OPERATOR INEQUALITY AND ITS APPLICATION TO CAPACITY OF GAUSSIAN CHANNEL*

Kenjiro Yanagi, Han Wu Chen and Ji Wen Yu

Abstract

We give some inequalities of capacity in Gaussian channel with or without feedback. The nonfeedback capacity $C_{n, Z}(P)$ and the feedback capacity $C_{n, F B, Z}(P)$ are both concave functions of P. Though it is shown that $C_{n, Z}(P)$ is a convex function of Z in some sense, $C_{n, F B, Z}(P)$ is a convex-like function of Z.

1. Introduction

The following model for the discrete time Gaussian channel with feedback is considered:

$$
Y_{n}=S_{n}+Z_{n}, \quad n=1,2, \ldots,
$$

where $Z=\left\{Z_{n} ; n=1,2, \ldots\right\}$ is a nondegenerate, zero-mean Gaussian process representing the noise and $S=\left\{S_{n} ; n=1,2, \ldots\right\}$ and $Y=\left\{Y_{n} ; n=1,2, \ldots\right\}$ are stochastic processes representing input signals and output signals, respectively. The channel is with noiseless feedback, so S_{n} is a function of a message to be transmitted and the output signals Y_{1}, \ldots, Y_{n-1}. For a code of rate R and length n, with code words $x^{n}\left(W, Y^{n-1}\right), W \in\left\{1, \ldots, 2^{n R}\right\}$, and a decoding function $g_{n}: \mathbb{R}^{n} \rightarrow\left\{1, \ldots, 2^{n R}\right\}$, the probability of error is

$$
P e^{(n)}=\operatorname{Pr}\left\{g_{n}\left(Y^{n}\right) \neq W ; Y^{n}=x^{n}\left(W, Y^{n-1}\right)+Z^{n}\right\}
$$

where W is uniformly distributed over $\left\{1, \ldots, 2^{n R}\right\}$ and independent of Z^{n}. The signal is subject to an expected power constraint

$$
\frac{1}{n} \sum_{i=1}^{n} E\left[S_{i}^{2}\right] \leq P
$$

and the feedback is causal, i.e., S_{i} is dependent of Z_{1}, \ldots, Z_{i-1} for $i=$ $1,2, \ldots, n$. Similarly, when there is no feedback, S_{i} is independent of Z^{n}. We denote by $R_{X}^{(n)}, R_{Z}^{(n)}$ the covariance matrices of X, Z, respectively. It is well-known that a finite block length capacity is given by

$$
C_{n, F B, Z}(P)=\max \frac{1}{2 n} \ln \frac{\left|R_{X}^{(n)}+R_{Z}^{(n)}\right|}{\left|R_{Z}^{(n)}\right|},
$$

where the maximum is on $R_{X}^{(n)}$ symmetric, nonnegative definite and B strictly lower triangular, such that

$$
\operatorname{Tr}\left[(I+B) R_{X}^{(n)}\left(I+B^{t}\right)+B R_{Z}^{(n)} B^{t}\right] \leq n P
$$

Similarly, let $C_{n, Z}(P)$ be the maximal value when $B=0$, i.e., when there is no feedback. Under these conditions, Cover and Pombra proved the following.

Proposition 1 (Cover and Pombra [5]). For every $\epsilon>0$ there exist codes, with block length n and $2^{n\left(C_{n, F B, Z}(P)-\epsilon\right)}$ codewords, $n=1,2, \ldots$, such that $P e^{(n)} \rightarrow 0$, as $n \rightarrow \infty$. Conversely, for every $\epsilon>0$ and any sequence of codes with $2^{n\left(C_{n, F B, Z}(P)+\epsilon\right)}$ codewords and block length n, $P e^{(n)}$ is bounded away from zero for all n. The same theorem holds in the special case without feedback upon replacing $C_{n, F B, Z}(P)$ by $C_{n, Z}(P)$.

When the block length n is fixed, $C_{n, Z}(P)$ is given exactly.

