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ON THE ORDER-THEORETIC CANTOR THEOREM

Andrzej Granas and Charles D. Horvath

Dedicated to Fon-Che Liu

Abstract. In this report1, we present an order-theoretic version of the
Cantor theorem. This result, which is based on the interplay of the
notions of partial order and of completeness, permits to give a unified
and simplified account to a long list of results related to the Bishop–
Phelps theorem. We survey briefly only its simplest applications and
refer the reader to [10] for a complete presentation of the results.

1. Cantor Spaces

Let (X,¹) be a partially ordered set. For any z ∈ X, denote the terminal
tail {y ∈ X | z ¹ y} by Tz; if y ∈ Tz, the set Ty ⊂ Tz is called a subtail of
Tz. Clearly an element y is maximal in (X,¹) provided {y} = Ty. A map
F : X → X is said to be expanding if x ¹ F (x) for each x ∈ X. We observe
that if F : X → X is expanding then: (i) any tail in (X,¹) is invariant under
F , (ii) any maximal element of (X,¹) is a fixed point of F .

Let (X; d,¹) be a metric space in which a partial order ¹ is defined. We
say that (X; d,¹) admits arbitrarily small tails if for each tail Tz and any
ε > 0 there exists a subtail Ty ⊂ Tz with diam(Ty) ≤ ε.

Proposition 1. Let (X; d,¹) be a partially ordered complete metric space
which admits arbitrarily small tails. Then for any x0 ∈ X there exists an
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ascending and convergent sequence x0 ¹ x1 ¹ · · · ¹ xn ¹ · · · such that
limn→∞ xn ∈ ∩n∈NTxn.

Proof. The point x0 being given, we first choose x1 ∈ Tx0 such that
diam(Tx1) ≤ 1. Assume that we have an ascending finite sequence x0 ¹ x1 ¹
· · · ¹ xn such that diam(Txk) ≤ 1/k for 0 < k ≤ n. Choose xn+1 ∈ Txn

such that diam(Txn+1) ≤ 1/(n + 1). By induction, we have an increasing
sequence {xn}n∈N with diam(Txn) ≤ 1/n for each n > 0. The sequence of
sets {Txn}n∈N is clearly decreasing, so by the Cantor Theorem there exists a
point x̂ ∈ X such that {x̂} = ∩n∈NTxn. Obviously, x̂ = limn→∞ xn.

Proposition 2. Let (X; d,¹) be a partially ordered complete metric space
which admits arbitrarily small tails and f : X → X an expanding continuous
map. Then for each x0 ∈ X there exists a fixed point x̂ = f(x̂) of f with
x̂ ∈ Tx0.

Proof. Given x0 ∈ X, take a convergent ascending sequence x0 ¹ x1 ¹
· · · ¹ xn ¹ · · · with limn→∞ xn = x̂ ∈ ∩n∈NTxn and diam(Txn) ≤ 1/n for
each n > 0. We have xn ¹ f(xn) for each n ∈ N and therefore f(xn) ∈ Txn.
It follows that the sequence {f(xn)}n∈N converges to x̂ and by continuity that
x̂ = f(x̂).

We now come to our main concept.

Definition 1. We say that (X; d,¹) is a partially ordered Cantor space
(or simply a Cantor space), provided (i) tails are closed, (ii) (X; d,¹) admits
arbitrarily small tails and (iii) d is complete.

The main property of Cantor spaces is given in

Theorem 1 (Order-theoretic Cantor theorem). Let X = (X; d,¹)
be a Cantor space. Then :

( i ) Any tail Tx in X is also a Cantor space.

(ii) X contains at least one maximal element.

(iii) Any tail Tx in X contains at least one maximal element x∗ in X.

(iv) If F : X → X is expanding, then each tail Tx contains a fixed point of
F .

Proof. (i) is obvious from the definitions involved; (iii) and (iv) follow
clearly from (i) and (ii). It thus remains to verify that (ii) is true. The
existence in X of a maximal element follows from Proposition 1. Indeed, let
x0 ¹ x1 ¹ · · · ¹ xn ¹ · · · be an ascending sequence which converges to a point
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x̂ such that x̂ ∈ ∩n∈NTxn. We claim that x̂ is maximal in X: for, if z º x̂,
then z º x̂ º xn for each n ≥ 0, so z ∈ ∩n∈NTxn and therefore z = x̂. This
completes the proof.

