NORMAL STRUCTURE AND THE ARC LENGTH IN BANACH SPACES

Ji Gao

Abstract

Let X be a Banach space, $X_{2} \subseteq X$ be a two dimensional subspace of X, and $S(X)=\{x \in X,\|x\|=1\}$ be the unit sphere of X. The relationship between the normal structure and the arc length in X is studied. Let $R(X)=\inf \left\{l\left(S\left(X_{2}\right)\right)-r\left(X_{2}\right): X_{2} \subseteq X\right\}$, where $l\left(S\left(X_{2}\right)\right)$ is the circumference of $S\left(X_{2}\right)$ and $r\left(X_{2}\right)=\sup \left\{2(\|x+y\|+\|x-y\|): x, y \in S\left(X_{2}\right)\right\}$ is the least upper bound of the perimeters of the inscribed parallelogram of $S\left(X_{2}\right)$. The main result is that $R(X)>0$ implies X has the uniform normal structure.

1. Introduction

In a series of papers, Schäffer made use of the concept of geodesic to study the unit sphere of a Banach space X (see [13] for the complete references). He introduced the following two notations: $m(X)=\inf \{\delta(x,-x): x \in S(X)\}$, and $M(X)=\sup \{\delta(x,-x): x \in S(X)\}$ where $S(X)$ is the unit sphere of X and $\delta(x,-x)$ the shortest length of arcs joining antipodal points on $S(X)$. He called $2 \mathrm{~m}(\mathrm{X})$ the girth, and $2 \mathrm{M}(\mathrm{X})$ the perimeter of X . These parameters were used to study reflexivity and isomorphism of Banach spaces among other things. But besides L_{1} spaces, $C(K)$ spaces and Hilbert spaces, the values of these parameters are difficult to obtain.

We introduced a geometric parameter $J(X)=\sup \{\|x+y\| \wedge\|x-y\|\}: x, y \in$ $S(X)\}$, a simplification of Schäffer's girth and perimeter, into a Banach space X (see [7] for the complete references). We proved that $J(X)<3 / 2$ implies the uniform normal structure, which, in turn, implies the fixed point property. It is a well-known result that $\delta(1)>0$ implies normal structure, where $\delta(\epsilon)$ is the modulus

[^0]of convexity. We gave an example of a Banach space X with $J(X)<3 / 2$ and $\delta(1)=0$ to show the significance of the parameter $J(X)$. We also computed the values of $J(X)$ for some classical Banach spaces (see Appendix, $\S 6$), and posted a related question as to whether uniformly nonsquare Banach spaces have the fixed point property.

In this paper, we introduce another geometric parameter, $R(X)$, into a Banach space X, and prove that for a Banach space $X, R(X)>0$ implies the uniform normal structure. We then give in $\S 4$ an example of a Banach space X with $R(X)>0$ and $J(X)>3 / 2$. Significantly, this means that the parameter $R(X)$ is really distinct from $J(X)$. However, whether uniformly nonsquare Banach spaces have the fixed point property is still an open question.

2. Preliminaries

Let X be a normed linear space, and let $S(X)=\{x \in X:\|x\|=1\}$ be the unit sphere of X .

2-1. Curves in Banach Spaces

A continuous mapping $x(t)$ from a closed interval $[a, b]$ to a Banach space X is called a curve in $X: C=x(t), a \leq t \leq b$. A curve is called simple if it does not have multiple points. A curve is called closed if $x(a)=x(b)$. A closed curve is called symmetric about the origin if $x \in C$, then also $-x \in C$.

The concept of the length of a curve in Banach spaces resembles the same concept in Euclidean spaces. For curve $C=x(t)$, let P stand for a partition $a=t_{0}<t_{1}<t_{2}<\ldots<t_{i}<\ldots<t_{n}=b$ of interval $[a, b]$ and $l(C, P)=$ $\sum_{i=1}^{n}\left\|x\left(t_{i}\right)-x\left(t_{i-1}\right)\right\|$, where $x_{i}(t), i=0,1,2, \ldots, n$ are called partition points on C. Then the length $l(C)$ of curve $C=x(t), a \leq t \leq b$, is defined as the least upper bound of $l(C, P)$ for all possible partitions P of $[a, b]$:

$$
l(C)=\sup _{P}\{l(C, P)\} .
$$

If $l(C)$ is finite, the curve is called rectifiable.
Let $\|P\|=\max _{1 \leq i \leq n}\left\{\left|t_{i}-t_{i-1}\right|\right\}$ for a partition P of $[a, b]$.
Theorem 1 [2, 13]. If curve C is rectifiable, then for all $\epsilon>0$, there exists $\delta>0$ such that $\|P\|<\delta$ implies $l(C)-l(C, P)<\epsilon$. Furthermore, if $\left\{P_{k}\right\}$ is a sequence of partitions of $[a, b]$ with $\left\|P_{k}\right\| \rightarrow 0$, then $\lim _{k \rightarrow \infty} l\left(C, P_{k}\right)=l(C)$.

Let $l_{a}^{t}(C)$ denote the length of curve $C=x(t)$ from a to t. For a rectifiable curve $C=x(t), a \leq t \leq b$, the arc length $l_{a}^{t}(C)$ is a continuous function of t.

Definition $1[2,13]$. Let $y(s)$ represent the point $x(t)$ on the curve C for which $l_{a}^{t}(C)=s$. Then $C=y(s), 0 \leq s \leq l(C)$, is called the standard form of the rectifiable curve C.

For a normed linear space X , we use X_{2} to denote a two-dimensional subspace of X. Then $S\left(X_{2}\right)$ is a simple closed curve which is symmetric about the origin and unique up to orientation.

Theorem 2 [2, 13]. Let X_{2} be a two-dimensional Banach space, and K_{1}, K_{2} be closed convex subsets of X_{2} with nonvoid interiors. If $K_{1} \subseteq K_{2}$, then $l\left(\partial\left(K_{1}\right)\right) \leq$ $l\left(\partial\left(K_{2}\right)\right)$, where $l\left(\partial\left(K_{i}\right)\right)$ denotes the length of the circumference of $K_{i}, i=1,2$.

Theorem 3 [13]. $l\left(S\left(X_{2}\right)\right) \leq 8 ; l\left(S\left(X_{2}\right)\right)=8$ if and only if $S\left(X_{2}\right)$ is a parallelogram.

Theorem 4 [13]. $l\left(S\left(X_{2}\right)\right) \geq 6 ; \quad l\left(S\left(X_{2}\right)\right)=6$ if and only if $S\left(X_{2}\right)$ is an affinely regular hexagon.

