ON THE ORDER-THEORETIC CANTOR THEOREM

Andrzej Granas and Charles D. Horvath

Dedicated to Fon-Che Liu

Abstract. In this report¹, we present an order-theoretic version of the Cantor theorem. This result, which is based on the interplay of the notions of partial order and of completeness, permits to give a unified and simplified account to a long list of results related to the Bishop-Phelps theorem. We survey briefly only its simplest applications and refer the reader to [10] for a complete presentation of the results.

1. Cantor Spaces

Let (X, \preceq) be a partially ordered set. For any $z \in X$, denote the *terminal* $tail\ \{y \in X \mid z \preceq y\}$ by Tz; if $y \in Tz$, the set $Ty \subset Tz$ is called a *subtail* of Tz. Clearly an element y is maximal in (X, \preceq) provided $\{y\} = Ty$. A map $F: X \to X$ is said to be *expanding* if $x \preceq F(x)$ for each $x \in X$. We observe that if $F: X \to X$ is expanding then: (i) any tail in (X, \preceq) is invariant under F, (ii) any maximal element of (X, \preceq) is a fixed point of F.

Let $(X; d, \preceq)$ be a metric space in which a partial order \preceq is defined. We say that $(X; d, \preceq)$ admits arbitrarily small tails if for each tail Tz and any $\varepsilon > 0$ there exists a subtail $Ty \subset Tz$ with $\operatorname{diam}(Ty) \leq \varepsilon$.

Proposition 1. Let $(X; d, \preceq)$ be a partially ordered complete metric space which admits arbitrarily small tails. Then for any $x_0 \in X$ there exists an

Received February 8, 2000; revised March 8, 2000.

Communicated by P. Y. Wu.

 $2000\ Mathematics\ Subject\ Classification:\ 54E50,\ 54H25,\ 49J45.$

Key words and phrases: Cantor theorem, partially ordered set, Bishop-Phelps theorem, common fixed point, critical point, drop.

¹ Presented at the 1999 International Conference on Nonlinear Analysis held in Taipei, Oct. 16-20, 1999.

ascending and convergent sequence $x_0 \leq x_1 \leq \cdots \leq x_n \leq \cdots$ such that $\lim_{n\to\infty} x_n \in \bigcap_{n\in\mathbb{N}} \overline{Tx_n}$.

Proof. The point x_0 being given, we first choose $x_1 \in Tx_0$ such that $\operatorname{diam}(Tx_1) \leq 1$. Assume that we have an ascending finite sequence $x_0 \leq x_1 \leq \cdots \leq x_n$ such that $\operatorname{diam}(Tx_k) \leq 1/k$ for $0 < k \leq n$. Choose $x_{n+1} \in Tx_n$ such that $\operatorname{diam}(Tx_{n+1}) \leq 1/(n+1)$. By induction, we have an increasing sequence $\{x_n\}_{n\in\mathbb{N}}$ with $\operatorname{diam}(Tx_n) \leq 1/n$ for each n > 0. The sequence of sets $\{\overline{Tx_n}\}_{n\in\mathbb{N}}$ is clearly decreasing, so by the Cantor Theorem there exists a point $\hat{x} \in X$ such that $\{\hat{x}\} = \bigcap_{n \in \mathbb{N}} Tx_n$. Obviously, $\hat{x} = \lim_{n \to \infty} x_n$.

Proposition 2. Let $(X; d, \preceq)$ be a partially ordered complete metric space which admits arbitrarily small tails and $f: X \to X$ an expanding continuous map. Then for each $x_0 \in X$ there exists a fixed point $\hat{x} = f(\hat{x})$ of f with $\hat{x} \in \overline{Tx_0}$.