Proposition 2 (Gallager [9]).

$$
C_{n, Z}(P)=\frac{1}{2 n} \sum_{i=1}^{k} \ln \frac{n P+r_{1}+\cdots+r_{k}}{k r_{i}}
$$

where $0<r_{1} \leq r_{2} \leq \cdots \leq r_{n}$ are eigenvalues of $R_{Z}^{(n)}$ and $k(\leq n)$ is the largest integer satisfying $n P+r_{1}+\cdots+r_{k}>k r_{k}$.

We can also represent $C_{n, F B, Z}(P)$ by a different formula.

Proposition 3. Let $D=R_{Z}^{(n)}>0$. Then

$$
\begin{equation*}
C_{n, F B, Z}(P)=\max \frac{1}{2 n} \log \frac{\left|T+B D+D B^{t}+D\right|}{|D|}, \tag{1}
\end{equation*}
$$

where the maximum is on $T \geq 0$ and B strictly lower triangular, such that

$$
T-B D B^{t}>0, \quad \text { and } \quad \operatorname{Tr}(T) \leq n P .
$$

Proof. By definition, there is $A>0$ and strictly lower trianglar B such that

$$
\begin{equation*}
\operatorname{Tr}\left[(I+B) A\left(I+B^{t}\right)+B D B^{t}\right] \leq n P \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{n, F B, Z}(P)=\frac{1}{2 n} \log \frac{|A+D|}{|D|} . \tag{3}
\end{equation*}
$$

Let

$$
T=(I+B) A\left(I+B^{t}\right)+B D B^{t} .
$$

Then by (2) we have $\operatorname{Tr}(T) \leq n P$ and

$$
T-B D B^{t}=(I+B) A\left(I+B^{t}\right)>0 .
$$

Since

$$
|I+B|=\left|I+B^{t}\right|=1
$$

we have

$$
|A+D|=\left|(I+B) A\left(I+B^{t}\right)+(I+B) D\left(I+B^{t}\right)\right|=\left|T+B D+D B^{t}+D\right| .
$$

This consideration shows, by (3),

$$
C_{n, F B, Z}(P) \leq \text { RHS of (1). }
$$

Conversely, there is $T>0$ and strictly lower triangular B such that $T-$ $B D B^{t}>0$ and

$$
\begin{equation*}
\text { RHS of }(1)=\frac{1}{2 n} \log \frac{\left|T+B D+D B^{t}+D\right|}{|D|} . \tag{4}
\end{equation*}
$$

Let

$$
A=(I+B)^{-1}\left(T-B D B^{t}\right)\left(I+B^{t}\right)^{-1}
$$

Then since $T-B D B^{t}>0$, we have $A>0$ and

$$
(I+B) A\left(I+B^{t}\right)+B D B^{t}=T
$$

so that

$$
\operatorname{Tr}\left[(I+B) A\left(I+B^{t}\right)+B D B^{t}\right] \leq n P .
$$

Just as in the foregoing arguments,

$$
\left|T+B D+D B^{t}+D\right|=|A+D| .
$$

By (4), this consideration shows

$$
\text { RHS of }(1) \leq C_{n, F B, Z}(P) .
$$

This completes the proof.
In this paper, we first show that the Gaussian feedback capacity $C_{n, F B, Z}(P)$ is a concave function of P. And we also show that $C_{n, F B, Z}(P)$ is a convex-like function of Z by using the operator convexity of $\log \left(1+t^{-1}\right)$. At last, we have an open problem about the convexity of $C_{n, F B,}(P)$.

2. Concavity of $C_{n, F B, Z}(\cdot)$

Before proving the concavity of $C_{n, F B, Z}(P)$ as the function of P, we need two lemmas.