2-2. Normal Structure in Banach Spaces

In 1948, Brodskii and Milman [1] introduced the following geometric concepts:
Definition 2. A bounded, convex subset K of a Banach space X is said to have normal structure if every convex subset H of K that contains more than one point contains a point $x_{0} \in H$ such that $\sup \left\{\left\|x_{0}-y\right\|, y \in H\right\}<d(H)$, where $d(H)=\sup \{\|x-y\|, x, y \in H\}$ denotes the diameter of H. A Banach space X is said to have normal structure if every bounded, convex subset of X has normal structure. A Banach space X is said to have weak normal structure if for each weakly compact convex set K in X that contains more than one point has normal structure. X is said to have uniform normal structure if there exists $c, 0<c<1$, such that for any subset K as above, there exists $x_{0} \in K$ such that $\sup \left\{\left\|x_{0}-y\right\|\right.$, $y \in K\}<c \cdot(d(K))$.

For a reflexive Banach space X , the normal structure and weak normal structure coincide.

In 1964, Kirk [10] proved that if a weakly compact subset K of X has normal structure then any nonexpansive mapping on K has a fixed point. Since then much attention has been focused on normal structure. Whether or not a Banach space has normal structure depends on the geometry of the unit sphere. We refer the interested reader to $[4,5,6,7,8,11,15,16]$.

Lemma 1 [5]. Let X be a Banach space without weak normal structure. Then for any $\epsilon, 0<\epsilon<1$, there exists a sequence $\left\{z_{n}\right\} \subseteq S(X)$ with $z_{n} \rightarrow^{w} 0$, and

$$
1-\epsilon<\left\|z_{n+1}-z\right\|<1+\epsilon
$$

for sufficiently large n and any $z \in \operatorname{co}\left\{z_{k}\right\}_{k=1}^{n}$.
Lemma 2 [7]. Let X be a Banach space without weak normal structure. Then for any $\epsilon, 0<\epsilon<1$, there exist x_{1}, x_{2}, x_{3} in $S(X)$ satisfying
(i) $x_{2}-x_{3}=a x_{1}$ with $|a-1|<\epsilon$,
(ii) $\left|\left|\left|x_{1}-x_{2}\left\|-1\left|,\left|\left|\left|x_{3}-\left(-x_{1}\right) \|-1\right|<\epsilon\right.\right.\right.\right.\right.\right.\right.$, and
(iii) $\left\|\left(x_{1}+x_{2}\right) / 2\right\|,\left\|\left(x_{3}-x_{1}\right) / 2\right\|>1-\epsilon$.

The geometric meaning of the lemma can be succinctly described as follows: if X does not have weak normal structure, then there exists an inscribed hexagon in $S(X)$ with length of each side arbitrarily closed to 1 (by (i) and (ii)), and with at least four sides whose distance to $S(X)$ are arbitrarily small (by (iii)).

3. Parameter $R(X)$ and Normal Structure

For a Banach space X, let $B(X)=\{x \in X:\|x\| \leq 1\}$ be the ball of X, $B_{0}(X)=B(X) \backslash S(X)$ be the interior of $B(X)$. If $K \subseteq X$, let $\operatorname{co}(K)$ be the convex hull of subset K of X.

If $x, y \in S\left(X_{2}\right)$, then $2(\|x+y\|+\|x-y\|)$ is the perimeter of inscribed parallelogram with vertices $x, y,-x$, and $-y$ of $S\left(X_{2}\right)$.

Let $r\left(X_{2}\right)=\sup \left\{2(\|x+y\|+\|x-y\|): x, y \in S\left(X_{2}\right)\right\}$. Then $r\left(X_{2}\right) \leq$ $l\left(S\left(X_{2}\right)\right)$ by Theorem 2.

Definition 3. For a Banach space X, define $R(X)=\inf \left\{l\left(S\left(X_{2}\right)\right)-r\left(X_{2}\right)\right.$: $\left.X_{2} \subseteq X\right\}$.

For a Hilbert space $H, R(H)=2 \pi-4 \sqrt{2}$.

Theorem 5. If X is a Banach space with $R(X)>0$, then X is uniformly nonsquare.

Proof. Suppose X is not uniformly nonsquare. For any $\epsilon>0$, there exist $x, y \in S(X)$ such that both $\|x+y\|$ and $\|x-y\|>2-(\epsilon / 4)$ [9]. let X_{2} be the twodimensional space spanned by x and y. Then $r\left(X_{2}\right) \geq 2(\|x+y\|+\|x-y\|)>8-\epsilon$, and hence $R(X)=\inf \left\{l\left(S\left(X_{2}\right)\right)-r\left(X_{2}\right): X_{2} \subseteq X\right\}<\epsilon$. Since ϵ can be arbitrarily small, we have $R(X)=0$.

Lemma 3 [7]. Let $x, y \in B(X)$ and $0<\epsilon<1$ such that $\|x+y\| / 2>1-\epsilon$. Then for any $c, 0 \leq c \leq 1$, and $z=c x+(1-c) y \in \operatorname{co}(\{x, y\})$, the line segment connecting x and y, we have $\|z\|>1-2 \epsilon$.

Theorem 6. If X is a Banach space with $R(X)>0$, then X has normal structure.

Proof. $R(X)>0$ implies that X is uniformly nonsquare, and hence reflexive [9]. Normal structure and weak normal structure coincide.

Suppose X dose not have weak normal structure. For $\epsilon>0$, let x_{1}, x_{2} and x_{3} in $\mathrm{S}(\mathrm{X})$ satisfy the conditions in Lemma 2. Let X_{2} be the two-dimensional space spanned by x_{1} and x_{2} (see the Figure below).

