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ON THE ORDER-THEORETIC CANTOR THEOREM
Andrzej Granas and Charles D. Horvath

Dedicated to Fon-Che Liu

Abstract. In this report!, we present an order-theoretic version of the
Cantor theorem. This result, which is based on the interplay of the
notions of partial order and of completeness, permits to give a unified
and simplified account to a long list of results related to the Bishop—
Phelps theorem. We survey briefly only its simplest applications and
refer the reader to [10] for a complete presentation of the results.

1. CANTOR SPACES

Let (X, <) be a partially ordered set. For any z € X, denote the terminal
tail {y € X | z 2y} by Tz; if y € Tz, the set Ty C Tz is called a subtail of
Tz. Clearly an element y is maximal in (X, <) provided {y} = Ty. A map
F: X — X is said to be ezpanding if + < F(z) for each z € X. We observe
that if F': X — X is expanding then: (i) any tail in (X, <) is invariant under
F, (ii) any maximal element of (X, <) is a fixed point of F'.

Let (X;d, <) be a metric space in which a partial order < is defined. We
say that (X;d, <) admits arbitrarily small tails if for each tail Tz and any
e > 0 there exists a subtail Ty C Tz with diam(Ty) < e.

Proposition 1. Let (X;d, <) be a partially ordered complete metric space
which admits arbitrarily small tails. Then for any ro € X there exists an
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ascending and convergent sequence xg =X x1 =X -+ =X x, = --- such that

limy, o0 Tn, € NpenT'xy,.

Proof. The point zg being given, we first choose z1 € Txy such that
diam(7T'z1) < 1. Assume that we have an ascending finite sequence zy < 27 <
- X x,, such that diam(Txr) < 1/k for 0 < k& < n. Choose zp4+1 € Tz,
such that diam(Tz,4+1) < 1/(n + 1). By induction, we have an increasing
sequence {Tpneny with diam(7Tz,) < 1/n for each n > 0. The sequence of
sets {Txp, }nen is clearly decreasing, so by the Cantor Theorem there exists a
point # € X such that {#} = NyenTx,. Obviously, 2 = lim, o Tp- [ ]

Proposition 2. Let (X;d, =) be a partially ordered complete metric space
which admits arbitrarily small tails and f : X — X an expanding continuous
map. Then for each xy € X there exists a fized point & = f(Z) of f with
T € Txg.

Proof. Given zg € X, take a convergent ascending sequence zg = x1 =
v Ry = -ee with limy oo Ty = & € NpenT, and diam(Twz,) < 1/n for
each n > 0. We have z,, < f(x,) for each n € N and therefore f(x,) € Tzy.
It follows that the sequence { f(zy,) }nen converges to & and by continuity that

z = f(2). [

We now come to our main concept.

Definition 1. We say that (X;d, <) is a partially ordered Cantor space
(or simply a Cantor space), provided (i) tails are closed, (ii) (X;d, <) admits
arbitrarily small tails and (iii) d is complete.

The main property of Cantor spaces is given in

Theorem 1 (Order-theoretic Cantor theorem). Let X = (X;d, =)
be a Cantor space. Then:

(1) Any tail Tx in X is also a Cantor space.
(i

) X contains at least one mazimal element.
(iii) Any tail Tz in X contains at least one mazimal element z* in X.
)

(iv) If F : X — X is expanding, then each tail Tz contains a fixed point of
F.

Proof. (i) is obvious from the definitions involved; (iii) and (iv) follow
clearly from (i) and (ii). It thus remains to verify that (ii) is true. The
existence in X of a maximal element follows from Proposition 1. Indeed, let
o X1 X -+ =X x, = - be an ascending sequence which converges to a point
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Z such that ¢ € NpenTx,. We claim that & is maximal in X: for, if z = Z,
then z = & »= z, for each n > 0, so z € NpenT' T, and therefore z = . This
completes the proof. n

2. BisHoP—PHELPS THEOREM
Following Bishop—Phelps, we introduce the following:

Definition 2. Let (X,d) be a metric space, ¢ : X — R be a real-
valued function and A a positive number. Following Bishop—Phelps, we define
a relation <,y on X by

(BP) r 2,y if and only if o(y) + Ad(z,y) < ¢(x).

This is in fact a partial ordering on X: clearly, x <, ) = for each x € X;
if <, yand y <, @, then 2Xd(z,y) = Ad(z,y) + Md(y,z) < ¢(z) —
o(y) + ¢(y) — ¢(x) = 0 and = = y; finally, if 2 <, y and y =<, \ 2, then
from the triangle inequality, we find x <, ) 2. The space (X, d) together with
this partial ordering is denoted by X, y. In the special case A = 1, we shall
write =<, for <, and X, for X, ;. Observe that if x,y are known to be
related then the condition ¢(y) < ¢(z) alone assures that both z < ) y and

e(y) + Ad(z,y) < p(z).