Lemma 1. For $D \geq 0$, and B_{1}, B_{2} and $\alpha, \beta \geq 0$ with $\alpha+\beta=1$,

$$
\alpha B_{1} D B_{1}^{t}+\beta B_{2} D B_{2}^{t} \geq\left(\alpha B_{1}+\beta B_{2}\right) D\left(\alpha B_{1}^{t}+\beta B_{2}^{t}\right)
$$

Proof. This is known and easy to prove. In fact,

$$
\begin{aligned}
& \left\{\alpha B_{1} D B_{1}^{t}+\beta B_{2} D B_{2}^{t}\right\}-\left(\alpha B_{1}+\beta B_{2}\right) D\left(\alpha B_{1}^{t}+\beta B_{2}^{t}\right) \\
= & \alpha \beta\left(B_{1}-B_{2}\right) D\left(B_{1}^{t}-B_{2}^{t}\right) \geq 0 .
\end{aligned}
$$

Lemma 2. The function $\log t$ is operator concave on $(0, \infty)$, that is, for $T_{1}, T_{2}>0$ and $\alpha, \beta \geq 0$ with $\alpha+\beta=1$,

$$
\log \left(\alpha T_{1}+\beta T_{2}\right) \geq \alpha \log \left(T_{1}\right)+\beta \log \left(T_{2}\right)
$$

Proof. This is a well-known fact. By Lemma 1, we have first

$$
\left(\alpha T_{1}+\beta T_{2}\right) \geq\left(\alpha T_{1}^{1 / 2}+\beta T_{2}^{1 / 2}\right)^{2}
$$

which implies by Löwner theorem

$$
\left(\alpha T_{1}+\beta T_{2}\right)^{1 / 2} \geq \alpha T_{1}^{1 / 2}+\beta T_{2}^{1 / 2}
$$

Repeating this argument we can conclude

$$
\left(\alpha T_{1}+\beta T_{2}\right)^{1 /\left(2^{k}\right)} \geq \alpha T_{1}^{1 /\left(2^{k}\right)}+\beta T_{2}^{1 /\left(2^{k}\right)}(k=1,2 \ldots) .
$$

Now the operator concavity of the function $\log t$ can be derived as

$$
\begin{aligned}
\log \left(\alpha T_{1}+\beta T_{2}\right) & =\lim _{k \rightarrow \infty} 2^{k}\left\{\left(\alpha T_{1}+\beta T_{2}\right)^{1 /\left(2^{k}\right)}-I\right\} \\
& \geq \alpha \lim _{k \rightarrow \infty} 2^{k}\left(T_{1}^{1 /\left(2^{k}\right)}-I\right)+\beta \lim _{k \rightarrow \infty} 2^{k}\left(T_{2}^{1 /\left(2^{k}\right)}-I\right) \\
& =\alpha \log \left(T_{1}\right)+\beta \log \left(T_{2}\right) .
\end{aligned}
$$

Now we can prove the concavity of $C_{n, F B, Z}(\cdot)$.
Theorem 1. Fix Z. Then $C_{n, F B, Z}(P)$ is a concave function of P, that is, for any $P_{1}, P_{2} \geq 0$ and for any $\alpha, \beta \geq 0$ with $\alpha+\beta=1$,

$$
C_{n, F B, Z}\left(\alpha P_{1}+\beta P_{2}\right) \geq \alpha C_{n, F B, Z}\left(P_{1}\right)+\beta C_{n, F B, Z}\left(P_{2}\right) .
$$

Proof. By Proposition 3, there are $T_{1}, T_{2}>0$ and strictly lower triangular B_{1}, B_{2} such that

$$
C_{n, F B, Z}\left(P_{i}\right)=\frac{1}{2 n} \log \frac{\left|T_{i}+B_{i} D+D B_{i}^{t}+D\right|}{|D|}(i=1,2),
$$

and

$$
T_{i}-B_{i} D B_{i}^{t}>0, \quad \text { and } \quad \operatorname{Tr}\left(T_{i}\right) \leq n P_{i}(i=1,2)
$$

Let

$$
T=\alpha T_{1}+\beta T_{2}, \quad \text { and } \quad B=\alpha B_{1}+\beta B_{2} .
$$

Then clearly $\operatorname{Tr}(T) \leq n\left(\alpha P_{1}+\beta P_{2}\right)$ and B is strictly lower triangular.
Since, by Lemma 1 ,

$$
B D B^{t}=\left(\alpha B_{1}+\beta B_{2}\right) D\left(\alpha B_{1}^{t}+\beta B_{2}^{t}\right) \leq \alpha B_{1} D B_{1}^{t}+\beta B_{2} D B_{2}^{t},
$$

we have

$$
T-B D B^{t} \geq \alpha\left(T_{1}-B_{1} D B_{1}^{t}\right)+\beta\left(T_{2}-B_{2} D B_{2}^{t}\right)>0
$$