Then there exists an $x \in X$ and a real number α such that $x-x_{2}=\alpha\left(x_{2}-x_{1}\right)$ and $x-x_{3}=\alpha\left(x_{3}+x_{1}\right)$. Let $y_{2} \in$ the line segment $c o\left(\left\{x, x_{2}\right\}\right)$ and $y_{3} \in$ the line segment $\operatorname{co}\left(\left\{x, x_{3}\right\}\right)$, and β be the real number such that $y_{2}-x_{2}=\beta\left(x_{2}-x_{1}\right), y_{3}-$ $x_{3}=\beta\left(x_{3}+x_{1}\right), c o\left(\left\{y_{2}, y_{3}\right\}\right) \cap S(X) \neq \varnothing$, and $c o\left(\left\{y_{2}, y_{3}\right\}\right) \subseteq X_{2} \backslash B_{0}\left(X_{2}\right)$. Then $y_{2}-y_{3}=\delta\left(x_{2}-x_{3}\right)$, where $0<\delta<1$. Furthermore, we can take ϵ small enough such that $\beta<(1+\epsilon) /(1-\epsilon)<2$. Then

Figure

$$
\begin{array}{r}
\left\|y_{2}-x_{2}\right\|=\beta\left\|x_{2}-x_{1}\right\| \leq \beta(1+\epsilon) \leq \beta+2 \epsilon \\
\left\|y_{3}-x_{3}\right\|=\beta\left\|x_{3}+x_{1}\right\| \leq \beta(1+\epsilon) \leq \beta+2 \epsilon \\
\frac{\left\|x_{2}-x_{1}\right\|}{\left\|x-x_{2}\right\|}=\frac{2-\left\|x_{2}-x_{3}\right\|}{\left\|x_{2}-x_{3}\right\|} \geq \frac{1-\epsilon}{1+\epsilon} \geq 1-2 \epsilon \\
\delta=\frac{\left\|y_{2}-y_{3}\right\|}{\left\|x_{2}-x_{3}\right\|}=\frac{\left\|x-y_{2}\right\|}{\left\|x-x_{2}\right\|}=1-\frac{\left\|y_{2}-x_{2}\right\|}{\left\|x-x_{2}\right\|} \\
=1-\frac{\left\|y_{2}-x_{2}\right\|}{\left\|x_{2}-x_{1}\right\|} \cdot \frac{\left\|x_{2}-x_{1}\right\|}{\left\|x-x_{2}\right\|} \leq 1-\beta(1-2 \epsilon) \leq 1-\beta+4 \epsilon
\end{array}
$$

and
$\left\|y_{2}-y_{3}\right\|=\delta\left\|x_{2}-x_{3}\right\| \leq(1-\beta+4 \epsilon)(1+\epsilon) \leq 1-\beta+4 \epsilon+2 \epsilon=1-\beta+6 \epsilon$.
Therefore, the length of the curve from x_{2} to x_{3} on $S\left(X_{2}\right)$ is less than or equal to $2(\beta+2 \epsilon)+1-\beta+6 \epsilon=1+\beta+10 \epsilon$.

Since $\left\|x_{1}+x_{2}\right\| / 2>1-\epsilon$, for any $z \in \operatorname{co}\left(\left\{x_{1}, x_{2}\right\}\right)$, we have $\|z\|>1-2 \epsilon$. So, the line segment $\operatorname{co}\left(\left\{x_{1} /(1-2 \epsilon), x_{2} /(1-2 \epsilon)\right\}\right) \subseteq X_{2} \backslash B_{0}\left(X_{2}\right)$, and hence the length of the curve from x_{1} to x_{2} on $S\left(X_{2}\right) \leq$ the sum of the lengths of the line segments $\operatorname{co}\left(\left\{x_{1}, x_{1} /(1-2 \epsilon)\right\}\right.$), and $\operatorname{co}\left(\left\{x_{1} /(1-2 \epsilon), x_{2} /(1-2 \epsilon)\right\}\right)$, and $\operatorname{co}\left(\left\{x_{2} /(1-2 \epsilon), x_{2}\right\}\right) \leq 2 /(1-2 \epsilon)-2+(1+\epsilon) /(1-2 \epsilon) \leq 1+8 \epsilon$.

Similarly, the length of the curve from x_{3} to $-x_{1}$ on $S\left(X_{2}\right)$ is less than or equal to $1+8 \epsilon$.

Therefore, $l\left(S\left(X_{2}\right)\right)=2$ (length of the curve from x_{1} to x_{2} on $S\left(X_{2}\right)+$ length of the curve from x_{2} to x_{3} on $S\left(X_{2}\right)+$ length of the curve from x_{3} to $-x_{1}$ on $S\left(X_{2}\right) \leq 2(2(1+8 \epsilon)+1+\beta+10 \epsilon)=2(3+\beta+26 \epsilon)=6+2 \beta+52 \epsilon$. We have

$$
\begin{equation*}
l\left(S\left(X_{2}\right)\right) \leq 6+2 \beta+52 \epsilon \tag{3.1}
\end{equation*}
$$

On the other hand, let $y \in \operatorname{co}\left(\left\{y_{2}, y_{3}\right\}\right) \cap S\left(X_{2}\right)$. There must exist an $z_{1}^{\prime} \in$ $\operatorname{co}\left(\left\{x_{2}, x\right\}\right)$ and $z_{1} \in \operatorname{co}\left(\left\{x_{1}, x\right\}\right)$ such that $y \in \operatorname{co}\left(\left\{-x_{1}, z_{1}^{\prime}\right\}\right)$, and $\left\|z_{1}^{\prime}+x_{1}\right\|=$ $2\left\|z_{1}\right\|$. If $z_{1} \in \operatorname{co}\left(\left\{x_{1}, x_{2}\right\}\right)$, then $\left\|z_{1}\right\| \geq 1-2 \epsilon$, and hence $\left\|z_{1}^{\prime}+x_{1}\right\|=2\left\|z_{1}\right\| \geq$ $2(2-2 \epsilon)=2-4 \epsilon$. Since $\left\|z_{1}^{\prime}-y\right\| /\left\|z_{1}\right\|=\left\|y-y_{2}\right\| /\left\|x_{1}\right\|,\left\|z_{1}^{\prime}-y\right\|=\left\|z_{1}\right\|(\| y-$ $\left.y_{2} \|\right) \leq\left\|y-y_{2}\right\|$, and $\left\|y+x_{1}\right\|=\left\|z_{1}^{\prime}+x_{1}\right\|-\left\|z_{1}^{\prime}-y\right\| \geq 2-4 \epsilon-\left\|y-y_{2}\right\|$. If $z_{1} \in \operatorname{co}\left(\left\{x_{2}, x\right\}\right)$, then $\left\|z_{1}^{\prime}+x_{1}\right\|=2\left\|z_{1}\right\| \geq 2$. We need the following fact.

Fact: Suppose $u=x_{2}+t\left(x_{2}-x_{1}\right), u_{1}=x_{2}+t_{1}\left(x_{2}-x_{1}\right), t_{1} \geq 0$, and $\left\|u_{1}+x_{1}\right\| \geq 2$. Then $\left\|u+x_{1}\right\|$ is an increasing function of t on $\left[t_{1}, \infty\right)$.

