assumed to be semiatomic, each ™ in X = P(A) \ F(p) is aomic and
thus "(X) = "(zpxp) = "(zy) = "(y). In paticular, the universadly measurable
dement y is continuous on X. It follows from Lemma 4 that y 2 pAp. As a
consequence, zpxp 2 zpAp. [ |

Example 9. (the full version appeared in [10]). This example tells us tha p
having MSQC is necessary in Theorem 5 and the continuity on X is necessary in
Theorem 8.

Let A be the scattered C"-agebra of sequences of 2 £ 2 matrices X = (Xn)=-;
uch tha U q u q
an bn

. _ a0 .
cn dn i¥® X9 = 0 d entrywise,

Xn =
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equipped with the ~1-norm. Note that the maximal atomic projection z = 1 in this
cese. Let
T UL B R
p”_z i PL="9p 1 -

Then p = (pn)i, is a dosed projection in A™. We claim that p does not have
MSQC. In fact, suppose X = (Xn), in A is given by

W an b )l o O‘H
Xn = cn dn n=12:::; and xq = 0 d
Hy Oﬂ
auch that X, ¥ Xq. Then (pXp)nh = .nPn, N =1;2;:::, and (pxp)1 = 0 d°
where;n=(an+bn+cn+(ilp)2=2 ¥ (a+ d)=2. Consequently, (PXp); = . 7Pn,
2

n=12::,and (pxp)§ = % 2 If (pxp)? 2 pAp, we must have |2 ¥
(@2 + d?)=2. This occurs exactly when a = d. In particular, pAp is not an algebra

and thus p does not have MSQC.

Onthe other hand, theset X = P (A) \F(p) of dl purestatesin F(p) consss
exectly of ", A1 and A, which are given by

"nX) =trXnpn); n=12;:::;

and
M) =a; A =d
H
where X = (Xn); 2 A and X9 = ?) 8 . Snce "n ¥ 1AL+ Ay) &0,

Xo =X [f0g is discrete. Consider y = (yn), in A™ given by

Moo o Ml
yn - O 0 ] — Ay Ly iy yl - 0 1
Now, the universally measurable dement pyp is uniformly continuous on Xo but
zpyp 2 zpAp. ]
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