Then again by Proposition 2 we have

$$
C_{n, F B, Z}\left(\alpha P_{1}+\beta P_{2}\right) \geq \frac{1}{2 n} \log \frac{\left|T+B D+D B^{t}+D\right|}{|D|} .
$$

Since
$T+B D+D B^{t}+D=\alpha\left(T_{1}+B_{1} D+D B_{1}^{t}+D\right)+\beta\left(T_{2}+B_{2} D+D B_{2}^{t}+D\right)$,
we have, by Lemma 2,

$$
\begin{aligned}
\log \left(T+B D+D B^{t}+D\right) & \geq \alpha \log \left(T_{1}+B_{1} D+D B_{1}^{t}+D\right) \\
& +\beta \log \left(T_{2}+B_{2} D+D B_{2}^{t}+D\right),
\end{aligned}
$$

which implies

$$
\begin{aligned}
\operatorname{Tr}\left[\log \left(T+B D+D B^{t}+D\right)\right] & \geq \alpha \operatorname{Tr}\left[\log \left(T_{1}+B_{1} D+D B_{1}^{t}+D\right)\right] \\
& +\beta \operatorname{Tr}\left[\log \left(T_{2}+B_{2} D+D B_{2}^{t}+D\right)\right] .
\end{aligned}
$$

The inequality

$$
C_{n, F B, Z}\left(\alpha P_{1}+\beta P_{2}\right) \geq \alpha C_{n, F B, Z}\left(P_{1}\right)+\beta C_{n, F B, Z}\left(P_{2}\right)
$$

follows from the relation

$$
\log |A|=\operatorname{Tr}[\log (A)] \quad(A>0)
$$

This completes the proof.

3. Convexity of $C_{n, \cdot}(P), C_{n, F B, \cdot}(P)$

Before proving the convexity of $C_{n, Z}(P)$ and the convex-likeness of $C_{n, F B, Z}(P)$ as the function of Z, we need the following lemma.

Lemma 3. The function

$$
f(t)=\log \left(1+t^{-1}\right)=\log (1+t)-\log t
$$

is operator convex on $(0, \infty)$, that is, for any $\alpha, \beta \geq 0$ with $\alpha+\beta=1$ and for $T_{1}, T_{1}>0$,

$$
\begin{equation*}
\log \left(I+\left(\alpha T_{1}+\beta T_{2}\right)^{-1}\right) \leq \alpha \log \left(I+T_{1}^{-1}\right)+\beta \log \left(I+T_{2}^{-1}\right) . \tag{5}
\end{equation*}
$$

Proof. It is well-known that for any $\lambda>0$ the function

$$
f_{\lambda}(t)=\frac{1}{\lambda+t}
$$

is operator convex on $(0, \infty)$, that is, for $\alpha, \beta \geq 0$ with $\alpha+\beta=1$ and for $T_{1}, T_{2} \geq 0$,

$$
\begin{equation*}
\left\{\lambda I+\left(\alpha T_{1}+\beta T_{2}\right)\right\}^{-1} \leq \alpha\left(\lambda I+T_{1}\right)^{-1}+\beta\left(\lambda I+T_{2}\right)^{-1} \tag{6}
\end{equation*}
$$

Then, since

$$
f(t)=\log (1+t)-\log t=\int_{0}^{1} \frac{1}{\lambda+t} d \lambda=\int_{0}^{1} f_{\lambda}(t) d \lambda
$$

(5) follows from (6).