Proof of the fact: Let $U(x, a)=\{y \in X:\|y-x\| \leq a\}$ and $S(x, a)=\{y \in$ $X:\|y-x\|=a\}$ be the unit ball and the unit sphere of X with center at x and
radius a, respectively. Since $\left\|x_{2}-\left(-x_{1}\right)\right\| \leq 2$, there exists $v_{1} \in \operatorname{co}\left(\left\{x_{2}, u_{1}\right\}\right)$ such that $v_{1} \in S\left(-x_{1}, 2\right)$.

If $\left\|u+x_{1}\right\|$ is not an increasing function, let $t_{1} \leq t_{2} \leq t_{3}$ such that $\left\|u_{2}+x_{1}\right\|=$ $b>\left\|u_{3}+x_{1}\right\|$, where $u_{2}=x_{2}+t_{2}\left(x_{2}-x_{1}\right)$, and $u_{3}=x_{2}+t_{3}\left(x_{2}-x_{1}\right)$. Since $v_{1} \in \operatorname{co}\left(\left\{x_{2}, u_{1}\right\}\right) \subseteq \operatorname{co}\left(\left\{x_{2}, u_{2}\right\}\right), b \geq 2$ by the convexity of $U\left(-x_{1}, 2\right)$.

Consider $v_{2}=2\left(u_{2}+x_{1}\right) / b-x_{1}$, and $v_{3}=2\left(u_{3}+x_{1}\right) / b-x_{1}$. Then $v_{2} \in$ $S\left(-x_{1}, 2\right)$, and $v_{3} \in U\left(-x_{1}, 2\right) \backslash S\left(-x_{1}, 2\right)$. Since $u_{2}=c v_{1}+(1-c) u_{3}$, where $0 \leq c \leq 1$, we have $u_{2}+x_{1}=c\left(v_{1}+x_{1}\right)+(1-c)\left(u_{3}+x_{1}\right),\left\|u_{2}+x_{1}\right\| \leq$ $c\left\|v_{1}+x_{1}\right\|+(1-c)\left(\left\|u_{3}+x_{1}\right\|\right)$, and $b\left\|v_{2}+x_{1}\right\| / 2 \leq 2 c+b(1-c)\left\|v_{3}+x_{1}\right\| / 2$. Therefore $\left\|v_{2}+x_{1}\right\|<2(2 c+(1-c) b) / b \leq 2$. This contradicts with $v_{2} \in S\left(-x_{1}, 2\right)$.

From the previous fact we have $\left\|z_{1}^{\prime}+x_{1}\right\| \leq\left\|x+x_{1}\right\| \leq 2(1+\epsilon) /(1-\epsilon) \leq 2+6 \epsilon$. Hence $\left\|z_{1}\right\| \leq 1+3 \epsilon$, and $\left\|z_{1}^{\prime}-y\right\|=\left\|z_{1}\right\|\left(\left\|y-y_{2}\right\|\right) \leq(1+3 \epsilon)\left(\left\|y-y_{2}\right\|\right)$. So, $\left\|y+x_{1}\right\|=\left\|z_{1}^{\prime}+x_{1}\right\|-\left\|z_{1}^{\prime}-y\right\| \geq 2-(1+3 \epsilon)\left\|y-y_{2}\right\| \geq 2-4 \epsilon-\left\|y-y_{2}\right\|$. Finally, we proved $\left\|y+x_{1}\right\| \geq 2-4 \epsilon-\left\|y-y_{2}\right\|$.

Similarly, $\left\|y-x_{1}\right\| \geq 2-4 \epsilon-\left\|y-y_{3}\right\|$.
So, $\left\|y+x_{1}\right\|+\left\|y-x_{1}\right\| \geq 4-8 \epsilon-\left(\left\|y-y_{2}\right\|+\left\|y-y_{3}\right\|\right)=4-8 \epsilon-\left\|y_{2}-y_{3}\right\| \geq$ $4-8 \epsilon-(1-\beta+6 \epsilon)=3+\beta-14 \epsilon$, and hence

$$
\begin{equation*}
r\left(X_{2}\right)=\sup \left\{2(\|x+y\|+\|x-y\|): x, y \in S\left(X_{2}\right)\right\} \geq 6+2 \beta-28 \epsilon \tag{3.2}
\end{equation*}
$$

From (3.1) and (3.2), we have $R(X)=\inf \left\{l\left(S\left(X_{2}\right)\right)-r\left(X_{2}\right): X_{2} \subseteq X\right\}<80 \epsilon$. Since ϵ can be arbitrarily small, we have $R(X)=0$.

4. $\mathrm{R}(\mathrm{X})$ and Other Parameters

Let $\delta(\epsilon)=\inf \{1-(\|x+y\| / 2):\|x-y\| \geq \epsilon, x, y \in S(X)\}, 0 \leq \epsilon \leq 2$, be the modulus of convexity of X. Since $\inf \{1-(\|x+y\|) / 2:\|x-y\| \geq \epsilon, x, y \in$ $S(X)\}=\inf \{1-(\|x+y\|) / 2:\|x-y\|=\epsilon, x, y \in S(X)\}, 0 \leq \epsilon \leq 2$, we have $\delta(\|x-y\|) \leq 1-(\|x+y\|) / 2$, for any $x, y \in S(X)$.

Let $l(X)=\inf \left\{l\left(S\left(X_{2}\right)\right): X_{2} \subseteq X\right\}$. Then $6 \leq l(X) \leq 8$.
Lemma 4. For a Banach space $X, \delta\left(2^{-}\right)>0$, where $\delta\left(2^{-}\right)=\lim _{\epsilon \rightarrow 2} \delta(\epsilon)$, implies that X is uniformly nonsquare.

Proof. If X is not uniformly nonsquare, let $x, y \in S(X)$ be as in Theorem 5. Then $\delta\left(2-(\epsilon / 4) \leq 1-(2-(\epsilon / 4)) / 2=\epsilon / 8\right.$. Letting $\epsilon \rightarrow 0$, we have $\delta\left(2^{-}\right)=0$.

Theorem 7. For a Banach space $X, \delta(l(X) / 4)>2-(l(X) / 4$ implies X has normal structure.

Proof. $\delta(l(X) / 4)>2-(l(X) / 4)$ implies $\delta\left(2^{-}\right)>0$, so X is uniformly nonsquare. Hence X is reflexive, therefore weak normal structure and normal structure coincide.

