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HARDY-TYPE INEQUALITIES

R. Radha

Abstract. Hardy-type inequalities are proved for n-dimensional Hermite
and special Hermite expansions. Paley-type theorems for these expan-
sions are also deduced.

1. INTRODUCTION

It was observed by Hardy and Littlewood as well as many others that there
are many results in Fourier analysis that hold for LP(T), 1 < p < oo, fail to be
true for L'(T) and yet remain true for ReH', where ReH! is the real Hardy
space consisting of the boundary values of the real parts of the functions in the
Hardy space H' on the unit disk in the plane. As an example a well-known
result of Paley shows that

oo/

Sl kP < oo,

—0o0

where > e denotes the Fourier series and ' is the sum which runs
over nonzero k’s. This result is false when p = 1. However, Hardy has shown
that if f € ReH', we have

Kanjin in [2] has proved Hardy’s inequalities for the one-dimensional Her-
mite and Laguerre expansions. Our aim of this paper is to obtain similar type
of inequalities for n-dimensional Hermite and special Hermite expansions.
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2. NOTATIONS AND PRELIMINERIES
The Hermite functions hy on the real line are defined by
() = Hy(z)e 2% k=0,1,2,...,

where Hy(z) denotes the Hermite polynomial. These are eigenfunctions of the
Hermite operator (harmonic oscillator) —A + x? with the eigenvalues 2k + 1.
The normalised Hermite functions hy(x) are defined by

hi(x) = (2°kI/T) "2 (x),

which form a complete orthonormal family in L?(R, dz).

Let p be a multiindex and z € R"™. Then the n-dimensional Hermite
functions ®,(x) are defined by taking the product of the one-dimensional
normalised Hermite functions h,,; (x;):

@, (2) = [ b ().
j=1

Then they form a complete orthonormal system for L?(R", dz) and they are
eigen functions of the Hermite operator H = —A+|z|? on R™ with eigenvalues
(2|u] + ), where |u| = 1 + p2 + ... + fn.

The special Hermite functions, which occupy a central place in the study
of Hermite and Laguerre expansions, are defined by

Bpulatin) =) E [ et (e g (6 gu) de

These functions appear as the entry functions of the Schrodinger representa-
tion of the Heisenberg group. They form a complete orthonormal system in
L?(C"). Let
1
L=-A,+ Z|Z|2 —iN,

where .
0 0
N = (a}j — yj) .
j; 8yj axj

Then ®,, are eigenfunctions of L, with eigenvalue 2|v| 4+ n and L is called the
special Hermite operator. For various results concerning these expansions, we
refer to [4].

The study of Hardy spaces over R™ provides basic insights into such topics
as maximal functions, singular integrals and LP-spaces. For definitions and
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their importance in analysis, we refer to [1] and [3] except that we state here
the atomic decomposition of H! space which will be used in the course of our
discussions.

A function @ is an H'-atom (associated to a ball B) if (i) a is supported
in B, (ii) |a| < |B|™! a.e., and (iii) [ adz = 0. Then we have

Theorem 2.1. f € H' if and only if f can be written as a sum of H'-
atoms, {ax},
F=Y e,
k

where { A} is a sequence of complex numbers with »_ |\x| < 0o, and one has

call fllan <7 1Nl < call £l

3. REsuLTSs FOR HERMITE EXPANSIONS

Proposition 3.1. Let € > 0 be fized. Choose 6 > —(1+¢€)/2. Let {¢,} be

an orthonormal basis in L*(R™) such that |V,| < cn%u‘{ ..... u?, where i1, ..
(1 <j <n) are the nonzero indices of . Let o = ((n+1)(1+€)+nd)/(2+n)
and f(pu) = [pu f(x)u(x)dz. Then for every f € H'(R™) we have

()]
Zn (1 + D) (e + 1).cc(pn + 1)) < c(n, O fll i mnys

pe

where N = NJ{0}, ¢(n,€) is a constant depending on the dimension n and €
only.