Proof. Given $x_0 \in X$, take a convergent ascending sequence $x_0 \leq x_1 \leq \cdots \leq x_n \leq \cdots$ with $\lim_{n\to\infty} x_n = \hat{x} \in \bigcap_{n\in\mathbb{N}} \overline{Tx_n}$ and $\operatorname{diam}(Tx_n) \leq 1/n$ for each n > 0. We have $x_n \leq f(x_n)$ for each $n \in \mathbb{N}$ and therefore $f(x_n) \in Tx_n$. It follows that the sequence $\{f(x_n)\}_{n\in\mathbb{N}}$ converges to \hat{x} and by continuity that $\hat{x} = f(\hat{x})$.

We now come to our main concept.

Definition 1. We say that $(X; d, \preceq)$ is a partially ordered Cantor space (or simply a Cantor space), provided (i) tails are closed, (ii) $(X; d, \preceq)$ admits arbitrarily small tails and (iii) d is complete.

The main property of Cantor spaces is given in

Theorem 1 (Order-theoretic Cantor theorem). Let $X = (X; d, \preceq)$ be a Cantor space. Then:

- (i) Any tail Tx in X is also a Cantor space.
- (ii) X contains at least one maximal element.
- (iii) Any tail Tx in X contains at least one maximal element x^* in X.
- (iv) If $F: X \to X$ is expanding, then each tail Tx contains a fixed point of F.

Proof. (i) is obvious from the definitions involved; (iii) and (iv) follow clearly from (i) and (ii). It thus remains to verify that (ii) is true. The existence in X of a maximal element follows from Proposition 1. Indeed, let $x_0 \leq x_1 \leq \cdots \leq x_n \leq \cdots$ be an ascending sequence which converges to a point

 \hat{x} such that $\hat{x} \in \bigcap_{n \in N} Tx_n$. We claim that \hat{x} is maximal in X: for, if $z \succeq \hat{x}$, then $z \succeq \hat{x} \succeq x_n$ for each $n \ge 0$, so $z \in \bigcap_{n \in N} Tx_n$ and therefore $z = \hat{x}$. This completes the proof.

2. BISHOP-PHELPS THEOREM

Following Bishop-Phelps, we introduce the following:

Definition 2. Let (X,d) be a metric space, $\varphi: X \to R$ be a real-valued function and λ a positive number. Following Bishop-Phelps, we define a relation $\leq_{\varphi,\lambda}$ on X by

(BP)
$$x \leq_{\varphi,\lambda} y$$
 if and only if $\varphi(y) + \lambda d(x,y) \leq \varphi(x)$.

This is in fact a partial ordering on X: clearly, $x \preceq_{\varphi,\lambda} x$ for each $x \in X$; if $x \preceq_{\varphi,\lambda} y$ and $y \preceq_{\varphi,\lambda} x$, then $2\lambda d(x,y) = \lambda d(x,y) + \lambda d(y,x) \leq \varphi(x) - \varphi(y) + \varphi(y) - \varphi(x) = 0$ and x = y; finally, if $x \preceq_{\varphi,\lambda} y$ and $y \preceq_{\varphi,\lambda} z$, then from the triangle inequality, we find $x \preceq_{\varphi,\lambda} z$. The space (X,d) together with this partial ordering is denoted by $X_{\varphi,\lambda}$. In the special case $\lambda = 1$, we shall write \preceq_{φ} for $\preceq_{\varphi,\lambda}$ and X_{φ} for $X_{\varphi,1}$. Observe that if x,y are known to be related then the condition $\varphi(y) \leq \varphi(x)$ alone assures that both $x \preceq_{\varphi,\lambda} y$ and $\varphi(y) + \lambda d(x,y) \leq \varphi(x)$.

Proposition 3. Let $\varphi: X \to R$ be a function and $\lambda > 0$. Then (i) if $\varphi: X \to R$ is bounded below, then $X_{\varphi,\lambda}$ admits arbitrarily small tails; (ii) if φ is lower semicontinuous, then each tail in $X_{\varphi,\lambda}$ is closed.

