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OPERATOR INEQUALITY AND ITS APPLICATION TO
CAPACITY

OF GAUSSIAN CHANNEL∗

Kenjiro Yanagi, Han Wu Chen and Ji Wen Yu

Abstract. We give some inequalities of capacity in Gaussian channel
with or without feedback. The nonfeedback capacity Cn,Z(P ) and the
feedback capacity Cn,FB,Z(P ) are both concave functions of P . Though
it is shown that Cn,Z(P ) is a convex function of Z in some sense, Cn,FB,Z(P )
is a convex-like function of Z.

1. INTRODUCTION

The following model for the discrete time Gaussian channel with feedback
is considered:

Yn = Sn + Zn, n = 1, 2, . . . ,

where Z = {Zn; n = 1, 2, . . . } is a nondegenerate, zero-mean Gaussian process
representing the noise and S = {Sn; n = 1, 2, . . . } and Y = {Yn;n = 1, 2, . . . }
are stochastic processes representing input signals and output signals, respec-
tively. The channel is with noiseless feedback, so Sn is a function of a message
to be transmitted and the output signals Y1, . . . , Yn−1. For a code of rate R
and length n, with code words xn(W,Y n−1),W ∈ {1, . . . , 2nR}, and a decod-
ing function gn : Rn → {1, . . . , 2nR}, the probability of error is

Pe(n) = Pr{gn(Y n) 6= W ; Y n = xn(W,Y n−1) + Zn},
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where W is uniformly distributed over {1, . . . , 2nR} and independent of Zn.
The signal is subject to an expected power constraint

1
n

n∑

i=1

E[S2
i ] ≤ P,

and the feedback is causal, i.e., Si is dependent of Z1, . . . , Zi−1 for i =
1, 2, . . . , n. Similarly, when there is no feedback, Si is independent of Zn.
We denote by R

(n)
X , R

(n)
Z the covariance matrices of X,Z, respectively. It is

well-known that a finite block length capacity is given by

Cn,FB,Z(P ) = max
1
2n

ln
|R(n)

X + R
(n)
Z |

|R(n)
Z |

,

where the maximum is on R
(n)
X symmetric, nonnegative definite and B strictly

lower triangular, such that

Tr[(I + B)R(n)
X (I + Bt) + BR

(n)
Z Bt] ≤ nP.

Similarly, let Cn,Z(P ) be the maximal value when B = 0, i.e., when there is
no feedback. Under these conditions, Cover and Pombra proved the following.

Proposition 1 (Cover and Pombra [5]). For every ε > 0 there exist
codes, with block length n and 2n(Cn,FB,Z(P )−ε) codewords, n = 1, 2, . . . , such
that Pe(n) → 0, as n → ∞. Conversely, for every ε > 0 and any sequence
of codes with 2n(Cn,FB,Z(P )+ε) codewords and block length n, Pe(n) is bounded
away from zero for all n. The same theorem holds in the special case without
feedback upon replacing Cn,FB,Z(P ) by Cn,Z(P ).

When the block length n is fixed, Cn,Z(P ) is given exactly.

Proposition 2 (Gallager [9]).

Cn,Z(P ) =
1
2n

k∑

i=1

ln
nP + r1 + · · ·+ rk

kri
,

where 0 < r1 ≤ r2 ≤ · · · ≤ rn are eigenvalues of R
(n)
Z and k (≤ n) is the largest

integer satisfying nP + r1 + · · ·+ rk > krk.

We can also represent Cn,FB,Z(P ) by a different formula.
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Proposition 3. Let D = R
(n)
Z > 0. Then

Cn,FB,Z(P ) = max
1
2n

log
|T + BD + DBt + D|

|D| ,(1)

where the maximum is on T ≥ 0 and B strictly lower triangular, such that

T −BDBt > 0, and Tr(T ) ≤ nP.

Proof. By definition, there is A > 0 and strictly lower trianglar B such
that

Tr[(I + B)A(I + Bt) + BDBt] ≤ nP(2)

and

Cn,FB,Z(P ) =
1
2n

log
|A + D|
|D| .(3)

Let
T = (I + B)A(I + Bt) + BDBt.

Then by (2) we have Tr(T ) ≤ nP and

T −BDBt = (I + B)A(I + Bt) > 0.

Since
|I + B| = |I + Bt| = 1,

we have

|A + D| = |(I + B)A(I + Bt) + (I + B)D(I + Bt)| = |T + BD + DBt + D|.