Proposition 3. Let ¢ : X — R be a function and X > 0. Then (i) if
¢ : X — R is bounded below, then X, x admits arbitrarily small tails; (ii) if ¢
is lower semicontinuous, then each tail in X, ) is closed.

Proof. Clearly, for the proof, we may assume that A\ = 1. (i) Letting z € X
and € > 0 be given, we choose an element y € Tz so that

o(y) — tie%fx‘p(t) <e/2.

From Ty C Tx we have, for any z1, 2o € Ty,

d(z1,22) < d(z1,y) +d(22,y) < 20(y) — 2 inf p(t) < 2p(y) — 2 inf p(t) <e.
teTy teTx

From this we get diam(T'y) < ¢ as asserted.
(ii) Indeed, given a tail Tx = {y | p(y) +d(z,y) < ¢(x)}, because the map
y +— p(y) + d(x,y) is lower semicontinuous, the conclusion follows. [

Theorem 1 leads immediately to the following fundamental result:
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Theorem 2 (Bishop—Phelps). Let (X,d) be complete, ¢ : X — R
a l.s.c. function on X with a finite lower bound and A a positive number.
Then given any o there exists at least one maximal element x* in X, \ with
z* € Txg. Precisely, for any xo there is at least one x* € X such that

p(") + Ad(xo, 27) < p(20)

and
p(a") < p(z) + Ad(z, %)

for any x # x*.

Proof. Let Tzg C X, \ be the tail containing a given element zg in X; by
Proposition 3, T'zg is a Cantor space, and thus our assertion is an immediate
consequence of Theorem 1. [

3. APPLICATIONS TO FIXED POINTS

Let us say that a function F' : X — X defined on a metric space (X,d)
fulfils Caristi’s condition with respect to a given function ¢ : X — R if

(*) d(z, Fz) < o(x) — p(Fz) for each z € X.

If it is clear from the context which function ¢ is involved, we will simply say
that Caristi’s condition holds. Notice that if () holds with respect to a func-
tion ¢ : X — R which is only assumed to be bounded below, then it obviously
holds with respect to ¢ — inf e x ¢(z). So, there is no loss of generality if ¢ is
assumed to be positive instead of bounded below. We establish now a version
of the Caristi-Brgndsted theorem (cf. [3] and [5]).

Theorem 3. Let (X,d) be complete and ¢ : X — Ry be a l.s.c. function
on X. Then given any xq, there exists an v* € X such that xg <, x* and x™* is
a common fized point for the family of functions (not necessarily continuous)
F: X — X for which Caristi’s condition holds.

Proof. Consider the Cantor space X, and note that the estimate (x) means
that F': X, — X, is expanding with respect to the partial order <,. Now, by
the introductory remarks on expanding maps, and because a tail T'xzg C X,
is a Cantor space, the conclusion follows. [

Theorem 4 (Brgndsted). Let (X,d) be complete and ¢ : X — Ry
an arbitrary function. Then given any xq € X, there exists an ascending
convergent sequence To =, T1 Sgp -+ X Ty X -+ such that limy, o 2, 5 a
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common fixed point for the family of all continuous functions F : X — X for
which Caristi’s condition holds.

Proof. We have seen that X, admits arbitrarily small tails and that the
estimate (*) means that I : X, — X, is expanding with respect to the partial
order <,. Now, the conclusion follows from Propositions 1 and 2. ]

The order-theoretic Cantor theorem is equally useful for dealing with mul-
tivalued maps. Following W. Takahashi [15], we give the multivalued extension
of Caristi’s theorem and then establish Nadler’s fixed point theorem for set-
valued contractions.

Theorem 5 (W. Takahashi [15]). Let (X,d) be complete and o : X — R
be a l.s.c. function bounded below on X. Let F : X — X be a multivalued
map such that for each x € X there is y € Fx satisfying

d(z,y) < () = ¢(y)-
Then given any xq there exists at least one fized point x* of F with xg =, =*.

Proof. For each x € X, choose F'x € Fx such that d(z,y) < p(z) —p(Fz).
Obviously, F' is a single-valued selector of F. By Caristi’s theorem, there is a
point xg such that xg <, * and Fxg = xo. Obviously, zg € Fxo. [

Given a metric space (X, d), let us denote by CB(X) the family of closed
nonempty bounded subsets of X. The Hausdorff metric on CB(X) is denoted
by dgg. A map F : X — CB(X) is a-contractive, where 0 < a < 1, if

dy(Fz,Fy) < ad(z,y) for all z,y € X.

