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AN OVERVIEW OF MGMRES AND LAN/MGMRES
METHODS FOR SOLVING NONSYMMETRIC LINEAR

SYSTEMS

David R. Kincaid, David M. Young and Jen-Yuan Chen∗

Abstract. We present an overview of the MGMRES and LAN/MGMRES
iterative methods for solving large sparse linear systems.

1. INTRODUCTION

We begin with a brief discussion of background material on Idealized Gen-
eralized Conjugate Gradient (IGCG) methods and Krylov subspace meth-
ods. Following a review of the Generalized Minimum Residual (GMRES)
method, we outline the MGMRES method, which is a modification of the
GMRES method. Finally, we sketch a Lanczos-type procedure called the
LAN/MGMRES method.

We consider linear systems of the form

Au = b,

with true solution u = A−1b. Here A is a large sparse nonsingular matrix of
size N × N . Recall that if we are given an arbitrary initial guess u(0) to be
used in an iterative method, then the initial residual vector is r(0) = b−Au(0).
Iterative methods involve iterates u(1), u(1), . . . , u(n) that hopefully converge
to an approximation to the true solution; that is, the nth residual vector
r(n) = b−Au(n) is approximately the zero vector.
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2. KRYLOV SUBSPACE AND IGCG(Z) METHODS

Let Z be an auxiliary matrix for an iterative method such as Z = I, Z = Y ,
Z = AT , or Z = AT Y , for example. If A is symmetric positive definite (SPD),
then it can be shown that Z = I for the conjugate gradient method and
Z = AT for the conjugate residual method.

We state several important conditions for Krylov subspace methods and
Idealized Generalized Conjugate Gradient IGCG(Z) methods.

Condition I:

u(n) − u(0) ∈ Kn(r(0), A) = Span
{

r(0), Ar(0), . . . , An−1r(0)
}

.

Here Kn(r(0), A) is the Krylov space associated with the initial residual vector
r(0) and the matrix A.

Condition II (a) (Minimization condition): If ZA is SPD, then

〈(u(n) − u), (u(n) − u)〉ZA = ‖u(n) − u‖2
ZA1/2 is minimized.

Condition II (b) (Galerkin condition):

〈r(n), v〉Z = 0 for all v ∈ Kn(r(0), A).

Here the Z-inner product is defined as 〈x, y〉Z = 〈Zx, y〉 = yT Zx.
The minimization condition (Condition II (a)) can also be written as:

1
2
〈u(n), u(n)〉ZA − 〈b, u(n)〉ZA is minimized.

Notice that if Z = AT Y , where Y is SPD, then ZA = AT Y A is SPD. It follows
that Condition II (a) becomes 〈r(n), r

(n)
Y = ‖r(n)‖2

Y
1
2

is minimized.

The index m = m(r(0), A) of u(0), with respect to A, is the largest integer m
such that the vectors v(0), v(1), . . . , v(m) are linearly independent. For example,
letting v(0) = r(0), v(1) = Ar(0), . . . , v(m) = Amr(0), it can be shown that

u(0) − u ∈ Km+1(r(0), A) = Span{r(0), Ar(0), . . . , Amr(0)}
= Span{v(0), V (1), . . . , v(m)}

if m ≤ N − 1. Then u(m+l) = u hopefully.
The IGCG(Z) method is (n∗, u(0))-computable if n∗ ≤ m + 1 and if for

all n ≤ n∗ there exists a unique u(n) satisfying u(n) − u(0) ∈ Kn(r(0), A) and
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〈Zr(n), v〉 = 0 for all v ∈ Kn(r(0), A). Moreover, the IGCG(Z) method is
(n∗, u(0))-computable if and only if the moment matrix ∆n∗(ZA, r(0)) is strongly
regular. Here the moment matrix is given by

∆n∗(ZA, r(0)) =




〈v(0), v(0)〉ZA · · · 〈v(n∗−1), v(0)〉ZA
...

...
〈v(0), v(n∗−1)〉ZA · · · 〈v(n∗−1), v(n∗−1)〉ZA


 .

This matrix is strongly regular if all the principal submatrices are nonsingular,
which means that for a matrix of order n, the n submatrices of sizes 1× 1, 2×
2, · · · , n× n in the top-left-hand corner are nonsingular.

In orthogonal implementations, there are two phases.

Phase I. Construct basis vectors w(0), w(1), . . . , w(n−1) by orthogonalizing
Krylov vectors with respect to C :

〈w(i), w(j)〉C = 0 for i 6= j.

Here C is usually SPD.

