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ON ULTRAREGULAR INDUCTIVE LIMITS

Jing-Hui Qiu

Abstract. An inductive limit (E, t) = ind (En, tn) is said to have prop-
erty (P) if every closed absolutely convex neighborhood in (En, tn) is
closed in (En+1, tn+1). This property was introduced and investigated
by J. Kucera. In this paper we give some equivalent descriptions of
property (P) and prove that property (P) implies ultraregularity. Partic-
ularly, if all (En, tn) are metrizable locally convex spaces, we have: (E, t)
is ultraregular if and only if (E, t) is a strict inductive limit and for each
n ∈ N, there is m = m(n) ∈ N such that E

E

n ⊂ Em; (E, t) has property
(P) if and only if (E, t) is a strict inductive limit and each En is closed
in (En+1, tn+1).

1. INTRODUCTION

We keep the notations of [1]. Let (E1, t1) ⊂ (E2, t2) ⊂ · · · be a sequence
of locally convex spaces and the inclusions in,n+1 : (En, tn) → (En+1, tn+1) be
continuous for all n ∈ N. Then (En, tn)n∈N is said to be an inductive sequence
of locally convex spaces. If E =

⋃∞
n=1 En is endowed with the finest locally

convex topology t (in fact, also the finest linear topology; see [1, p.45]) such
that the injections in : (En, tn) → E are continuous for all n ∈ N, then (E, t)
is called the inductive limit of the inductive sequence (En, tn)n∈N and denoted
by (E, t) := ind (En, tn). If every (En, tn) is a metrizable locally convex space
(resp. a Fréchet space), then (E, t) = ind (En, tn) is called an (LM)-space
(resp. an (LF)-space). If for each n ∈ N, tn+1 induces the topology tn on
En, then (E, t) = ind (En, tn) is called a strict inductive limit. Certainly,
any bounded set in (En, tn) is also bounded in (E, t), but a bounded set in
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(E, t) need not be contained and bounded in some (En, tn). The Dieudonné-
Schwartz Theorem ([3, §4, Prop.4] or [16, p.59]) states that a set B ⊂ E is
t-bounded if and only if it is contained and bounded in some (En, tn), provided
that (E, t) = ind (En, tn) is a strict inductive limit and each En is closed in
(En+1, tn+1). The various extensions of Dieudonné-Schwartz Theorem have
been considered, for example, in [2, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 18, 19]
etc. As in [1], we call an inductive limit (E, t) = ind (En, tn) to be

(a) α-regular if for each bounded set B in (E, t), there exists n = n(B) ∈ N
such that B is contained in En;

(b) regular if for each bounded set B in (E, t), there exists n = n(B) ∈ N
such that B is contained and bounded in (En, tn).

By Dieudonné-Schwartz Theorem, we know that a strict inductive limit
(E, t) = ind (En, tn) is regular if each En is closed in (En+1, tn+1). In [7],
Kucera introduced the notion of ultraregular inductive limits as follows.

(c) An inductive limit (E, t) = ind (En, tn) is called to be ultraregular if
(E, t) is α-regular and each set B ⊂ En, which is bounded in (E, t), is also
bounded in (En, tn).

In fact, Dieudonné and Schwartz proved that a strict inductive limit (E, t) =
ind (En, tn) is ultraregular if each En is closed in (En+1, tn+1). Moreover,
Kucera [7] introduced the following property (P) and investigated the rela-
tionship between property (P) and ultraregularity.

(d) An inductive limit (E, t) = ind (En, tn) is said to have property (P) if
every closed absolutely convex neighborhood in (En, tn) is closed in (En+1, tn+1).