Proof. Clearly, for the proof, we may assume that $\lambda = 1$. (i) Letting $x \in X$ and $\varepsilon > 0$ be given, we choose an element $y \in Tx$ so that

$$\varphi(y) - \inf_{t \in Tx} \varphi(t) \le \varepsilon/2.$$

From $Ty \subset Tx$ we have, for any $z_1, z_2 \in Ty$,

$$d(z_1, z_2) \le d(z_1, y) + d(z_2, y) \le 2\varphi(y) - 2\inf_{t \in Ty} \varphi(t) \le 2\varphi(y) - 2\inf_{t \in Tx} \varphi(t) \le \varepsilon.$$

From this we get $diam(Ty) \leq \varepsilon$ as asserted.

(ii) Indeed, given a tail $Tx = \{y \mid \varphi(y) + d(x, y) \leq \varphi(x)\}$, because the map $y \mapsto \varphi(y) + d(x, y)$ is lower semicontinuous, the conclusion follows.

Theorem 1 leads immediately to the following fundamental result:

Theorem 2 (Bishop-Phelps). Let (X,d) be complete, $\varphi: X \to R$ a l.s.c. function on X with a finite lower bound and λ a positive number. Then given any x_0 there exists at least one maximal element x^* in $X_{\varphi,\lambda}$ with $x^* \in Tx_0$. Precisely, for any x_0 there is at least one $x^* \in X$ such that

$$\varphi(x^*) + \lambda d(x_0, x^*) \le \varphi(x_0)$$

and

$$\varphi(x^*) < \varphi(x) + \lambda d(x, x^*)$$

for any $x \neq x^*$.

Proof. Let $Tx_0 \subset X_{\varphi,\lambda}$ be the tail containing a given element x_0 in X; by Proposition 3, Tx_0 is a Cantor space, and thus our assertion is an immediate consequence of Theorem 1.

3. Applications to Fixed Points

Let us say that a function $F: X \to X$ defined on a metric space (X, d) fulfils Caristi's condition with respect to a given function $\varphi: X \to R_+$ if

(*)
$$d(x, Fx) \le \varphi(x) - \varphi(Fx) \quad \text{for each } x \in X.$$

If it is clear from the context which function φ is involved, we will simply say that Caristi's condition holds. Notice that if (*) holds with respect to a function $\varphi: X \to R$ which is only assumed to be bounded below, then it obviously holds with respect to $\varphi - \inf_{x \in X} \varphi(x)$. So, there is no loss of generality if φ is assumed to be positive instead of bounded below. We establish now a version of the Caristi-Brøndsted theorem (cf. [3] and [5]).

Theorem 3. Let (X,d) be complete and $\varphi: X \to R_+$ be a l.s.c. function on X. Then given any x_0 , there exists an $x^* \in X$ such that $x_0 \preceq_{\varphi} x^*$ and x^* is a common fixed point for the family of functions (not necessarily continuous) $F: X \to X$ for which Caristi's condition holds.

Proof. Consider the Cantor space X_{φ} and note that the estimate (*) means that $F: X_{\varphi} \to X_{\varphi}$ is expanding with respect to the partial order \leq_{φ} . Now, by the introductory remarks on expanding maps, and because a tail $Tx_0 \subset X_{\varphi}$ is a Cantor space, the conclusion follows.

Theorem 4 (Brøndsted). Let (X,d) be complete and $\varphi: X \to R_+$ an arbitrary function. Then given any $x_0 \in X$, there exists an ascending convergent sequence $x_0 \preceq_{\varphi} x_1 \preceq_{\varphi} \cdots \preceq x_n \preceq_{\varphi} \cdots$ such that $\lim_{n\to\infty} x_n$ is a

common fixed point for the family of all continuous functions $F: X \to X$ for which Caristi's condition holds.

Proof. We have seen that X_{φ} admits arbitrarily small tails and that the estimate (*) means that $F: X_{\varphi} \to X_{\varphi}$ is expanding with respect to the partial order \leq_{φ} . Now, the conclusion follows from Propositions 1 and 2.