If X fails to have normal structure, for any $\epsilon>0$, let x_{1}, x_{2}, x_{3} and y be in Theorem 6. Then $1-\epsilon \leq\left\|y-x_{1}\right\| \leq 2,1-\epsilon \leq\left\|y+x_{1}\right\| \leq 2$, and $l(X) / 2-80 \epsilon \leq$ $\left\|y-x_{1}\right\|+\left\|y+x_{1}\right\|$, from Theorem 6. So, $l(X) / 2-2-80 \epsilon \leq \min \left\{\left\|y-x_{1}\right\|\right.$, $\left.\left\|y+x_{1}\right\|\right\}$, and $\max \left\{\left\|y-x_{1}\right\|,\left\|y+x_{1}\right\|\right\} \geq l(X) / 4-40 \epsilon$. Recall that $\delta(\epsilon)$ is an increasing function on $[0,2]$. Thus $\delta(l(X) / 4-40 \epsilon) \leq \delta\left(\max \left\{\left\|y-x_{1}\right\|\right.\right.$, $\left.\left.\left\|y+x_{1}\right\|\right\}\right) \leq 1-\min \left\{\left\|y-x_{1}\right\|,\left\|y+x_{1}\right\|\right\} / 2 \leq 2-l(X) / 4+40 \epsilon$. By letting $\epsilon \rightarrow 0$, we have $\delta(l(X) / 4) \leq 2-l(X) / 4$.

Therefore, $\delta(l(X) / 4)>2-l(X) / 4$ implies normal structure.
Corollary 1. For a Banach space X with $l(X) \geq 7$, the condition $\delta(7 / 4)>$ 1/4 implies X has normal structure.

Proof. The conditions $l(X) / 4 \geq 7 / 4,2-l(X) / 4 \leq 1 / 4, \delta(7 / 4)>1 / 4$, and $\delta(\epsilon)$ is an increasing function on [0, 2] imply that $\delta(l(X) / 4)>2-l(X) / 4$. So, X has normal structure from Theorem 7.

Since $\delta(3 / 2)>1 / 4$ implies $\delta(7 / 4)>1 / 4$, Corollary 1 improved the result of Corollary 5.6 for the space X with $l(X) \geq 7$ [7].

Corollary 2. For a Banach space X, if there exists an ϵ, such that $0 \leq \epsilon \leq$ $l(X) / 4$ and $\delta(\epsilon)>((8-l(X)) / l(X)) \epsilon$, then X has normal structure.

Proof. $\delta(\epsilon) / \epsilon$ is an increasing function on [0, 2] by [12]. $\delta(\epsilon) / \epsilon>(8-$ $l(X)) / l(X)(0 \leq \epsilon \leq l(X) / 4)$ implies $\delta(l(X) / 4) /(l(X) / 4) \geq \delta(\epsilon) / \epsilon>(8-$ $l(X)) / l(X)$, that is, $\delta(l(X) / 4)>2-l(X) / 4$.

Theorem 8. For a Banach space $X, \delta\left(2^{-}\right)>1 / 2$ implies X has normal structure.

Proof. If X fails to have normal structure, let x_{1}, x_{2}, x_{3} be in Lemma 2. Then $2-4 \epsilon \leq\left\|x_{3}-x_{1}\right\| \leq 2,1-\epsilon \leq\left\|x_{3}+x_{1}\right\| \leq 1+\epsilon$, and $\delta(2-4 \epsilon) \leq \delta\left(\left\|x_{3}-x_{1}\right\|\right) \leq$ $1-\left(\left\|x_{3}+x_{1}\right\| / 2\right) \leq(1+\epsilon) / 2$. By letting $\epsilon \rightarrow 0$, we have $\delta\left(2^{-}\right) \leq 1 / 2$.

Corollary 3. For a Banach space X, the condition $\delta(\epsilon)>\epsilon / 4$ implies X has normal structure.

Proof. Since $\delta(\epsilon) / \epsilon$ is an increasing function on [0, 2], from $\delta\left(2^{-}\right) / 2 \geq$ $\delta(\epsilon) / \epsilon>1 / 4$, we have $\delta\left(2^{-}\right)>1 / 2$.

Let $r(X)=\sup \left\{r\left(X_{2}\right): X_{2} \subseteq X\right\}=\sup \{2(\|x+y\|+\|x-y\|): x, y \in$ $S(X)\}$.

Proposition 1. If X is a Banach space, either l_{p} or $L_{p}[0,1]$, then $r(X)=$ $2^{2+(1 / p)}, 1<p \leq 2 ; r(X)=2^{2+(1 / q)}, p>2$, where $(1 / p)+(1 / q)=1$.

Proof. By using Lagrange multipliers in basic calculus, the function $u+v$, under the constraint $u^{p}+v^{p}=a$, assumes its maximum $2^{(p-1) / p} \cdot a^{1 / p}$ at $u=v=(a / 2)^{1 / p}$.

If $1<p \leq 2$, Clarkson inequality [3, 4]: $\|x+y\|^{p}+\|x-y\|^{p} \leq 2\left(\|x\|^{p}+\|y\|^{p}\right)$, for all $x, y \in S(X)$, implies that $\|x+y\|+\|x-y\| \leq 2^{(p-1) / p} \cdot 2^{2 / p}=2^{(p+1) / p}$.

If $p>2$, Clarkson inequality $\|x+y\|^{p}+\|x-y\|^{p} \leq 2^{p-1}\left(\|x\|^{p}+\|y\|^{p}\right)$, for all $x, y \in S(X)$, implies $\|x+y\|+\|x-y\| \leq 2^{(p-1) / p} \cdot\left(2^{p}\right)^{1 / p}=2^{(2 p-1) / p}$.

For $l_{p}, 1<p \leq 2$, let $x=(1,0,0, \ldots, 0, \ldots)$ and $y=(0,1,0, \ldots, 0, \ldots)$. Then $\|x+y\|+\|x-y\|=2^{(p+1) / p}$.

For $L_{p}[0,1], 1<p \leq 2$, let

$$
x(t)= \begin{cases}2^{\frac{1}{p}}, & 0 \leq t<\frac{1}{2} \\ 0, & \frac{1}{2} \leq t \leq 1\end{cases}
$$

and

$$
y(t)= \begin{cases}0, & 0 \leq t<\frac{1}{2} \\ 2^{1 / p}, & \frac{1}{2} \leq t \leq 1\end{cases}
$$

Then
$\|x(t)+y(t)\|+\|x(t)-y(t)\|=\sqrt[p]{\int_{0}^{1}\left(2^{\frac{1}{p}}\right)^{p} d t}+\sqrt[p]{\int_{0}^{1}\left(2^{\frac{1}{p}}\right)^{p} d t}=2 \cdot 2^{\frac{1}{p}}=2^{\frac{p+1}{p}}$.
We have $r(X)=\sup \{2(\|x+y\|+\|x-y\|): x, y \in S(X)\}=2^{(1 / p)+2}$, $1<p \leq 2$.