Proof. When p = 0, each pj in o = (1, ..., pin) is zero. Thus ¢, (z)| < ¢(n).
By the atomic decomposition of H', it follows that

Fw)] < et il

Let a be an H'-atom supported in a ball B = B(zq,r). Then

) = [ a@)oulz) = ou(a)de.
By applying the mean value theorem and the Schwarz inequality, we get

. 1 =2
(1) a(u)| < en®psf.pidllall -
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To prove the result, we need only prove the following;:

|a(p)]
Z (1 + 1) (p2 + 1) (pn + 1)]7
|

e a(n)
(2) a(p
_l’_
Z,DV (11 + 1) (p2 + 1) (pn + 1)]7
= S1 + 53 < ¢(n,e).
But .
S, < Z |:(M)|J
e Mjgyz,ul....,uj
122 _
< adllaly 3
..... uj<1/
= n2||a|!2 Zd

m<l/

< c(n E)HGH n 6 o+1+e

o g

N |=

A
B
[\V)
]
7; —
¥

S CHa||2l/72o'~2&»1+e

)

where dj(m) denotes the number of representations of m as a product of j
integers. dj(m) satisfies the following: There exists a constant ¢ such that
dj(m) < em®. We choose v = ||a||4 where ¢ = 2(2 + n)/n(1 + €+ 2§) and we
get (2). [

In the following theorem, we obtain a Hardy-type inequality for Hermite
expansions.

Theorem 3.1. If {@M}MENN is the collection of Hermite functions on R"

and sz = Jrn f( x)dzx, then there exists a constant c(n,€) such that

1/ (w)]
snearg < S Ol f o @
peN" [(u1 + 1) (pe + 1) (o, + 1)] 12(2+n)
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for f € HY(R™) and € > 0 is any fived real number.

Proof. We know that |hy(x)| < ck® for k= 1,2, ... and |ho(x)] < c. Let
A = 57,316 +xp, A = % + x3. Then, using the identities

1
Akq)ﬂ = (2,uk—|—2)2<1>#+6k,

1
AZ;(I)/L = (2/%) 2 (I)M_€k )

where €1, €9, ..., €, is the standard basis for R", we get

1
9 [\ 3 pr 41\ 2
5 2= (5) e = (F57) s

from which we get
-1
i

0 R
|a—xk<1>#| <cp? . I -k

for 1 <k <j and

0 ©o,T
\%tﬁul <cpy?py

for j +1 <1 <n, where p1,..., u; are the nonzero indices of ;. Then

and the result follows from Proposition 3.1. ]

Now as in [2] we deduce a Paley-type theorem for {®,}, which will be a
sharper inequality for n = 2.

Theorem 3.2.

1. If 1 < p <2, then there exists a constant c(n,€) such that

D F P+ 1) + DI < el ) f 1o gy

for f € LP(R™), 0 = (5n+12(n+1)(1+¢€))/12(2+n), € > 0 a fized real
number.

2. If 2 < q < oo, and if {b(p)}uenn satisfies

D b1 (1 + 1) (i + 1] 727 < o0,
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then

11T oy < clnse Z!b (1 + 1)t + 1) 0727,

where f~ 3 b(p)®, € L1(R").

Proof. Define [§(N"), k > 0, 1 < p < oo, to be the collection {b(u)}

for which [Y, it or]e = [b(u)lly < oo. Define Tif = f(u)(u1 +

D)...(ptn +1)]¥ for f. Take k = o. If f € H(R"), then by Theorem 3.1, we get
T.f € l,lC as

[Tk fllin < c(r, €)Lf [ geny-

As ||ka||l% = || f|l2, we see that T}, is both weak type (H'(R™),Il) and (L?,12).
Then by interpolation theorem, we get T} is bounded from LP to I} and we
obtain (1) for 1 < p < 2. By standard duality argument we get (2). ]

4. RESULTS FOR SPECIAL HERMITE EXPANSIONS

Theorem 4.1. Let {(I);w} denote the collection of special Hermite func-

tions. Define f 1y V) = fgon f( ., (x,y)drdy. Then we have the following
inequality for the speczal Hermzte expansions:

flu,v
’ ( )| (2n+1)(1+e)+n < C(n7 6)HfHHl(]RM)a
v+ (e D+ 1) (v 1)) 20

where € > 0 is a fired real number.

Proof. Z; = az + z], Z; = B%j — %zj, j = 1,2,...n. Then using the
identities

) 1
(3) Zj(q)/“,) = l(21/j) 2 CI)MJ/*G]"
> . 1
(4) Zi(Puw) = 1205 +2)2 P o
we get
0

. . 1 . 1
e P, =iy; Py, +i1(2v5)2 Dy, + i(2vj +2)2 Dpvte;-
j
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/eixééu (5 + ;y> P, <§ - ;y> dﬁ'

[@uu(2)l = (2m)7

1 1
< 0 f o (o) (6= 30)] o
< Cleull2)®ullz = C.
n (LRI 1 1
19 up ()] = CIG, | [ e hyy { &+ Syn | hu | &k — o ) d€
kj