The order-theoretic Cantor theorem is equally useful for dealing with multivalued maps. Following W. Takahashi [15], we give the multivalued extension of Caristi's theorem and then establish Nadler's fixed point theorem for setvalued contractions.

Theorem 5 (W. Takahashi [15]). Let (X,d) be complete and $\varphi: X \to R$ be a l.s.c. function bounded below on X. Let $\mathcal{F}: X \to X$ be a multivalued map such that for each $x \in X$ there is $y \in \mathcal{F}x$ satisfying

$$d(x,y) \le \varphi(x) - \varphi(y).$$

Then given any x_0 there exists at least one fixed point x^* of \mathcal{F} with $x_0 \leq_{\varphi} x^*$.

Proof. For each $x \in X$, choose $Fx \in \mathcal{F}x$ such that $d(x,y) \leq \varphi(x) - \varphi(Fx)$. Obviously, F is a single-valued selector of \mathcal{F} . By Caristi's theorem, there is a point x_0 such that $x_0 \leq_{\varphi} x^*$ and $Fx_0 = x_0$. Obviously, $x_0 \in \mathcal{F}x_0$.

Given a metric space (X, d), let us denote by $\mathcal{CB}(X)$ the family of closed nonempty bounded subsets of X. The Hausdorff metric on $\mathcal{CB}(X)$ is denoted by d_H . A map $\mathcal{F}: X \to \mathcal{CB}(X)$ is α -contractive, where $0 \le \alpha < 1$, if

$$d_H(\mathcal{F}x, \mathcal{F}y) \leq \alpha d(x, y)$$
 for all $x, y \in X$.

Theorem 6 (Nadler [12]). If (X, d) is a complete metric space, then every α -contractive map $\mathcal{F}: X \to \mathcal{CB}(X)$ has a fixed point.

Proof. First, notice that for any $x \in X$ and any $y \in \mathcal{F}x$, we have $d(y, \mathcal{F}y) \le \alpha d(x, y)$. Indeed, for any $\delta > 0$ we have

$$\mathcal{F}x \subset \bigcup_{z \in \mathcal{F}y} B(z, \alpha d(x, y) + \delta).$$

Therefore, if $y \in \mathcal{F}x$ there is a point $z \in \mathcal{F}y$ such that $d(y, z) < \alpha d(x, y) + \delta$. Taking the infimum over $z \in \mathcal{F}y$ yields $d(y, \mathcal{F}y) \leq \alpha d(x, y) + \delta$. Since $\delta > 0$ was arbitrary, the conclusion follows.

Now, fix $\epsilon > 0$. For any $x \in X$ there exists a point $y_{\epsilon}(x) \in \mathcal{F}x$ such that

$$d(x, y_{\epsilon}(x)) \leq (1 + \epsilon)d(x, \mathcal{F}x).$$

From this we get

$$\left[\left(\frac{1}{1+\epsilon} \right) - \alpha \right] d(x, y_{\epsilon}(x)) \le d(x, \mathcal{F}x) - \alpha d(x, y_{\epsilon}(x)) \le d(x, \mathcal{F}x) - d(y_{\epsilon}(x), \mathcal{F}y_{\epsilon}(x)).$$

Let

$$\varphi_{\epsilon}(x) = \left[\left(\frac{1}{1+\epsilon} \right) - \alpha \right]^{-1} d(x, \mathcal{F}x).$$

If ϵ is chosen such that $(1+\epsilon)^{-1} > \alpha$, then φ_{ϵ} is continuous and bounded below. Furthermore, we have just shown that for any $x \in X$,

$$x \leq_{\varphi_{\epsilon}} y_{\epsilon}(x)$$
 and $y_{\epsilon}(x) \in \mathcal{F}x$.