This consideration shows, by (3),

Cn,FB,Z(P ) ≤ RHS of (1).

Conversely, there is T > 0 and strictly lower triangular B such that T −
BDBt > 0 and

RHS of (1) =
1
2n

log
|T + BD + DBt + D|

|D| .(4)

Let
A = (I + B)−1(T −BDBt)(I + Bt)−1.
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Then since T −BDBt > 0, we have A > 0 and

(I + B)A(I + Bt) + BDBt = T

so that
Tr[(I + B)A(I + Bt) + BDBt] ≤ nP.

Just as in the foregoing arguments,

|T + BD + DBt + D| = |A + D|.

By (4), this consideration shows

RHS of (1) ≤ Cn,FB,Z(P ).

This completes the proof.

In this paper, we first show that the Gaussian feedback capacity Cn,FB,Z(P )
is a concave function of P . And we also show that Cn,FB,Z(P ) is a convex-like
function of Z by using the operator convexity of log(1+ t−1). At last, we have
an open problem about the convexity of Cn,FB,·(P ).

2. CONCAVITY OF Cn,FB,Z(·)

Before proving the concavity of Cn,FB,Z(P ) as the function of P , we need
two lemmas.

Lemma 1. For D ≥ 0, and B1, B2 and α, β ≥ 0 with α + β = 1,

αB1DBt
1 + βB2DBt

2 ≥ (αB1 + βB2)D(αBt
1 + βBt

2).

Proof. This is known and easy to prove. In fact,

{αB1DBt
1 + βB2DBt

2} − (αB1 + βB2)D(αBt
1 + βBt

2)

= αβ(B1 −B2)D(Bt
1 −Bt

2) ≥ 0.

Lemma 2. The function log t is operator concave on (0,∞), that is, for
T1, T2 > 0 and α, β ≥ 0 with α + β = 1,

log(αT1 + βT2) ≥ α log(T1) + β log(T2).

Proof. This is a well-known fact. By Lemma 1, we have first

(αT1 + βT2) ≥ (αT
1/2
1 + βT

1/2
2 )2,
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which implies by Löwner theorem

(αT1 + βT2)1/2 ≥ αT
1/2
1 + βT

1/2
2 .

Repeating this argument we can conclude

(αT1 + βT2)1/(2k) ≥ αT
1/(2k)
1 + βT

1/(2k)
2 (k = 1, 2 . . . ).

Now the operator concavity of the function log t can be derived as

log(αT1 + βT2) = lim
k→∞

2k{(αT1 + βT2)1/(2k) − I}

≥ α lim
k→∞

2k(T 1/(2k)
1 − I) + β lim

k→∞
2k(T 1/(2k)

2 − I)

= α log(T1) + β log(T2).

Now we can prove the concavity of Cn,FB,Z(·).

Theorem 1. Fix Z. Then Cn,FB,Z(P ) is a concave function of P, that is,
for any P1, P2 ≥ 0 and for any α, β ≥ 0 with α + β = 1,

Cn,FB,Z(αP1 + βP2) ≥ αCn,FB,Z(P1) + βCn,FB,Z(P2).

Proof. By Proposition 3, there are T1, T2 > 0 and strictly lower triangular
B1, B2 such that

Cn,FB,Z(Pi) =
1
2n

log
|Ti + BiD + DBt

i + D|
|D| (i = 1, 2),

and
Ti −BiDBt

i > 0, and Tr(Ti) ≤ nPi (i = 1, 2).

Let
T = αT1 + βT2, and B = αB1 + βB2.

Then clearly Tr(T ) ≤ n(αP1 + βP2) and B is strictly lower triangular.
Since, by Lemma 1,

BDBt = (αB1 + βB2)D(αBt
1 + βBt

2) ≤ αB1DBt
1 + βB2DBt

2,

we have

T −BDBt ≥ α(T1 −B1DBt
1) + β(T2 −B2DBt

2) > 0.
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Then again by Proposition 2 we have

Cn,FB,Z(αP1 + βP2) ≥ 1
2n

log
|T + BD + DBt + D|

|D| .

Since

T + BD + DBt + D = α(T1 + B1D + DBt
1 + D) + β(T2 + B2D + DBt

2 + D),

we have, by Lemma 2,

log(T + BD + DBt + D)≥ α log(T1 + B1D + DBt
1 + D)

+β log(T2 + B2D + DBt
2 + D),

which implies

Tr[log(T + BD + DBt + D)]≥ αTr[log(T1 + B1D + DBt
1 + D)]

+βTr[log(T2 + B2D + DBt
2 + D)].