2. Bishop–Phelps Theorem

Following Bishop–Phelps, we introduce the following:

Definition 2. Let (X, d) be a metric space, ϕ : X → R be a real-
valued function and λ a positive number. Following Bishop–Phelps, we define
a relation ¹ϕ,λ on X by

x ¹ϕ,λ y if and only if ϕ(y) + λd(x, y) ≤ ϕ(x).(BP)

This is in fact a partial ordering on X: clearly, x ¹ϕ,λ x for each x ∈ X;
if x ¹ϕ,λ y and y ¹ϕ,λ x, then 2λd(x, y) = λd(x, y) + λd(y, x) ≤ ϕ(x) −
ϕ(y) + ϕ(y) − ϕ(x) = 0 and x = y; finally, if x ¹ϕ,λ y and y ¹ϕ,λ z, then
from the triangle inequality, we find x ¹ϕ,λ z. The space (X, d) together with
this partial ordering is denoted by Xϕ,λ. In the special case λ = 1, we shall
write ¹ϕ for ¹ϕ,λ and Xϕ for Xϕ,1. Observe that if x, y are known to be
related then the condition ϕ(y) ≤ ϕ(x) alone assures that both x ¹ϕ,λ y and
ϕ(y) + λd(x, y) ≤ ϕ(x).

Proposition 3. Let ϕ : X → R be a function and λ > 0. Then (i) if
ϕ : X → R is bounded below, then Xϕ,λ admits arbitrarily small tails; (ii) if ϕ
is lower semicontinuous, then each tail in Xϕ,λ is closed.

Proof. Clearly, for the proof, we may assume that λ = 1. (i) Letting x ∈ X
and ε > 0 be given, we choose an element y ∈ Tx so that

ϕ(y)− inf
t∈Tx

ϕ(t) ≤ ε/2.

From Ty ⊂ Tx we have, for any z1, z2 ∈ Ty,

d(z1, z2) ≤ d(z1, y) + d(z2, y) ≤ 2ϕ(y)− 2 inf
t∈Ty

ϕ(t) ≤ 2ϕ(y)− 2 inf
t∈Tx

ϕ(t) ≤ ε.

From this we get diam(Ty) ≤ ε as asserted.
(ii) Indeed, given a tail Tx = {y | ϕ(y)+d(x, y) ≤ ϕ(x)}, because the map

y 7→ ϕ(y) + d(x, y) is lower semicontinuous, the conclusion follows.

Theorem 1 leads immediately to the following fundamental result:



206 Andrzej Granas and Charles D. Horvath

Theorem 2 (Bishop–Phelps). Let (X, d) be complete, ϕ : X → R
a l.s.c. function on X with a finite lower bound and λ a positive number.
Then given any x0 there exists at least one maximal element x∗ in Xϕ,λ with
x∗ ∈ Tx0. Precisely, for any x0 there is at least one x∗ ∈ X such that

ϕ(x∗) + λd(x0, x
∗) ≤ ϕ(x0)

and
ϕ(x∗) < ϕ(x) + λd(x, x∗)

for any x 6= x∗.

Proof. Let Tx0 ⊂ Xϕ,λ be the tail containing a given element x0 in X; by
Proposition 3, Tx0 is a Cantor space, and thus our assertion is an immediate
consequence of Theorem 1.

3. Applications to Fixed Points

Let us say that a function F : X → X defined on a metric space (X, d)
fulfils Caristi’s condition with respect to a given function ϕ : X → R+ if

d(x, Fx) ≤ ϕ(x)− ϕ(Fx) for each x ∈ X.(*)

If it is clear from the context which function ϕ is involved, we will simply say
that Caristi’s condition holds. Notice that if (∗) holds with respect to a func-
tion ϕ : X → R which is only assumed to be bounded below, then it obviously
holds with respect to ϕ− infx∈X ϕ(x). So, there is no loss of generality if ϕ is
assumed to be positive instead of bounded below. We establish now a version
of the Caristi–Brøndsted theorem (cf. [3] and [5]).

Theorem 3. Let (X, d) be complete and ϕ : X → R+ be a l.s.c. function
on X. Then given any x0, there exists an x∗ ∈ X such that x0 ¹ϕ x∗ and x∗ is
a common fixed point for the family of functions (not necessarily continuous)
F : X → X for which Caristi’s condition holds.