In this paper, we shall see that property (P) is indeed a very strong prop-
erty. We shall obtain some equivalent descriptions of property (P) and prove
that property (P) implies ultraregularity. This improves the related result of
Kucera [7]. For an (LM)-space (E, t) = ind (En, tn), we shall give respectively
the essential characteristics of ultraregularity and property (P) as follows:

(E, t) is ultraregular if and only if (E, t) is a strict inductive limit and for
each n ∈ N, there is m = m(n) ∈ N such that E

E
n ⊂ Em, where E

E
n denotes

the closure of En in (E, t);
(E, t) has property (P) if and only if (E, t) is a strict inductive limit and

each En is closed in (En+1, tn+1).
For an (LF)-space (E, t) = ind (En, tn), we shall show that (E, t) is ultra-

regular if and only if (E, t) has property (P) and this is the case if and only if
(E, t) is a strict inductive limit and each En is closed in (En+1, tn+1).

2. EQUIVALENT DESCRIPTIONS OF PROPERTY (P)

We begin this section with the following basic observation.
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Lemma 1. Let (E, t) = ind (En, tn) be an inductive limit of locally convex
spaces. If (En, tn)′ = (En, tn+1|En)′ for every n ∈ N, then for any m ∈ N, each
fm ∈ (Em, tm)′ can be extended to a linear functional f ∈ (E, t)′. Here for
any locally convex space (X, τ), (X, τ)′ denotes the topological dual of (X, τ).

Proof. Without loss of generality, we assume that m = 1. Suppose that
f1 ∈ (E1, t1)′. Since (E1, t1)′ = (E1, t2|E1)′, by the Hahn-Banach extension
theorem [17, p.49], f1 can be extended to f2 ∈ (E2, t2)′ = (E2, t3|E2)′. Again,
f2 can be extended to f3 ∈ (E3, t3)′ = (E3, t4|E3)′, · · · . Repeating this process
infinitely, we obtain a linear functional f on E such that f |En = fn for every
n ∈ N. Since f |En = fn ∈ (En, tn)′ for every n, we conclude that f ∈ (E, t)′

(see [17, p.54]). Clearly f |E1 = f1.

Now we are going to prove our first main result, which gives some equiva-
lent descriptions of property (P).

Theorem 1. Let (E, t) = ind (En, tn) be an inductive limit of locally convex
spaces, then the following statements are equivalent:

( i ) (E, t) has property (P), i.e., every closed absolutely convex neighborhood
of 0 in (En, tn) is closed in (En+1, tn+1).

(ii) Every closed convex set in (En, tn) is closed in (En+1, tn+1) (see [10,
H-4]).

(iii) Every closed convex set in (En, tn) is closed in (E, t).

Proof. The implications (iii)=⇒(ii)=⇒(i) are obvious.
(i)=⇒(ii). Assume that (E, t) = ind(En, tn) has property (P). First, En,

as a special closed absolutely convex 0-neighborhood in (En, tn), is closed
in (En+1, tn+1). Next we shall prove that (En, tn)′ = (En, tn+1|En)′, where
(En, tn)′ and (En, tn+1|En)′ denote the topological duals of (En, tn) and (En,
tn+1|En) respectively. Since tn ⊃ tn+1|En, we have (En, tn)′ ⊃ (En, tn+1|En)′.
For any f ∈ (En, tn)′ and any ε > 0, denote the set {x ∈ En : |f(x)| ≤ ε} by
(|f | ≤ ε). Clearly (|f | ≤ ε) is a closed absolutely convex 0-neighborhood in
(En, tn). By (P), (|f | ≤ ε) is closed in (En+1, tn+1). Thus we have:

{x ∈ En : f(x) = 0} =
⋂

ε>0

{x ∈ En : |f(x)| ≤ ε} =
⋂

ε>0

(|f | ≤ ε)

is closed in (En+1, tn+1). Certainly {x ∈ En : f(x) = 0} is closed in (En,
tn+1|En) and f ∈ (En, tn+1|En)′. Hence (En, tn)′ = (En, tn+1|En)′. From this,
(En, tn) and (En, tn+1|En) have the same closed convex sets (see [17, p.132] or
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[20, p.224]). Thus each closed convex set in (En, tn) is closed in (En, tn+1|En).
Since En is closed in (En+1, tn+1), each closed convex set in (En, tn) is closed
in (En+1, tn+1). That is, (ii) holds.