Theorem 6 (Nadler [12]). If (X,d) is a complete metric space, then
every a-contractive map F : X — CB(X) has a fixed point.

Proof. First, notice that for any z € X and any y € Fz, we have d(y, Fy) <
ad(x,y). Indeed, for any § > 0 we have

Fzx C U B(z,ad(z,y) + 90).
zeFy

Therefore, if y € Fx there is a point z € Fy such that d(y, z) < ad(z,y) + 9.
Taking the infimum over z € Fy yields d(y, Fy) < ad(z,y) + 0. Since § > 0
was arbitrary, the conclusion follows.
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Now, fix € > 0. For any x € X there exists a point y.(x) € Fx such that
d(z,ye(z)) < (1 + €)d(z, Fz).

From this we get

(1) - o] dte e < dlo Fo)-ade, ) < do, Fo)-dya), Fycle)

Let

Pc(x) = [(1 Jlr 6) — a}_l d(z, Fz).

If € is chosen such that (1 +¢)~! > «, then ¢ is continuous and bounded
below. Furthermore, we have just shown that for any = € X,

x 2y Ye(x) and ye(z) € Fu.

Let z* be a maximal element for the partial order <,_. From z* <,_y.(z*)
we get * = y.(x*), and therefore x* € Fu*. [

4. APPLICATIONS TO GEOMETRY OF BANACH SPACES

Let B = B(z,r) be a closed ball in a Banach space. For any x ¢ B, the
convex hull of z and B is called a drop and is denoted by D(x, B); it is clear
that if y € D(z, B), then D(y, B) C D(z, B), and, if z = 0, that [|y|| < ||z|.

Theorem 7 (Danes [7]). Let A be a closed subset of a Banach space E, let
z€ E— A, and let B= B(z,1) be a closed ball of radius 0 < r < d(z,A) = R.
Let F : A — A be any map such that F(a) € AN D(a,B) for each a € A.
Then for each x € A, the map F has at least one fized point in AN D(x, B).

Proof. We can assume z = 0. Let ||z|| = ¢ > R and let X = AN D(z, B);
clearly, F' maps X into itself and we shall develop an expression for ||z — F(z)||
on X.

Given y € X, there is a b € B with F(y) = tb+ (1 — t)y; since ||F(y)|| <
£l + (1= D)llyll, we have ¢[ly]| - [16]] < 1yl — | F(w)]| so because ly] - 5] >
R —r, we find

= 1Pel
- R-r
Thus,

o+r
—r

ly = F)ll < tlly = oll < fllyll + [[oll] < tlo+r] <

iyl = I1E )1

oy
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Therefore, applying the Theorem of Caristi with

_otr
 R-—r

p(z) ]I,

the result follows. ]
As a consequence, we obtain

Theorem 8 (Supporting Drops Theorem). Let A be a closed set in
a Banach space E, and z € E — A a point with d(z,A) = R > O. Then for
any r < R < g there is an xg € 0A with

|z — zol| < 0 and AN D(xg,B(z,r)) ={zo}.

Proof. Let A= AN B(z,0). It is a closed and nonempty subset of E. For
each point € A, choose a point F(z) € AN D(zx, B) such that F(z) # z if
AND(x,B) # {x}. One can easily see that a fixed point z¢ of F' occurs at
points of A and that AN D(z, B) = AN D(z, B). [ |

5. APPLICATIONS TO CRITICAL POINT THEORY

Let ¢ : X — R be a real-valued function? on a metric space X with a finite
n = inf{e(x) | = € X}. Recall that a minimizer (resp. a strict minimizer)
of p is an element zo € X with p(xg) = n (resp. such that the relation
©(z) < p(xp) implies z = xp). A sequence {z,} in X for which ¢(z,) — n is
called a minimizing sequence for ¢.

Theorem 9 (Ekeland [9]). Let (X,d) be complete and let ¢ : X — R
be a lower semicontinuous function with finite lower bound n. Let {x,} be
a minimizing sequence for ¢ and M, = (p(xn) — n)Y/2. Then there exists a
minimizing sequence {yn} for ¢ such that for any natural n we have:

(1) w(yn) < @(xn) and d(xp,yn) < An,

(il) yn is a strict minimizer of the function , : X — R given by

on(2) = ¢(2) + And(z,yn) for z € X,

(iii) ‘p(yn) = ‘Pn(yn) < SD(Z) + )\nd(z,yn) for z € X.