The inequality

Cn,FB,Z(αP1 + βP2) ≥ αCn,FB,Z(P1) + βCn,FB,Z(P2)

follows from the relation

log |A| = Tr[log(A)] (A > 0).

This completes the proof.

3. CONVEXITY OF Cn,·(P ), Cn,FB,·(P )

Before proving the convexity of Cn,Z(P ) and the convex-likeness of Cn,FB,Z(P )
as the function of Z, we need the following lemma.

Lemma 3. The function

f(t) = log(1 + t−1) = log(1 + t)− log t

is operator convex on (0,∞), that is, for any α, β ≥ 0 with α + β = 1 and for
T1, T1 > 0,

log(I + (αT1 + βT2)−1) ≤ α log(I + T−1
1 ) + β log(I + T−1

2 ).(5)
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Proof. It is well-known that for any λ > 0 the function

fλ(t) =
1

λ + t

is operator convex on (0,∞), that is, for α, β ≥ 0 with α + β = 1 and for
T1, T2 ≥ 0,

{λI + (αT1 + βT2)}−1 ≤ α(λI + T1)−1 + β(λI + T2)−1.(6)

Then, since

f(t) = log(1 + t)− log t =
∫ 1

0

1
λ + t

dλ =
∫ 1

0
fλ(t)dλ,

(5) follows from (6).

Now we can prove the convexity of Cn,·(P ).

Theorem 2. Given Z1, Z2 and α, β ≥ 0 with α + β = 1, define Z by

R
(n)
Z = αR

(n)
Z1

+ βR
(n)
Z2

.

Then
Cn,Z(P ) ≤ αCn,Z1(P ) + βCn,Z2(P ).

Proof. Let
Di = R

(n)
Zi

(i = 1, 2), and D = R
(n)
Z .

Then by definition
D = αD1 + βD2,

Cn,Zi(P ) = max
{

1
2n

log
|A + Di|
|Di| ; A > 0, Tr(A) ≤ nP

}
(i = 1, 2)

and

Cn,Z(P ) = max
{

1
2n

log
|A + D|
|D| ; A > 0, Tr(A) ≤ nP

}
.

Note that

log
|A + D|
|D| = log |AD−1 + I|

= log |A1/2D−1A1/2 + I|
= log |I + (A−1/2DA−1/2)−1|.
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By Lemma 3,

log
|A + D|
|D| = Tr[log{I + (α(A−1/2D1A

−1/2) + β(A−1/2D2A
−1/2))−1}]

≤ αTr[log{I + (A−1/2D1A
−1/2)−1}]

+βTr[log{I + (A−1/2D2A
−1/2)−1}]

≤ α log
|A + D1|
|D1| + β log

|A + D2|
|D2| .

This completes the proof.

Theorem 3. Given Z1, Z2 and α, β ≥ 0 with α + β = 1, define Z by

R
(n)
Z = αR

(n)
Z1

+ βR
(n)
Z2

.

Then there exist P1, P2 ≥ 0 with αP1 + βP2 = P such that

Cn,FB,Z(P ) ≤ αCn,FB,Z1(P1) + βCn,FB,Z2(P2).

Proof. Let us use the notations in the proof of Theorem 3. Take A > 0
and strictly triangular B such that

Tr[(I + B)A(I + Bt) + BDBt] = nP

and
1
2n

log
|A + D|
|D| = Cn,FB,Z(P ).

Since

Tr[(I + B)A(I + Bt) + BDBt]

= αTr[(I + B)A(I + Bt) + BD1B
t] + βTr[(I + B)A(I + Bt) + BD2B

t],

we have αP1 + βP2 = P , where

Pi =
1
n

Tr[(I + B)A(I + Bt) + BDiB
t] (i = 1, 2).

Since, as in the proof of Theorem 2,

log
|A + D|
|D| ≤ α log

|A + D1|
|D1| + β log

|A + D2|
|D2| ,

we can conclude

Cn,FB,Z(P ) ≤ α

2n
log

|A + D1|
|D1| +

β

2n
log

|A + D2|
|D2|

≤ αCn,FB,Z1(P1) + βCn,FB,Z2(P2).
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This completes the proof.

Finally, we have the following open problem.

Open Problem. For any Z1, Z2, for any P ≥ 0 and for any α, β ≥ 0 (α +
β = 1),

Cn,FB,Z(P ) ≤ αCn,FB,Z1(P ) + βCn,FB,Z2(P ).
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