(ii)=⇒(iii). By (ii), any closed convex set B in (En, tn) is closed in (En+1,
tn+1). Thus B is also a closed convex set in (En+1, tn+1). Again by (ii), B is
closed in (En+2, tn+2). Repeating this process, we conclude that each closed
convex set in (En, tn) is closed in (Em, tm) for all m ≥ n. Let A be any
fixed closed convex set in (En, tn) and x ∈ E\A. There exists m ≥ n such
that x ∈ Em. Since A is closed in (Em, tm) and x ∈ Em\A, by the Hahn-
Banach separation theorem, there exists fm ∈ (Em, tm)′ such that Re fm(x) >
sup{Re fm(y) : y ∈ A}. By (ii), (En, tn) and (En, tn+1|En) have the same
closed convex sets. Hence (En, tn)′ = (En, tn+1|En)′ for every n. By Lemma
1, fm ∈ (Em, tm)′ can be extended to a linear functional f ∈ (E, t)′. Thus
Re f(x) = Re fm(x) and Re f(y) = Re fm(y) for every y ∈ A. Hence

Ref(x) > sup{Re f(y) : y ∈ A} = sup{Re f(y) : y ∈ A
E}.

From this, x 6∈ A
E and hence A = A

E . That is to say, each closed convex set
in (En, tn) is closed in (E, t). Namely, (iii) holds.

In [7], Kucera proved that if (P) holds and each (En, tn) is fast complete,
then (E, t) is ultraregular. On fast complete spaces, i.e. Mackey complete
spaces, please refer to [1, p.77]. In fact, the condition that each (En, tn) is fast
complete is superfluous. By using Theorem 1, we have:

Corollary 1. If (P) holds, then (E, t) is ultraregular and each En is closed
in (E, t).

Proof. By Theorem 1, we know that (P) is equivalent to the condition that
every closed convex set in (En, tn) is closed in (E, t). Hence each En is closed
in (E, t). Thus each bounded set in (E, t) is contained in some En (see [8]),
i.e., (E, t) is α-regular. Besides, (En, tn) and (En, t|En) have the same closed
convex sets, and hence (En, tn)′ = (En, t|En)′. Thus (En, tn) and (En, t|En)
have the same bounded sets (see [17, p.132] or [6, p.254]). This implies that
if a bounded set B in (E, t) is contained in En, then B is also bounded in
(En, tn). That is, (E, t) is ultraregular.

3. ON ULTRAREGULAR (LM)-SPACES

In this section, we shall discuss the relationship among property (P), ul-
traregularity and strictness in (LM)-spaces.
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Theorem 2. Let (E, t) = ind (En, tn) be an (LM)-space. Then (E, t) is
ultraregular if and only if (E, t) is a strict inductive limit and for each n ∈ N,

there is m = m(n) ∈ N such that E
E
n ⊂ Em.

Proof. Assume that (E, t) is ultraregular. Then (En, tn) and (En, t|En)
have the same bounded sets. Certainly (En, tn) and (En, tn+1|En) have the
same bounded sets. Since (En, tn) and (En, tn+1|En) both are metrizable and
hence bornological, we have (En, tn) = (En, tn+1|En). This means that (E, t)
is a strict inductive limit. By the assumption that (E, t) is ultraregular, (E, t)
is α-regular. By [11, Theorem 4], for each n ∈ N there is m = m(n) ≥ n and an
absolutely convex 0-neighborhood Un in (En, tn) such that U

E
n ⊂ Em. Since

(E, t) = ind (En, tn) is a strict inductive limit, we have t|En = tn (see [17, p.58]
or [20, p.159]). Thus there exists an open absolutely convex 0-neighborhood
U in (E, t) such that U ∩ En ⊂ Un. For any x ∈ U ∩ E

E
n , there is a net

(xδ) ⊂ En such that xδ → x in (E, t). Note that U is an open neighborhood
of x in (E, t). Hence there exists δ0 such that xδ ∈ U for all δ ≥ δ0. Thus
xδ ∈ U ∩ En for all δ ≥ δ0 and x ∈ U ∩ En

E . Now we have:

U ∩ E
E
n ⊂ U ∩ En

E ⊂ U
E
n ⊂ Em.