Let x^* be a maximal element for the partial order $\preceq_{\varphi_{\epsilon}}$. From $x^* \preceq_{\varphi_{\epsilon}} y_{\epsilon}(x^*)$ we get $x^* = y_{\epsilon}(x^*)$, and therefore $x^* \in \mathcal{F}x^*$.

4. Applications to Geometry of Banach Spaces

Let B = B(z, r) be a closed ball in a Banach space. For any $x \notin B$, the convex hull of x and B is called a *drop* and is denoted by D(x, B); it is clear that if $y \in D(x, B)$, then $D(y, B) \subset D(x, B)$, and, if z = 0, that $||y|| \le ||x||$.

Theorem 7 (Daneš [7]). Let A be a closed subset of a Banach space E, let $z \in E - A$, and let B = B(z, r) be a closed ball of radius 0 < r < d(z, A) = R. Let $F : A \to A$ be any map such that $F(a) \in A \cap D(a, B)$ for each $a \in A$. Then for each $x \in A$, the map F has at least one fixed point in $A \cap D(x, B)$.

Proof. We can assume z=0. Let $||x||=\varrho\geq R$ and let $X=A\cap D(x,B)$; clearly, F maps X into itself and we shall develop an expression for ||x-F(x)|| on X.

Given $y \in X$, there is a $b \in B$ with F(y) = tb + (1 - t)y; since $||F(y)|| \le t||b|| + (1 - t)||y||$, we have $t[||y|| - ||b||] \le ||y|| - ||F(y)||$ so because $||y|| - ||b|| \ge R - r$, we find

$$t \le \frac{\|y\| - \|Fy\|}{B - r}.$$

Thus,

$$||y - F(y)|| \le t||y - b|| \le t[||y|| + ||b||] \le t[\varrho + r] \le \frac{\varrho + r}{R - r}[||y|| - ||F(y)||].$$

Therefore, applying the Theorem of Caristi with

$$\varphi(x) = \frac{\varrho + r}{R - r} ||x||,$$

the result follows.

As a consequence, we obtain

Theorem 8 (Supporting Drops Theorem). Let A be a closed set in a Banach space E, and $z \in E - A$ a point with d(z, A) = R > O. Then for any $r < R < \varrho$ there is an $x_0 \in \partial A$ with

$$||z - x_0|| \le \varrho \text{ and } A \cap D(x_0, B(z, r)) = \{x_0\}.$$

Proof. Let $\tilde{A} = A \cap B(z, \varrho)$. It is a closed and nonempty subset of E. For each point $x \in \tilde{A}$, choose a point $F(x) \in \tilde{A} \cap D(x, B)$ such that $F(x) \neq x$ if $A \cap D(x, B) \neq \{x\}$. One can easily see that a fixed point x_0 of F occurs at points of ∂A and that $\tilde{A} \cap D(x, B) = A \cap D(x, B)$.

5. Applications to Critical Point Theory

Let $\varphi: X \to R$ be a real-valued function² on a metric space X with a finite $\eta = \inf\{\varphi(x) \mid x \in X\}$. Recall that a minimizer (resp. a strict minimizer) of φ is an element $x_0 \in X$ with $\varphi(x_0) = \eta$ (resp. such that the relation $\varphi(z) \leq \varphi(x_0)$ implies $z = x_0$). A sequence $\{x_n\}$ in X for which $\varphi(x_n) \to \eta$ is called a minimizing sequence for φ .

Theorem 9 (Ekeland [9]). Let (X,d) be complete and let $\varphi: X \to R$ be a lower semicontinuous function with finite lower bound η . Let $\{x_n\}$ be a minimizing sequence for φ and $\lambda_n = (\varphi(x_n) - \eta)^{1/2}$. Then there exists a minimizing sequence $\{y_n\}$ for φ such that for any natural n we have:

- (i) $\varphi(y_n) \leq \varphi(x_n)$ and $d(x_n, y_n) \leq \lambda_n$,
- (ii) y_n is a strict minimizer of the function $\varphi_n: X \to R$ given by

$$\varphi_n(z) = \varphi(z) + \lambda_n d(z, y_n) \quad for \ z \in X,$$

(iii)
$$\varphi(y_n) = \varphi_n(y_n) \le \varphi(z) + \lambda_n d(z, y_n)$$
 for $z \in X$.