Proof. Consider the Cantor space Xϕ and note that the estimate (∗) means
that F : Xϕ → Xϕ is expanding with respect to the partial order ¹ϕ. Now, by
the introductory remarks on expanding maps, and because a tail Tx0 ⊂ Xϕ

is a Cantor space, the conclusion follows.

Theorem 4 (Brøndsted). Let (X, d) be complete and ϕ : X → R+

an arbitrary function. Then given any x0 ∈ X, there exists an ascending
convergent sequence x0 ¹ϕ x1 ¹ϕ · · · ¹ xn ¹ϕ · · · such that limn→∞ xn is a
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common fixed point for the family of all continuous functions F : X → X for
which Caristi’s condition holds.

Proof. We have seen that Xϕ admits arbitrarily small tails and that the
estimate (∗) means that F : Xϕ → Xϕ is expanding with respect to the partial
order ¹ϕ. Now, the conclusion follows from Propositions 1 and 2.

The order-theoretic Cantor theorem is equally useful for dealing with mul-
tivalued maps. Following W. Takahashi [15], we give the multivalued extension
of Caristi’s theorem and then establish Nadler’s fixed point theorem for set-
valued contractions.

Theorem 5 (W. Takahashi [15]). Let (X, d) be complete and ϕ : X → R
be a l.s.c. function bounded below on X. Let F : X → X be a multivalued
map such that for each x ∈ X there is y ∈ Fx satisfying

d(x, y) ≤ ϕ(x)− ϕ(y).

Then given any x0 there exists at least one fixed point x∗ of F with x0 ¹ϕ x∗.

Proof. For each x ∈ X, choose Fx ∈ Fx such that d(x, y) ≤ ϕ(x)−ϕ(Fx).
Obviously, F is a single-valued selector of F . By Caristi’s theorem, there is a
point x0 such that x0 ¹ϕ x∗ and Fx0 = x0. Obviously, x0 ∈ Fx0.

Given a metric space (X, d), let us denote by CB(X) the family of closed
nonempty bounded subsets of X. The Hausdorff metric on CB(X) is denoted
by dH . A map F : X → CB(X) is α-contractive, where 0 ≤ α < 1, if

dH(Fx,Fy) ≤ αd(x, y) for all x, y ∈ X.

Theorem 6 (Nadler [12]). If (X, d) is a complete metric space, then
every α-contractive map F : X → CB(X) has a fixed point.

Proof. First, notice that for any x ∈ X and any y ∈ Fx, we have d(y,Fy) ≤
αd(x, y). Indeed, for any δ > 0 we have

Fx ⊂
⋃

z∈Fy

B(z, αd(x, y) + δ).

Therefore, if y ∈ Fx there is a point z ∈ Fy such that d(y, z) < αd(x, y) + δ.
Taking the infimum over z ∈ Fy yields d(y,Fy) ≤ αd(x, y) + δ. Since δ > 0
was arbitrary, the conclusion follows.
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Now, fix ε > 0. For any x ∈ X there exists a point yε(x) ∈ Fx such that

d(x, yε(x)) ≤ (1 + ε)d(x,Fx).

From this we get
[(

1
1 + ε

)
− α

]
d(x, yε(x)) ≤ d(x,Fx)−αd(x, yε(x)) ≤ d(x,Fx)−d(yε(x),Fyε(x)).

Let

ϕε(x) =
[(

1
1 + ε

)
− α

]−1

d(x,Fx).

If ε is chosen such that (1 + ε)−1 > α, then ϕε is continuous and bounded
below. Furthermore, we have just shown that for any x ∈ X,

x ¹ϕε yε(x) and yε(x) ∈ Fx.

Let x∗ be a maximal element for the partial order ¹ϕε . From x∗ ¹ϕε yε(x∗)
we get x∗ = yε(x∗), and therefore x∗ ∈ Fx∗.

4. Applications to Geometry of Banach Spaces

Let B = B(z, r) be a closed ball in a Banach space. For any x 6∈ B, the
convex hull of x and B is called a drop and is denoted by D(x, B); it is clear
that if y ∈ D(x,B), then D(y,B) ⊂ D(x, B), and, if z = 0, that ‖y‖ ≤ ‖x‖.

Theorem 7 (Daneš [7]). Let A be a closed subset of a Banach space E, let
z ∈ E −A, and let B = B(z, r) be a closed ball of radius 0 < r < d(z, A) = R.
Let F : A → A be any map such that F (a) ∈ A ∩ D(a,B) for each a ∈ A.
Then for each x ∈ A, the map F has at least one fixed point in A ∩D(x,B).