Now we can prove the convexity of $C_{n,(}(P)$.
Theorem 2. Given Z_{1}, Z_{2} and $\alpha, \beta \geq 0$ with $\alpha+\beta=1$, define Z by

$$
R_{Z}^{(n)}=\alpha R_{Z_{1}}^{(n)}+\beta R_{Z_{2}}^{(n)}
$$

Then

$$
C_{n, Z}(P) \leq \alpha C_{n, Z_{1}}(P)+\beta C_{n, Z_{2}}(P) .
$$

Proof. Let

$$
D_{i}=R_{Z_{i}}^{(n)}(i=1,2), \text { and } D=R_{Z}^{(n)} .
$$

Then by definition

$$
\begin{gathered}
D=\alpha D_{1}+\beta D_{2}, \\
C_{n, Z_{i}}(P)=\max \left\{\frac{1}{2 n} \log \frac{\left|A+D_{i}\right|}{\left|D_{i}\right|} ; A>0, \operatorname{Tr}(A) \leq n P\right\} \quad(i=1,2)
\end{gathered}
$$

and

$$
C_{n, Z}(P)=\max \left\{\frac{1}{2 n} \log \frac{|A+D|}{|D|} ; A>0, \operatorname{Tr}(A) \leq n P\right\}
$$

Note that

$$
\begin{aligned}
\log \frac{|A+D|}{|D|} & =\log \left|A D^{-1}+I\right| \\
& =\log \left|A^{1 / 2} D^{-1} A^{1 / 2}+I\right| \\
& =\log \left|I+\left(A^{-1 / 2} D A^{-1 / 2}\right)^{-1}\right|
\end{aligned}
$$

By Lemma 3,

$$
\begin{aligned}
\log \frac{|A+D|}{|D|}= & \operatorname{Tr}\left[\log \left\{I+\left(\alpha\left(A^{-1 / 2} D_{1} A^{-1 / 2}\right)+\beta\left(A^{-1 / 2} D_{2} A^{-1 / 2}\right)\right)^{-1}\right\}\right] \\
\leq & \alpha \operatorname{Tr}\left[\log \left\{I+\left(A^{-1 / 2} D_{1} A^{-1 / 2}\right)^{-1}\right\}\right] \\
& +\beta \operatorname{Tr}\left[\log \left\{I+\left(A^{-1 / 2} D_{2} A^{-1 / 2}\right)^{-1}\right\}\right] \\
\leq & \alpha \log \frac{\left|A+D_{1}\right|}{\left|D_{1}\right|}+\beta \log \frac{\left|A+D_{2}\right|}{\left|D_{2}\right|} .
\end{aligned}
$$

This completes the proof.
Theorem 3. Given Z_{1}, Z_{2} and $\alpha, \beta \geq 0$ with $\alpha+\beta=1$, define Z by

$$
R_{Z}^{(n)}=\alpha R_{Z_{1}}^{(n)}+\beta R_{Z_{2}}^{(n)} .
$$

Then there exist $P_{1}, P_{2} \geq 0$ with $\alpha P_{1}+\beta P_{2}=P$ such that

$$
C_{n, F B, Z}(P) \leq \alpha C_{n, F B, Z_{1}}\left(P_{1}\right)+\beta C_{n, F B, Z_{2}}\left(P_{2}\right) .
$$

Proof. Let us use the notations in the proof of Theorem 3. Take $A>0$ and strictly triangular B such that

$$
\operatorname{Tr}\left[(I+B) A\left(I+B^{t}\right)+B D B^{t}\right]=n P
$$

and

$$
\frac{1}{2 n} \log \frac{|A+D|}{|D|}=C_{n, F B, Z}(P) .
$$

Since

$$
\begin{aligned}
& \operatorname{Tr}\left[(I+B) A\left(I+B^{t}\right)+B D B^{t}\right] \\
= & \alpha \operatorname{Tr}\left[(I+B) A\left(I+B^{t}\right)+B D_{1} B^{t}\right]+\beta \operatorname{Tr}\left[(I+B) A\left(I+B^{t}\right)+B D_{2} B^{t}\right],
\end{aligned}
$$

we have $\alpha P_{1}+\beta P_{2}=P$, where

$$
P_{i}=\frac{1}{n} \operatorname{Tr}\left[(I+B) A\left(I+B^{t}\right)+B D_{i} B^{t}\right] \quad(i=1,2) .
$$