For $l_{p}, p>2$, let $x=\left(2^{-1 / p}, 2^{-1 / p}, 0, \ldots, 0, \ldots\right), y=\left(2^{-1 / p},-2^{-1 / p}, 0, \ldots, 0, \ldots\right)$. Then $\|x+y\|+\|x-y\|=2\left(2^{(p-1) / p}\right)=2^{(p+1) / p}$.

For $L_{p}[0,1], p>2$, let

$$
x(t)= \begin{cases}1, & 0 \leq t<\frac{1}{2} \\ 1, & \frac{1}{2} \leq t \leq 1\end{cases}
$$

and

$$
y(t)= \begin{cases}-1, & 0 \leq t<\frac{1}{2} \\ 1, & \frac{1}{2} \leq t \leq 1\end{cases}
$$

Then

$$
\|x(t)+y(t)\|+\|x(t)-y(t)\|=\sqrt[p]{\int_{\frac{1}{2}}^{1} 2^{p} d t}+\sqrt[p]{\int_{0}^{\frac{1}{2}} 2^{p} d t}=2\left(2^{\frac{p-1}{p}}\right)=2^{\frac{2 p-1}{p}}
$$

We have $r(X)=\sup \{2(\|x+y\|+\|x-y\|): x, y \in S(X)\}=2^{3-(1 / p)}=$ $2^{2+(1 / q)}, p>2$.

Theorem 9. For a Banach space $X, r(X)<l(X)$ implies X has normal structure.

Proof. $R(X)=\inf \left\{l\left(S\left(X_{2}\right)\right)-r\left(X_{2}\right): X_{2} \subseteq X\right\} \geq \inf \left\{l\left(S\left(X_{2}\right)\right): X_{2} \subseteq\right.$ $X\}-\sup \left\{r\left(X_{2}\right): X_{2} \subseteq X\right\}=l(X)-r(X) . r(X)<l(X)$ implies $R(X)=$ $l(X)-r(X)>0$, which hence implies X has normal structure by Theorem 6 .

Corollary 4. For a Banach space $X, r(X)<6$ implies that X has normal structure.

Finally, at the end of this section we show that the two parameters are distinct by giving an example of a Banach space X with $R(X)>0$ and $J(X)>3 / 2$.

Consider an n-dimensional space l_{p}^{n}, where $1 \leq p \leq \infty$, and n is a positive integer. The norm is defined by

$$
\left\|\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right\|_{p}= \begin{cases}\left(\sum_{j=1}^{n}\left|x_{j}\right|^{p}\right)^{\frac{1}{p}}, & \text { if } 1 \leq p<\infty \\ \max \left\{\left|x_{1}\right|,\left|x_{2}\right|, \ldots,\left|x_{n}\right|\right\}, & \text { if } p=\infty .\end{cases}
$$

This is a subspace of general l_{p} space, where $1 \leq p \leq \infty$. The norm is defined by

$$
\left\|\left(x_{1}, x_{2}, \ldots, x_{n}, \ldots\right)\right\|_{p}= \begin{cases}\left(\Sigma_{j=1}^{\infty}\left(\left|x_{j}\right|^{p}\right)^{\frac{1}{p}},\right. & \text { if } 1 \leq p<\infty \\ \sup \left\{\left|x_{1}\right|,\left|x_{2}\right|, \ldots,\left|x_{n}\right|, \ldots\right\}, & \text { if } p=\infty\end{cases}
$$

From [7],

$$
J\left(l_{p}\right)= \begin{cases}2^{1-\frac{1}{p}}, & \text { if } 2 \leq p<\infty \\ 2, & \text { if } p=\infty\end{cases}
$$

It is easy to show $J\left(l_{p}^{n}\right)=J\left(l_{p}\right)$ for all n.
Let $n=2$, and $p>\left(\log _{2}(4 / 3)\right)^{-1}$. Then $J\left(l_{p}^{2}\right)=2^{1-(1 / p)}>2 \cdot 3 / 4=3 / 2$.
On the other hand, $S\left(l_{p}^{2}\right)$ is a compact set in \mathbb{R}^{2}, so there exist x and $y \in S\left(l_{p}^{2}\right)$ such that the supremum is assummed at x and y in the definition of $J\left(l_{p}^{2}\right)$. So, $J\left(l_{p}^{2}\right)=\|x+y\|=\|x-y\|$, and $r\left(l_{p}^{2}\right)=2(\|x+y\|+\|x-y\|)=4\|x+y\|$.

But l_{p}^{2} is a two-dimensional uniform convex space, so $l\left(S\left(l_{p}^{2}\right)\right)>4\|x+y\|$ by the definition of arc length. We have $R\left(l_{p}^{2}\right)>0$.

We may also use an l_{p}^{n} space for any n or the l_{p} space to establish our purpose, but for the l_{p} space it is more complicated.

5. The Arc Lengths and Uniform Normal Structure

Let F be a filter on an index set I, and let $\left\{x_{i}\right\}_{i \in I}$ be a subset in a Hausdorff topological space $X .\left\{x_{i}\right\}_{i \in I}$ is said to converge to x with respect to F, denoted by $\lim _{F} x_{i}=x$, if for each neighborhood U of x, $\left\{i \in I: x_{i} \in U\right\} \in F$. A filter U on I is called an ultrafilter if it is maximal with respect to the ordering of the set inclusion. An ultrafilter is called trivial if it is of the form $\left\{A: A \subseteq I, i_{0} \in A\right\}$ for some $i_{0} \in I$. We will use the fact that if U is an ultrafilter, then (i): for any $A \subseteq I$, either $A \subseteq U$ or $I \backslash A \subseteq U$; (ii): if $\left\{x_{i}\right\}_{i \in I}$ has a cluster point x, then $\lim _{U} x_{i}$ exists and equals x.

Let $\left\{X_{i}\right\}_{i \in I}$ be a family of Banach spaces and let $l_{\infty}\left(I, X_{i}\right)$ denote the subspace of the product space equipped with the norm $\left\|\left(x_{i}\right)\right\|=\sup _{i \in I}\left\|x_{i}\right\|<\infty$.

Definition 4 [14]. Let U be an ultrafilter on I and let $N_{U}=\left\{\left(x_{i}\right) \in l_{\infty}\left(I, X_{i}\right)\right.$: $\left.\lim _{U}\left\|x_{i}\right\|=0\right\}$.

The ultraproduct of $\left\{X_{i}\right\}_{i \in I}$ is the quotient space $l_{\infty}\left(I, X_{i}\right) / N_{U}$ equipped with the quotient norm.