Phase II. Choose c
(n)
0 , c

(n)
1 , . . . , c

(n)
n−1 so that the Galerkin condition 〈Zr(n), w(i)〉 =

0 for 0 ≤ i ≤ n− 1 is satisfied. We have

u(n) = u(0) + c
(n)
0 w(0) + · · ·+ c

(n)
n−1w

(n−1)

= u(0) + Wn−1c
(n),

where

Wn−1 =
[
W (0) w(1) · · ·w(n−1)

]
, c(n) =

[
c
(n)
0 c

(n)
1 · · · c(n)

n−1

]T
.

In Phase I, we have

w(n) = Aw(n−1) + βn,0w
(0) + · · ·+ βn,n−1w

(n−1).

Examples are as follows: C = AT Z corresponds to the ORTHODIR(Z)
method, C = A corresponds to the ORTHORES(Z) method, and C = Y
together with Z = AT Y corresponds to the GMRES(AT Y ) method when Y
is SPD. The latter method is really the GGMRES method. For the GMRES
method, we have C = I.

In Phase II, we have

w(n) = r(n) + αn,0w
(0) + · · ·+ αn,n−1w

(n−1).

Examples are as follows: C = ZA corresponds to the ORTHOMIN(Z) method
while Z = AT implies the conjugate residual method and Z = I implies the
conjugate gradient method.
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3. GMRES METHOD

We now sketch the GMRES method of Saad and Schultz [6]. Let Z =
AT Y , where Y is a SPD matrix. Note that ZA = AT Y A is a SPD matrix.
As mentioned above, Condition II (a) becomes 〈Y r(n), r(n)〉 = ‖r(n)‖Y 1/2 is
minimized.

In Phase I, we have
{

ŵ(0) = r(0)

w(0) = σ0
−1ŵ(0), where σ0 = 〈Y ŵ(0), ŵ(0)〉 1

2 ,
...{
ŵ(n) = Aw(n−1) + βn,0w

(0) + · · ·+ βn,n−1w
(n−1)

w(n) = σn
−1ŵ(n), where σn = 〈Y ŵ(n), ŵ(n)〉 1

2 .

Here

〈Y w(i), w(j)〉 =
{

1, i = j,
0, i 6= j.

We have the basic relation

A[w(0) w(1) · · ·w(n−1)] = [w(0) w(1) · · ·w(n)]Hn,

or
AWn−1 = WnHn.

Here Hn is an upper Hessenberg matrix of order n.

Example (n = 2):

A[w(0) w(1)] = [w(0) w(1) w(2)]



−β1,0 −β2,0

σ1 −β2,1

0 σ2


 .

Hence, we have
AW1 = W2H2.

In Phase II of the GMRES method, we have

u(n) = u(0) + c
(n)
0 w(0) + · · ·+ c

(n)
n−1w

(n−1)

= u(0) + Wn−1c
(n).
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Consequently, from this equation we obtain

r(n) = b−Au(n)

= r(0) −AWn−1c
(n)

= r(0) −WnHnc(n)

= Wn

(
e(n+1) −Hnc(n)

)
,

using AWn−1 = WnHn and r(O) = Wne(n+1), where e(n+1) = [σn, 0, . . . , 0]Tn+1.
Thus, we find

〈Y r(n), r(n)〉 = 〈Y Wn(e(n+1) −Hnc(n), Wn(e(n+1) −Hnc(n))〉
= ‖e(n+1) −Hnc(n)‖2

2,

since W T
n Y Wn = In and Y is SPD.

Example (n = 2): Determination of c(2). The system

H2c
(2) = e(3)

has the form 

−β1,0 −β2,0

σ1 −β2,1

0 σ2





 c

(2)
0

c
(2)
1


 =




σ2

0
0


 .

Using Givens rotations Q = Q1Q2 with QQT = I, we have

QH2c
(2) = Qe(3),

which is of the form



× ×
0 ×
0 0





 c

(2)
0

c
(2)
1


 =




×
×
×


 .

To get the least squares solution, we solve the first two equations for c
(2)
0 and

c
(2)
1 .

Note that the sum of the squares of the residuals are preserved:

〈Q(b−Au), Q(b−Au)〉 = 〈(b−Au), QT Q(b−Au)〉
= 〈b−Au, b−Au〉.