Since, as in the proof of Theorem 2,

$$
\log \frac{|A+D|}{|D|} \leq \alpha \log \frac{\left|A+D_{1}\right|}{\left|D_{1}\right|}+\beta \log \frac{\left|A+D_{2}\right|}{\left|D_{2}\right|}
$$

we can conclude

$$
\begin{aligned}
C_{n, F B, Z}(P) & \leq \frac{\alpha}{2 n} \log \frac{\left|A+D_{1}\right|}{\left|D_{1}\right|}+\frac{\beta}{2 n} \log \frac{\left|A+D_{2}\right|}{\left|D_{2}\right|} \\
& \leq \alpha C_{n, F B, Z_{1}}\left(P_{1}\right)+\beta C_{n, F B, Z_{2}}\left(P_{2}\right) .
\end{aligned}
$$

This completes the proof.
Finally, we have the following open problem.
Open Problem. For any Z_{1}, Z_{2}, for any $P \geq 0$ and for any $\alpha, \beta \geq 0(\alpha+$ $\beta=1$),

$$
C_{n, F B, Z}(P) \leq \alpha C_{n, F B, Z_{1}}(P)+\beta C_{n, F B, Z_{2}}(P) .
$$

Acknowledgement

The authors wish to thank the reviewer for his very valuable advice and constructive criticism.

References

1. H. W. Chen and K. Yanagi, On the Cover's conjecture on capacity of Gaussian channel with feedback, IEICE Trans. Fundamentals E80-A (1997), 2272-2275.
2. H. W. Chen and K. Yanagi, Refinements of the half-bit and factor-of-two bounds for capacity in Gaussian channels with feedback, IEEE Trans. Inform. Theory 45 (1999), 319-325.
3. H. W. Chen and K. Yanagi, Upper bounds on the capacity of discrete time blockwise white Gaussian channels with feedback, IEEE Trans. Inform. Theory 46 (2000), 1125-1131.
4. T. M. Cover, Conjecture: Feedback does not help much, in: Open Problems in Communication and Computation, T. Cover and B. Gopinath, eds., SpringerVerlag, New York, 1987, pp. 70-71.
5. T. M. Cover and S. Pombra, Gaussian feedback capacity, IEEE Trans. Inform. Theory 35 (1989), 37-43.
6. T. M. Cover and J. A. Thomas, Elements of Information Theory, New York, Wiley, 1991.
7. A. Dembo, On Gaussian feedback capacity, IEEE Trans. Inform. Theory $\mathbf{3 5}$ (1989), 1072-1089.
8. P. Ebert, The capacity of the Gaussian channel with feedback, Bell. Syst. Tech. J. 49 (1970), 1705-1712.
9. R. G. Gallager, Information Theory and Reliable Communication, John Wiley and Sons, New York, 1968.
10. S. Ihara and K. Yanagi, Capacity of discrete time Gaussian channel with and without feedback, II, Japan J. Indust. Appl. Math. 6 (1989), 245-258.
11. M. Pinsker, talk delivered at the Soviet Information Theory Meeting, (no abstract published), 1969.
12. K. Yanagi, An upper bound to the capacity of discrete time Gaussian channel with feedback, Lecture Notes in Math. 1299 (1988), 565-570.
13. K. Yanagi, Necessary and sufficient condition for capacity of the discrete time Gaussian channel to be increased by feedback, IEEE Trans. Inform. Theory 38 (1992), 1788-1791.
14. K. Yanagi, An upper bound to the capacity of discrete time Gaussian channel with feedback, II, IEEE Trans. Inform. Theory 40 (1994), 588-593.
15. K. Yanagi, An upper bound to the capacity of discrete time Gaussian channel with feedback, III, Bull. Kyushu Inst. Tech. Math. Natur. Sci. 45 (1998), 1-8.

Kenjiro Yanagi
Department of Applied Science, Faculty of Engineering
Yamaguchi University,
Ube 755-8611, Japan
Han Wu Chen and Ji Wen Yu
Graduate School of Science and Engineering
Yamaguchi University
Ube 755-8611, Japan