We will use $\left(x_{i}\right)_{U}$ to denote the element of the ultraproduct. It follows from remark (ii) above and the definition of quotient norm that

$$
\begin{equation*}
\left\|\left(x_{i}\right)_{U}\right\|=\lim _{U}\left\|x_{i}\right\| \tag{5.1}
\end{equation*}
$$

In the following we will restrict our index set I to be \mathbb{N}, the set of natural numbers, and let $X_{i}=X, i \in \mathbb{N}$, for some Banach space X. For an ultrafilter U on \mathbb{N}, we use X_{U} to denote the ultraproduct.

Theorem 10. For any Banach space X, and for any nontrivial ultrafilter U on $\mathbb{N}, R\left(X_{U}\right)=R(X)$.

Proof. For any $\epsilon>0$, from the definition of $R(X)$, there exists a twodimensional subspace $X_{2} \subseteq X$ and $x, y \in S\left(X_{2}\right)$ such that for all partitions P of the interval $\left[0, l\left(S\left(X_{2}\right)\right)\right]$ and the corresponding $l\left(S\left(X_{2}\right), P\right)$,

$$
l\left(S\left(X_{2}\right), P\right)-2(\|x+y\|+\|x-y\|)<R(X)+\epsilon
$$

Let $x_{i}=x$, and $y_{i}=y$, for all $i \in \mathbb{N}$. Then $\left(x_{i}\right)_{U},\left(y_{i}\right)_{U} \in S\left(\left(X_{U}\right)_{2}\right)$, where $\left(X_{U}\right)_{2}$ is a two dimensional subspace, spanned by $\left(x_{i}\right)_{U}$, and $\left(y_{i}\right)_{U}$, of X_{U}. The projection from X_{U} to X produces a one-to-one correspondence between the partitions P_{U} of $\left[0, l\left(S\left(\left(X_{U}\right)_{2}\right)\right)\right]$ and the partition P of $\left[0, l\left(S\left(X_{2}\right)\right)\right]$, and $l\left(S\left(\left(X_{U}\right)_{2}\right), P_{U}\right)=l\left(S\left(X_{2}\right), P\right)$.

Hence $l\left(S\left(\left(X_{U}\right)_{2}\right), P_{U}\right)-2\left(\left\|\left(x_{i}\right)_{U}+\left(y_{i}\right)_{U}\right\|+\left\|\left(x_{i}\right)_{U}-\left(y_{i}\right)_{U}\right\|\right)=l\left(S\left(X_{2}\right), P\right)-$ $2(\|x+y\|+\|x-y\|)<R(X)+\epsilon$.

Since ϵ can be arbitrarily small, we have proved $R\left(X_{U}\right) \leq R(X)$.

To prove the reverse inequality, we choose $\left(X_{U}\right)_{2} \subseteq X_{U},\left(x_{i}\right)_{U},\left(y_{i}\right)_{U} \in$ $S\left(\left(X_{U}\right)_{2}\right)$, and a partition P_{U} of $\left[0, l\left(S\left(\left(X_{U}\right)_{2}\right)\right)\right]$ such that $l\left(S\left(\left(X_{U}\right)_{2}\right), P_{U}\right)>$ $l\left(S\left(\left(X_{U}\right)_{2}\right)\right)-\epsilon$ and $l\left(S\left(\left(X_{U}\right)_{2}\right), P_{U}\right)-2\left(\left\|\left(x_{i}\right)_{U}+\left(y_{i}\right)_{U}\right\|+\left\|\left(x_{i}\right)_{U}-\left(y_{i}\right)_{U}\right\|\right)<$ $R\left(X_{U}\right)+\epsilon$.

Without loss of generality, we may assume that $\left\|x_{i}\right\|,\left\|y_{i}\right\|=1$ for all $i \in \mathbb{N}$, and the norm of each component of the partition on $S\left(\left(X_{U}\right)_{2}\right)$ has norm 1 too.

From Theorem 1 and (5.1), $l\left(S\left(\left(X_{U}\right)_{2}\right)\right)=\sup _{P_{U}}\left\{l\left(S\left(\left(X_{U}\right)_{2}\right), P_{U}\right)\right\}$
$=\sup _{P_{U}}\left\{\lim _{U}\left\{l\left(S\left(X_{2}^{i}\right),\left(P_{U}\right)_{i}\right)\right\}\right\}=\lim _{U}\left\{\sup _{P_{U}}\left\{l\left(S\left(X_{2}^{i}\right),\left(P_{U}\right)_{i}\right)\right\}\right\}$
$=\lim _{U}\left\{l\left(S\left(X_{2}^{i}\right)\right)\right\}$, where X_{2}^{i} is a two-dimensional subspace spanned by x_{i}, and y_{i}, and $\left(P_{U}\right)_{i}$, a projection of the partition P_{U} to X_{2}^{i}, is a partition of $S\left(X_{2}^{i}\right)$ for all $i \in \mathbb{N}$.

From remarks (i) and (ii) of ultrafilter and by (5.1) and the paragragh above, the sets
$J=\left\{i \in \mathbb{N}, l\left(S\left(\left(X_{U}\right)_{2}\right), P_{U}\right)-2\left(\left\|\left(x_{i}\right)_{U}+\left(y_{i}\right)_{U}\right\|+\left\|\left(x_{i}\right)_{U}-\left(y_{i}\right)_{U}\right\|\right)<R\left(X_{U}\right)+\epsilon\right\}$, $K=\left\{i \in \mathbb{N}, l\left(S\left(\left(X_{U}\right)_{2}\right), P_{U}\right)>l\left(S\left(\left(X_{U}\right)_{2}\right)\right)-\epsilon\right\}$, and $M=\left\{i \in \mathbb{N}, l\left(S\left(X_{2}^{i}\right)\right)<l\left(S\left(\left(X_{U}\right)_{2}\right)\right)+\epsilon\right\}$
are all in U. So the intersection $J \bigcap K \bigcap M$ is in U too, and is hence not empty.
Let $i \in J \bigcap K \bigcap M$. We have $l\left(S\left(X_{2}^{i}\right),\left(P_{U}\right)_{i}\right)-2\left(\left\|x_{i}+y_{i}\right\|+\left\|x_{i}-y_{i}\right\|\right)<$ $R\left(X_{U}\right)+\epsilon, l\left(S\left(X_{2}^{i}\right),\left(P_{U}\right)_{i}\right)>l\left(S\left(\left(X_{U}\right)_{2}\right)\right)-\epsilon$, and $l\left(S\left(X_{2}^{i}\right)\right)<l\left(S\left(\left(X_{U}\right)_{2}\right)\right)+\epsilon$.