Some comparisons for orthogonal implementations. If the matrix ZA is
SPD (that is, if Z = AT Y for some SPD matrix Y ), then the ORTHODIR
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method converges but the ORTHOMIN and ORTHORES methods may break-
down. The ORTHODIR method is often numerically unstable and requires
more work per iteration than the GMRES method. The GMRES(AT Y )
method, where Y is a SPD matrix, is mathematically equivalent to the ORTHODIR(AT Y )
method, but requires less work per iteration and is more stable. The GMRES(AT Y )
method is widely used but the work per iteration increases as n increases.
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4. MGMRES METHOD

We now sketch the MGMRES method, which is a modification of the
GMRES method. We assume Y is symmetric and nonsingular (not necessarily
SPD). Also, we suppose that Y A is symmetric,

In Phase I of the MGMRES method, we have

ŵ(n) = AW (n−1) + βn,n−1w
(n−1) + βn,n−2w

(n−2),

and 〈w(n), Y w(i)〉 = 0 for 0 ≤ i ≤ n− 1. Then we obtain

w(n) = σn
−1ŵ(n),

where σn = |〈Y ŵ(n), ŵ(n)〉|1/2. Here the absolute value signs are used since
the expression within them may be negative. Moreover, the process fails if
σn = 0. Next, we have

W T
n Y Wn = diag(±1,±1, . . . ,±1) ≡ Dn.

Here Dn is a diagonal matrix with ±1 as diagonal entries. For the GMRES
method, if Y is a SPD matrix, then Dn = diag(1, 1, . . . , 1).

In Phase II of the MGMRES method, we use the Galerkin condition

W T
n−1(Zr(n)) = 0.

Also, we have Z = AT Y , r(n) = Wn(e(n+1)−Hnc(n)), and 〈Zr(n), w(i)〉 = 0 for
0 ≤ i ≤ n− 1. So we obtain

HT
n W T

n Y WnHnc(n) = HT
n W T

n Y Wne(n+1),

which implies that
HT

n DnHnc(n) = HT
n Dne(n+1).

If Dn = I, we get the normal equations

HT
n Hnc(n) = HT

n e(n+1).

Applying a sequence of Givens rotations, we form an upper triangular system

QHn = H̃n,

where QT Q = I.

Example (n = 2):

H2 =



−β1,0 −β2,0

σ1 −β2,1

0 σ2


 =⇒ QH2 = H̃2 =




× ×
0 ×
0 0


 ,
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where Q = Q1Q2.

Using Hn = Q−1H̃n = QT H̃n and Q−1 = QT , we obtain

H̃T
n QDnQT H̃nc(n) = H̃T

n QDne(n+1).

Letting
z = QDnQT H̃nc(n),

y = H̃T
n QDne(n+1),

we obtain
H̃T

n z = y.

So our strategy is to first solve this system to get z and then solve

H̃nc(n) = QD−1
n QT z.

Example (n = 2): The system

H̃T
2 z = y

has the form [ × 0 0

x × 0

]


z1

z2

z3


 =

[
y1

y2

]
.

And we obtain

z =




z1

z2

0


 + k




0
0
1


 ,

where k is arbitrary.

H̃2c
(2) = QD−1

2 QT








z1

z2

0


 + k




0
0
1






 =




z′1
z′2
0


 ,

for suitable k. (If D2 = I2, let k = 0.) Failure occurs if the third component
of QD−1

2 QT [z1 z2 0]T is not zero and the third component of QD−1
2 QT [0 0 1]T

is zero. For GMRES, QD2Q
T = I and we let k = 0.

H̃2c
(2) =




× ×
0 ×
0 0





 c

(2)
0

c
(2)
1


 =




z′1
z′2
0


 .
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Finally, we solve for c
(2)
0 and c

(2)
1 . Note this process might fail (if z′3 6= 0).

QD−1
2 QT




z1

z2

0


 =




×
×
×


 ,

and

QD−1
2 QT




0
0
1


 =



×
×
0


 .

(Here × 6= 0, which will not happen for the GMRES method since D2 = I.)

In the computation of the MGMRES methods, we assume A is nonsin-
gular, Y is symmetric and nonsingular, Z = AT Y , and n∗ ≤ m, which is
the index of the r(0) vector. In Phase I, the MGMRES method is (n∗, u(0))-
computable if and only if ∆n(Y, r(0)) is strongly regular. (This condition is
not required for the ORTHODIR(AT Y ) method.) In Phase II, if ∆n(Y, r(0))
is strongly regular then the MGMRES method is (n∗, u(0))-computable if and
only if ∆n (AT Y A, r(0)) is strongly regular (that is, if the direct implementa-
tion of the IGCG(AT Y ) method is (n∗, u(0))-computable). (The IGCG(AT Y )
method is (n∗, u(0))-computable if and only if the ORTHODIR(AT Y ) method
is (n∗, u(0))-computable.)

In a practical implication, if Phase I of the MGMRES method does not
breakdown, and if the IGCG(AT Y ) method is (n∗, r(0))-computable, then SO
is the MGMRES method.