Proof. We can assume z = 0. Let ‖x‖ = % ≥ R and let X = A ∩D(x, B);
clearly, F maps X into itself and we shall develop an expression for ‖x−F (x)‖
on X.

Given y ∈ X, there is a b ∈ B with F (y) = tb + (1 − t)y; since ‖F (y)‖ ≤
t‖b‖+(1− t)‖y‖, we have t[‖y‖−‖b‖] ≤ ‖y‖−‖F (y)‖ so because ‖y‖−‖b‖ ≥
R− r, we find

t ≤ ‖y‖ − ‖Fy‖
R− r

.

Thus,

‖y − F (y)‖ ≤ t‖y − b‖ ≤ t[‖y‖+ ‖b‖] ≤ t[% + r] ≤ % + r

R− r
[‖y‖ − ‖F (y)‖].
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Therefore, applying the Theorem of Caristi with

ϕ(x) =
% + r

R− r
‖x‖,

the result follows.

As a consequence, we obtain

Theorem 8 (Supporting Drops Theorem). Let A be a closed set in
a Banach space E, and z ∈ E − A a point with d(z,A) = R > O. Then for
any r < R < % there is an x0 ∈ ∂A with

‖z − x0‖ ≤ % and A ∩D(x0, B(z, r)) = {x0}.

Proof. Let Ã = A∩B(z, %). It is a closed and nonempty subset of E. For
each point x ∈ Ã, choose a point F (x) ∈ Ã ∩D(x,B) such that F (x) 6= x if
A ∩ D(x,B) 6= {x}. One can easily see that a fixed point x0 of F occurs at
points of ∂A and that Ã ∩D(x,B) = A ∩D(x,B).

5. Applications to Critical Point Theory

Let ϕ : X → R be a real-valued function2 on a metric space X with a finite
η = inf{ϕ(x) | x ∈ X}. Recall that a minimizer (resp. a strict minimizer)
of ϕ is an element x0 ∈ X with ϕ(x0) = η (resp. such that the relation
ϕ(z) ≤ ϕ(x0) implies z = x0). A sequence {xn} in X for which ϕ(xn) → η is
called a minimizing sequence for ϕ.

Theorem 9 (Ekeland [9]). Let (X, d) be complete and let ϕ : X → R
be a lower semicontinuous function with finite lower bound η. Let {xn} be
a minimizing sequence for φ and λn = (ϕ(xn) − η)1/2. Then there exists a
minimizing sequence {yn} for ϕ such that for any natural n we have :

( i ) ϕ(yn) ≤ ϕ(xn) and d(xn, yn) ≤ λn,

(ii) yn is a strict minimizer of the function ϕn : X → R given by

ϕn(z) = ϕ(z) + λnd(z, yn) for z ∈ X,

(iii) ϕ(yn) = ϕn(yn) ≤ ϕ(z) + λnd(z, yn) for z ∈ X.
02 For simplicity, we avoid considering the extended real functions ϕ : X → R ∪ {∞}.
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Proof. We first describe the construction of {yn}. For a given natural n,
consider the space Xϕ,λn , where λn = (ϕ(xn) − η)1/2. By the Bishop–Phelps
theorem applied in Xϕ,λn for the point xn, there exists an element yn in Xϕ,λn

such that (a) xn ¹ϕ,λn yn and (b) yn is maximal in Xϕ,λn . We now show that
yn and the function ϕn defined in (ii) have the properties (i)–(iii).

Indeed, the relation xn ¹ϕ,λn yn in Xϕ,λn translates into the estimate

λnd(xn, yn) ≤ ϕ(xn)− ϕ(yn),

and gives

d(xn, yn) ≤ 1
λn

(ϕ(xn)− ϕ(yn)) ≤ 1
λn

(η + λ2
n − η) = λn;

thus (i) is satisfied.
To establish (ii), suppose that ϕn(z) ≤ ϕn(yn) for some z in X; we then

have
ϕn(z) = ϕ(z) + λnd(z, yn) ≤ ϕ(yn) = ϕn(yn),

which (by the definition of the order in Xϕ,λn) gives yn ¹ϕ,λn z. Since yn is
maximal in Xϕ,λn , the last relation implies yn = z, showing that yn is a strict
minimizer of ϕn, as asserted.