So, $l\left(S\left(X_{2}^{i}\right)\right)-2\left(\left\|x_{i}+y_{i}\right\|+\left\|x_{i}-y_{i}\right\|\right)<R\left(X_{U}\right)+3 \epsilon$. Hence $R(X)<$ $R\left(X_{U}\right)+3 \epsilon$. Since ϵ can be arbitrarily small, $R(X) \leq R\left(X_{U}\right)$.

Similarly, we can prove the following two theorems:
Theorem 11. For any Banach space X, and for any nontrivial ultrufilter U on $\mathbb{N}, r\left(X_{U}\right)=r(X)$.

Theorem 12. For any Banach space X, and for any nontrivial ultrufilter U on $\mathbb{N}, l\left(X_{U}\right)=l(X)$.

Theorem 13. If X is a Banach space with $R(X)>0$, then X has uniform normal structure.

Proof. The idea of the proof is the same as the proof of Theorem 4.4 in [7]. Suppose that $R(X)>0$, and that X does not have uniform normal structure. We find a sequence $\left\{C_{n}\right\}$ of bounded closed convex subsets of X such that for each n,

$$
\begin{aligned}
& 0 \in C_{n}, d\left(C_{n}\right)=1, \text { and } \\
& \operatorname{rad}\left(C_{n}\right)=\inf \left\{\sup \left\{\|x-y\|, y \in C_{n}\right\}, x \in C_{n}\right\}>1-\frac{1}{n}
\end{aligned}
$$

Let U be any nontrivial ultrafilter on \mathbb{N}, and let

$$
C=\left\{\left(x_{n}\right)_{U}: x_{n} \in C_{n}, n \in \mathbb{N}\right\} .
$$

Then C is a nonempty bounded closed convex subset of X_{U}. It follows from the above properties of C_{n} that $d(C)=\operatorname{rad}(C)=1$, so X_{U} does not have normal structure. On the other hand, from Theorem $10, R\left(X_{U}\right)=R(X)>0$. This contradicts Theorem 6, and hence X must have uniform normal structure.

Similarly, we can prove the following theorem:
Theorem 14. For a Banach space $X, \delta(l(X) / 4)>2-(l(X) / 4)$ implies that X has uniform normal structure.

Ttheorem 15. For a Banach space $X, r(X)<l(X)$ implies that X has uniform normal structure.

Theorem 16. For a Banach space $X, r(X)<6$ implies that X has uniform normal structure.

6. APPENDIX

In this section, I summarize some results about the parameters $\delta(\epsilon), r(X)$ and $J(X)$ for some classical Banach spaces.

Theorem 17 [7]. Let X be either l_{p} or $L_{p}[0,1]$, where $1 \leq p \leq \infty$. Then $J(X)=2^{1 / p}$, if $1<p \leq 2 ; J(X)=2^{1-(1 / p)}$, if $2<p<\infty$; and $J(X)=2$, if $p=1$ or ∞.

Theorem 18 [4, p. 148]. Let X be either l_{p} or $L_{p}[0,1]$, where $1<p<\infty$. Then, $\delta(\epsilon)$ satisfies the equation: $(1-\delta(\epsilon)+(\epsilon / 2))^{p}+(1-\delta(\epsilon)-(\epsilon / 2))^{p}=2$, if $1<p \leq 2 ; \delta(\epsilon)=1-\left(1-(\epsilon / 2)^{p}\right)^{1 / p}$, if $2<p<\infty$.

Theorem 19. For the spaces $l_{1}, l_{\infty}, L_{1}[0,1]$ and $L_{\infty}[0,1]$, we have $\delta(\epsilon) \equiv 0$.
Proof. From [7], for any Banach space $X, J(X)<\epsilon$ if and only if $\delta(\epsilon)>$ $1-(\epsilon / 2)$. So, it is a direct result of Theorem 17.

The values of $r(X)$ are shown in Proposition 1.

Acknowledgements

The author is very grateful to the referee for several constructive suggestions and improvements.

References

1. M. S. Brodskii and D. P. Milman, On the center of a convex Set, Dokl. Akad. Nauk $\operatorname{SSSR}(N . S)$.59 (1948), 837-840.
2. H. Buseman, The Geometry of Geodesics, Academic Press, New York, 1955.
3. J. A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), 396-414.
4. M. M. Day, Normed Linear Spaces, 2nd ed., Springer-Verlag, New York, 1973.
5. D. van Dulst, Some more Banach spaces with normal structure, J. Math. Anal. Appl. 104 (1984), 285-289.
6. D. van Dulst and B. Sims, Fixed points of nonexpansive mappings and Chebyshev centers in Banach spaces with norms of type (KK), in: Banach Space Theory and Its Applications (Bucharest, 1981) Lecture Notes in Mathematics 991, Springer-Verlag, 1983.
7. J. Gao and K. S. Lau, On two classes of Banach spaces with normal structure, Studia Math. 99 (1991), 41-56.
8. R. Huff, Banach spaces which are nearly uniformly convex, Rocky Mountain J. Math. 10 (1980), 743-749.
9. R. C. James, Uniformly nonsquare Banach spaces, Ann. Math. 80 (1964), 542-550.
10. W. A. Kirk, A fixed point theorem for mappings which do not increase distance, Amer. Math. Monthly 72 (1965), 1004-1006.
11. T. Landes, Normal structure and the sum-property, Pacific J. Math. 123 (1986), 127-147.
12. J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces II, Function Spaces, Springer-Verlag, Berlin, 1979.
13. J. J. Schäffer, Geometry of Spheres in Normed Spaces, Marcel Dekker, New York, 1976.
14. B. Sims, "Ultra"-Techniques in Banach Spaces Theory, Queen's papers in Pure and Appl. Math., 60, Queen's University, Kingston, Ontario, 1982.
15. B. Turett, A dual view of a theorem of Baillon, in: Nonlinear Analysis and Applications, Lecture Notes in Pure and Appl. Math., 80, Marcel Dekker, New York, 1982, pp. 279-286.
16. V. Zizler, On some rotundity and smoothness properties of Banach spaces, Dissertationes Math. (Rozprawy Mat). 87 (1971), 5-33.

Department of Mathematics Community College of Philadelphia Philadelphia, PA 19130-3991, USA
E-mail: jgao@ccp.cc.pa.us

[^0]: Received February 2, 2000; revised August 29, 2000. Communicated by P. Y. Wu.
 2000 Mathematics Subject Classification: 46B20.
 Key words and phrases: Arc length, modulus of convexity, normal structure, uniformly nonsquare space, uniform normal structure and ultraproduct space.