'yj /6 by, <§j + 2%’) hu, <fj - 23/j> dg;

< Cly;®,;.0,;(z)|  (by applying Schwarz inequality for
n — 1 terms in the product).

i ®py 0, (2) =i(27m) 72 {/6”j§j ((@' + ;y]) - (@' - ;.%))
Xy, (fj + ;%) hy, (5 - ;%) dﬁj} ;

1
fwj<@——2w)‘d@

1
o <€j + 23/1) ‘ dg;

we get
1 1
1950 ()| < C [ &G+ 505 ) by (& + 505

1 1
I CEDACED)|

OU@M@MMQ

IN

1
2
+ C {/ 3% (§j)]2d§]} (by Schwarz inequality and making
change of variables).
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it follows that

whi(z) = (‘“;1) (o) + (’;) o)

Squaring this and using the fact that {hy} is an orthonormal basis for L?(R),

we obtain
1 o+ 1 1
2 /1’ 2
[1enaras] = (255)"
1 2. 41 1
2 Vs 2
[1eneras]” = (255)"
Thus, we get
Z’%(I)IMV SC’(n)ul...,ujz/l...yk,
j=1 "
where fi1,...,pj,v1,... v are the nonzero indices of (u,v).
Again by (3) and (4), we have
0 . 1 1
Tyj@”’y = _ijq)#ﬂf - (21/‘7‘)2@#71/75]» + (2yj + 2) 2 ®/‘Lay+€j’

and [z2;®,,| < Clzj®y,; ., (25)] But
D, (z) =i(2m) 7 i€ p) 5.+1 N h 54,1 ) de;
TjPujwi\zj) =Wam € ni \S3 T Y | g (S 7 5 Y J

+/eixj5jhuj <§ + ;yj> h;/j <€] — ;yj> dfj} .

From (5) and (6), we get

(7) y(z) = <’;) o) - (5 (o).

Furthermore,

2Py 05 (25)] < C{/

(8)
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Squaring (7), then making change of variables in (8), we get
205 +1 2v; +1
0, = € (2552 ) 0 (254,

2
SC’nul...ujyl...yk,

Thus, we get

n

D

Jj=1

0
—,,
8yj H

which shows that

11 11 1
VO, <C2n)2pui ... pivf .. v,
Hence if we take 6 = 1/2, by Proposition 3.1, we obtain the required result. m

Now, if we define £} (N?"),k > 0,1 < p < oo, by

b, ) 5
{2y {Z T D)o 1T (yn+1>]2k} = 1Bl < o0

2214

and
Tif = f(uv) [ +1) . () (1 + 1) (v + 1)1,

using the Parseval’s formula for special Hermite expansions, we deduce a
Paley-type theorem for special Hermite expansions.

Theorem 4.2. For the special Hermite expansions, we have the following:

1. If 1 < p <2, then there exists a constant C(n,€) such that
Y F )L+ 1) (i D1+ 1) (v + 10727
< C 1B ey
where 0 = ((2n+1)(1 +¢€) +n)/2(1 +n), € > 0 a fized real number.
2. If2 < q < oo, and if {b(u,v)|(i,v) € N?"} satisfies

Z b(p, )| (1 + 1) oo (i + D) (1 + 1) oo (v + 1)](q—2)a < o0,
[T8%

then
1| T o mzny < Cn,€) > b ) (1 + 1) (i + 1) (1 1)
"%

(vn + D)7 for F o> b(p, v) .
w,v



456 R. Radha

ACKNOWLEDGEMENTS

The author wishes to thank Prof.S.Thangavelu for initiating her into this
problem. She extends her thanks to Prof. R. Balasubramanian for his valuable
suggestions in improving the inequality of Proposition 3.1 to the present stage.
Her thanks are due to Council of Scientific and Industrial Research, India, for
its grant when the author was in Indian Institute of Technology, Madras. She
also thanks the referee for his useful suggestions in revising the manuscript.

REFERENCES
1. R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in
analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645.

2. Y. Kanjin, Hardy’s inequalities for Hermite and Laguerre expansions, Bull.
London Math. Soc. 29 (1997), 331-337.

3. E. M. Stein, Harmonic Analysis: Real Variable Methods, Orthogonality and
Oscillatory Integrals, Princeton Univ. Press, 1993.

4. S. Thangavelu, Lectures on Hermite and Laguerre expansions, Mathematical
Notes 42, Princeton Univ. Press, 1993.

Department of Mathematics, Anna University, Madras - 600 025, India
E-mail: radharam@annauniv.edu, radharam@imsc.ernet.in