Thus k(U ∩ E
E
n ) ⊂ Em for every k ∈ N. From this,

E
E
n = E ∩ E

E
n =

( ∞⋃

k=1

kU

)⋂
E

E
n =

∞⋃

k=1

k
(
U ∩ E

E
n

)
⊂ Em.

Conversely, suppose that (E, t) is a strict inductive limit and for each
n ∈ N, there is m = m(n) ≥ n such that E

E
n ⊂ Em. By the assumption that

for each n ∈ N, there is m = m(n) ≥ n such that E
E
n ⊂ Em, we conclude that

(E, t) is α-regular (see [10, Theorem 1]). Moreover, since (En, tn) = (En, t|En),
each set B ⊂ En, which is bounded in (E, t), is also bounded in (En, tn). Thus
(E, t) is ultraregular.

Corollary 2. Let (E, t) = ind (En, tn) be an (LM)-space. Then the follow-
ing statements are equivalent:

(i) (E, t) has property (P).
(ii) (E, t) is ultraregular and each En is closed in (En+1, tn+1).
(iii) (E, t) is a strict inductive limit and each En is closed in (En+1, tn+1).

Proof. (i)=⇒(ii). It follows from Corollary 1.
(ii)=⇒(iii). It follows from Theorem 2.
(iii)=⇒(i). It is obvious.
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For an (LF)-space (E, t) = ind (En, tn), we even have a stronger result.
In [14, Theorem 4], we already proved that (E, t) is regular if and only if
(EE

n , t|EE
n ) is fast complete for every n ∈ N. Now we shall see that (E, t) is

ultraregular if and only if (En, t|En) is fast complete for every n ∈ N. For
brevity, we call an inductive limit β-ultraregular if each set B ⊂ En, which is
bounded in (E, t), is also bounded in (En, tn). For (LF)-spaces, we have the
following:

Theorem 3. Let (E, t) = ind (En, tn) be an (LF)-space. Then the following
statements are equivalent:

(i) (E, t) is ultraregular.
(ii) (E, t) is β-ultraregular.
(iii) (En, t|En) is fast complete for every n.
(iv) (E, t) is a strict inductive limit.
(v) (E, t) has property (P).

Proof. (i)=⇒(ii). It is obvious.
(ii)=⇒(iii). For any bounded set B in (En, t|En), denote the closed abso-

lutely convex hull of B in (En, tn) by Γ(B)
En . By (ii), (En, t|En) and (En, tn)

have the same bounded sets. Hence B is also bounded in (En, tn) and Γ(B)
En

is a closed absolutely convex bounded set in (En, tn). Since (En, tn) is a Fréchet
space, Γ(B)

En is a Banach disk in (En, tn) and hence it is also a Banach disk in
(En, t|En). Thus each bounded set B in (En, t|En) is contained in the Banach
disk Γ(B)

En in (En, t|En). That is, (En, t|En) is fast complete.
(iii)=⇒(iv). See [16, Lemma 3].
(iv)=⇒(v). Since (E, t) is a strict inductive limit, (En, tn) = (En, tn+1|En)

for every n. Since (En, tn) is complete, En is closed in (En+1, tn+1). Thus
each closed convex set in (En, tn) is closed in (En+1, tn+1) and hence (E, t)
has property (P).

(v)=⇒(i). It follows from Corollary 1.
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inductive limits, Proc. Amer. Math. Soc. 78 (1980), 366-368.
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