2 for simplicity, we avoid considering the extended real functions ¢ : X — R U {co}.
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Proof. We first describe the construction of {y,}. For a given natural n,
consider the space X, y,, where A, = (¢(z,) —n)'/2. By the Bishop-Phelps
theorem applied in X, , for the point z,,, there exists an element 3, in X,
such that (a) x, =4, yn and (b) y, is maximal in X, »,. We now show that

yn, and the function ¢,, defined in (ii) have the properties (i)—(iii).
Indeed, the relation x,, =, , yn in X, ), translates into the estimate

AMnd(Tn, Yn) < (Tn) — (Yn),

and gives

Ans ) < 5 (Plan) = 0ln) < (14 A2 = 1) = Ao

thus (i) is satisfied.

To establish (ii), suppose that ¢, (z) < ¢n(yn) for some z in X; we then
have

en(2) = p(2) + And(2,yn) < ©(Yn) = @nlyn),

which (by the definition of the order in X, ,) gives y, =y, 2. Since y, is
maximal in X, 5, the last relation implies y, = z, showing that y, is a strict
minimizer of ¢, as asserted.

(iii) is an obvious consequence of (ii).

Thus we have constructed a minimizing sequence {yy,} satisfying (i)—(iii).

]

Corollary 1. Let E be a Banach space, p : E — R be a differentiable
function on E with finite lower bound, and {x,} be a minimizing sequence
for @. Then there exists a minimizing sequence {y,} in E for ¢ such that
o(yn) < @(zp) for each n and Do(y,) — 0 in E*.

Proof. By Theorem 9, there exists a minimizing sequence {y,} in F for ¢
such that for all n, (y,) < ¢(z,) and

(*) @(yn) < o(2) + Anllz —yn|  forall z € E.
For a given n, letting z = y,, + v we obtain from () the estimate

©(Yn) < @(yn +v) + Ml (Yn +v) — y) ||
= o(yn +v) + Mlv| forallv e E,

and consequently

< Ap.

HDﬁp(yn)HE* = lim sup @(yn) — <10(3/11 + U)
00 |ly[|<e v
v#£0
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Thus, || D¢(yn)|lg+ < A, for each n and, because A\, — 0, our assertion follows.
[

6. REMARKS

(1) The Bishop—Phelps technique presented in Sections 2-5 originated in
and evolved from the work of the above authors in the theory of support
functionals in Banach spaces. Let E be a Banach space and X C E. A
point zg € X is a support point of X if for some f € E* called a support
functional of X, we have f(z¢) = sup{f(z) | x € X}. The following theorem
was established by Bishop—Phelps [1]: Let C be a closed convex subset of E.
Then (a) the support points of C are dense in the boundary OC of C, and (b)
the support functionals of C are norm dense in the set {f € E* | sups f < o0}.

In connection with the Bishop—Phelps theorem, we make the following
comments:

(i) If Int(C) # 0, then every x € C' is a support point of C; this follows at
once from the Mazur separation theorem.

(ii) If C is the closed unit ball in E, then the set {f € E* | f(z) = ||f|| for
some z € JC'} is norm dense in E*; this is a special case of the Bishop—Phelps
theorem.

(iii) If C is the closed unit ball in E, then [each f € E* is a support
functional of C] < [the space E is reflexive] (theorem of James [11]).

(iv) Let ¢ : E — R be convex and lower semicontinuous. Let

Op(x) ={f € E" | fly—x) < p(y) — p(z) for y€ L}

be the subdifferential of ¢ at € E. Because the elements of dp(x) can be
identified with support functionals of the closed convex epigraph epi(y) C
E x R of ¢ at (z,¢(x)), the Bishop—Phelps theorem leads to the following
theorem: The set {x € E | 0p(x) # 0} is dense in E. This important result
(and, in fact, its “extended” version valid for functions ¢ possibly equal to
00), is due to Brgndsted-Rockafellar [4].

(2) The order-theoretic Cantor theorem implies the usual Cantor theorem.
Indeed, let {F,}nen be a decreasing sequence of nonempty closed sets in a
complete metric space (X, d) (we can always assume Fy = X)) such that inf,,c
diam F,, = 0. Let z < y if x = y or there exists n € N such that y € F,, and
x & F,. Then =< is compatible with the metric since Tx = {z} if z € Npen F
and Tx = {x} U F} ;)41 otherwise, where n(r) = max{n € N | z € F,}.
Clearly, any maximal element belongs to NpenFp-

(3) The theorem of Danes can be proved by replacing the norm by a func-
tion ¢ : E — R U {oo} which is Ls.c., coercive, bounded below and convex.
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(4) The formulation of the Bishop—Phelps theorem is taken from [8]; the
result appeared in a different form in the survey by Phelps [14] written in
1971. For various interrelations between results related to the Bishop—Phelps
theorem, the reader is referred to [6] and [13].
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