(iii) is an obvious consequence of (ii).
Thus we have constructed a minimizing sequence {yn} satisfying (i)–(iii).

Corollary 1. Let E be a Banach space, ϕ : E → R be a differentiable
function on E with finite lower bound, and {xn} be a minimizing sequence
for ϕ. Then there exists a minimizing sequence {yn} in E for ϕ such that
ϕ(yn) ≤ ϕ(xn) for each n and Dϕ(yn) → 0 in E∗.

Proof. By Theorem 9, there exists a minimizing sequence {yn} in E for ϕ
such that for all n, ϕ(yn) ≤ ϕ(xn) and

ϕ(yn) ≤ ϕ(z) + λn‖z − yn‖ for all z ∈ E.(*)

For a given n, letting z = yn + v we obtain from (∗) the estimate

ϕ(yn)≤ ϕ(yn + v) + λn‖(yn + v)− yn)‖
= ϕ(yn + v) + λn‖v‖ for all v ∈ E,

and consequently

‖Dϕ(yn)‖E∗ = lim
%→0

sup
‖v‖≤%
v 6=0

ϕ(yn)− ϕ(yn + v)
‖v‖ ≤ λn.
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Thus, ‖Dϕ(yn)‖E∗ ≤ λn for each n and, because λn → 0, our assertion follows.

6. Remarks

(1) The Bishop–Phelps technique presented in Sections 2–5 originated in
and evolved from the work of the above authors in the theory of support
functionals in Banach spaces. Let E be a Banach space and X ⊂ E. A
point x0 ∈ X is a support point of X if for some f ∈ E∗, called a support
functional of X, we have f(x0) = sup{f(x) | x ∈ X}. The following theorem
was established by Bishop–Phelps [1]: Let C be a closed convex subset of E.
Then (a) the support points of C are dense in the boundary ∂C of C, and (b)
the support functionals of C are norm dense in the set {f ∈ E∗ | supC f < ∞}.

In connection with the Bishop–Phelps theorem, we make the following
comments:

(i) If Int(C) 6= ∅, then every x ∈ C is a support point of C; this follows at
once from the Mazur separation theorem.

(ii) If C is the closed unit ball in E, then the set {f ∈ E∗ | f(x) = ‖f‖ for
some x ∈ ∂C} is norm dense in E∗; this is a special case of the Bishop–Phelps
theorem.

(iii) If C is the closed unit ball in E, then [each f ∈ E∗ is a support
functional of C] ⇔ [the space E is reflexive] (theorem of James [11]).

(iv) Let ϕ : E → R be convex and lower semicontinuous. Let

∂ϕ(x) = {f ∈ E∗ | f(y − x) ≤ ϕ(y)− ϕ(x) for y ∈ E}

be the subdifferential of ϕ at x ∈ E. Because the elements of ∂ϕ(x) can be
identified with support functionals of the closed convex epigraph epi(ϕ) ⊂
E × R of ϕ at (x, ϕ(x)), the Bishop–Phelps theorem leads to the following
theorem: The set {x ∈ E | ∂ϕ(x) 6= 0} is dense in E. This important result
(and, in fact, its “extended” version valid for functions ϕ possibly equal to
∞), is due to Brøndsted–Rockafellar [4].

(2) The order-theoretic Cantor theorem implies the usual Cantor theorem.
Indeed, let {Fn}n∈N be a decreasing sequence of nonempty closed sets in a
complete metric space (X, d) (we can always assume F0 = X) such that infn∈N

diamFn = 0. Let x ¹ y if x = y or there exists n ∈ N such that y ∈ Fn and
x 6∈ Fn. Then ¹ is compatible with the metric since Tx = {x} if x ∈ ∩n∈NFn

and Tx = {x} ∪ Fn(x)+1 otherwise, where n(x) = max{n ∈ N | x ∈ Fn}.
Clearly, any maximal element belongs to ∩n∈NFn.

(3) The theorem of Daneš can be proved by replacing the norm by a func-
tion ϕ : E → R ∪ {∞} which is l.s.c., coercive, bounded below and convex.
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(4) The formulation of the Bishop–Phelps theorem is taken from [8]; the
result appeared in a different form in the survey by Phelps [14] written in
1971. For various interrelations between results related to the Bishop–Phelps
theorem, the reader is referred to [6] and [13].
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