5. LAN/MGMRES METHOD

We now sketch a Lanczos-type method based on the MGMRES procedure.
Consider the double system

{
Au = b

AT ũ = b̃.

Here the second equation is called the shadow system for some b̃. We write
the double system as

AU = B,

where

A =
[

A 0
0 AT

]
, U =

[
u
ũ

]
, B =

[
b

b̃

]
.
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We can select Z as either of the following symmetric matrices

Y =
[

0 I
I 0

]
, YA =

[
0 AT

A 0

]
.

To apply the MGMRES method, let Z = AT Y where A = A and Y = Y.
Related Lanczos methods are the LANDIR(Y) method, the LANDIR(ATY)

method (equivalently, the LAN/MGMRES method), the LANMIN(Y) method
(equivalently, the BCG method), the LANMIN(ATY) method, the LANRES(Y)
method, and the LANRES(ATY) method.

We discuss the motivation for the LAN/MGMRES method. Let Z = AT Y
and Y is a SPD matrix. The methods ORTHODIR(Y ) and ORTHODIR(AT Y )
are more robust than the methods ORTHOMIN(Y ) and ORTHOMIN(AT Y ),
respectively, but they are often numerically unstable. The GMRES(AT Y )
method is mathematically equivalent to the ORTHODIR(AT Y ) method, but
is more stable and requires less work per iteration.

Let

Z = ATY, Y =
[

0 I
I 0

]
.

In theory, the methods LANDIR(Y) and LANDIR(ATY) are more robust
than the ORTHOMIN(Y) method (equivalently, the BCG method) and the
method ORTHOMIN (ATY), respectively, but they are often numerically
unstable. The method LAN/MGMRES (equivalently, the MGMRES(ATY)
method) is almost equivalent to the LANDIR(AT Y ) method and is hopefully
more stable. (However, an additional condition is needed so that Phase I of
the LAN/MGMRES method can be carried out.)

We now outline Phase I of the LAN/MGMRES method. Let u(0) be arbi-
trary and compute r(0) = b − Au(0). Let ũ(0) be arbitrary or set ũ(0) = u(0)

for the shadow system and compute r̃(0) = b̃−AT ũ(0). Then let




ŵ(0) = r(0)

̂̃w(0)
= r̃(0).

Next set
s0 = 2〈ŵ(0), ̂̃w(0)〉.

(The process fails if s0 = 0.) Then set σ0 =
√
|s0| and compute





w(0) = σ0
−1ŵ(0)

w̃(0) = σ0
−1 ̂̃w(0)
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and 



ŵ(n) = Aw(n−1) + βn,n−1w
(n−1) + βn,n−2w

(n−2)

̂̃w(n)
= AT w̃(n−1) + βn,n−1w̃

(n−1) + βn,n−2w̃
(n−2).

Now we have
〈w(n), w̃(n−1)〉 = 〈w(n), w̃(n−2)〉 = 0.

And set sn = 2〈ŵ(n), ̂̃w(n)〉. (Process fails if sn = 0.) Set σn =
√
|sn|. Finally,

we have {
w(n) = σn

−1ŵ(n)

w̃(n) = σn
−1 ̂̃w(n)

.

We now outline Phase II of the LAN/MGMRES method just for the non-
shadow system. We have

u(n) = u(0) + c0w
(0) + c1w

(1) + · · ·+ c
(n)
n−1w

(n−1)

= u(0) + Wn−1c
(n)

= ũ(n) + W̃n−1c
(n).

The last equation is for the shadow system. Here

Wn−1 =
[
w(0) w(1) · · · w(n−1)

]
,

W̃n−1 =
[
w̃(0) w̃(1) · · · w̃(n−1)

]
,

c(n) =
[
c
(n)
0 c

(n)
1 · · · c

(n)
n−1

]T
.

So
HH

n DnHnc(n) = HT
n Dne(n+1).

Example (n = 2):

H2 =



−β1,0 −β2,0

σ1 −β2,1

0 σ2


 , D2 =




d1 0 0
0 d2 0
0 0 d3


 , (di = ±1),

c(2) =


 c

(2)
0

c
()2
1


 , e(3) =




σ2

0
0


 .

Use Givens rotations to find Q with QQT = I and apply it to

QH2 = H̃2 =




× ×
0 ×
0 0


 .
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Solve for c(2) in
H̃T

2 QD2Q
T H̃2c

(2) = H̃T
2 QD2e

(3).

This process may fail. However, if Phase I is computable, then Phase II is
computable if and only if LAN/IGCG (ATY) is computable.

Additional details on the methods sketched in this paper can be found in
[1, 2].
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