For simplicity, we avoid considering the extended real functions $\varphi: X \to R \cup \{\infty\}$.

Proof. We first describe the construction of $\{y_n\}$. For a given natural n, consider the space X_{φ,λ_n} , where $\lambda_n = (\varphi(x_n) - \eta)^{1/2}$. By the Bishop-Phelps theorem applied in X_{φ,λ_n} for the point x_n , there exists an element y_n in X_{φ,λ_n} such that (a) $x_n \preceq_{\varphi,\lambda_n} y_n$ and (b) y_n is maximal in X_{φ,λ_n} . We now show that y_n and the function φ_n defined in (ii) have the properties (i)–(iii).

Indeed, the relation $x_n \leq_{\varphi,\lambda_n} y_n$ in X_{φ,λ_n} translates into the estimate

$$\lambda_n d(x_n, y_n) \le \varphi(x_n) - \varphi(y_n),$$

and gives

$$d(x_n, y_n) \le \frac{1}{\lambda_n} (\varphi(x_n) - \varphi(y_n)) \le \frac{1}{\lambda_n} (\eta + \lambda_n^2 - \eta) = \lambda_n;$$

thus (i) is satisfied.

To establish (ii), suppose that $\varphi_n(z) \leq \varphi_n(y_n)$ for some z in X; we then have

$$\varphi_n(z) = \varphi(z) + \lambda_n d(z, y_n) \le \varphi(y_n) = \varphi_n(y_n),$$

which (by the definition of the order in X_{φ,λ_n}) gives $y_n \preceq_{\varphi,\lambda_n} z$. Since y_n is maximal in X_{φ,λ_n} , the last relation implies $y_n = z$, showing that y_n is a strict minimizer of φ_n , as asserted.

(iii) is an obvious consequence of (ii).

Thus we have constructed a minimizing sequence $\{y_n\}$ satisfying (i)–(iii).

Corollary 1. Let E be a Banach space, $\varphi : E \to R$ be a differentiable function on E with finite lower bound, and $\{x_n\}$ be a minimizing sequence for φ . Then there exists a minimizing sequence $\{y_n\}$ in E for φ such that $\varphi(y_n) \leq \varphi(x_n)$ for each n and $D\varphi(y_n) \to 0$ in E^* .

Proof. By Theorem 9, there exists a minimizing sequence $\{y_n\}$ in E for φ such that for all $n, \varphi(y_n) \leq \varphi(x_n)$ and

(*)
$$\varphi(y_n) \le \varphi(z) + \lambda_n ||z - y_n|| \quad \text{for all } z \in E.$$

For a given n, letting $z = y_n + v$ we obtain from (*) the estimate

$$\varphi(y_n) \le \varphi(y_n + v) + \lambda_n \|(y_n + v) - y_n)\|$$

= $\varphi(y_n + v) + \lambda_n \|v\|$ for all $v \in E$,

and consequently

$$||D\varphi(y_n)||_{E^*} = \lim_{\varrho \to 0} \sup_{\substack{||v|| \le \varrho \\ v \ne 0}} \frac{\varphi(y_n) - \varphi(y_n + v)}{||v||} \le \lambda_n.$$

Thus, $||D\varphi(y_n)||_{E^*} \leq \lambda_n$ for each n and, because $\lambda_n \to 0$, our assertion follows.

6. Remarks

(1) The Bishop-Phelps technique presented in Sections 2–5 originated in and evolved from the work of the above authors in the theory of support functionals in Banach spaces. Let E be a Banach space and $X \subset E$. A point $x_0 \in X$ is a support point of X if for some $f \in E^*$, called a support functional of X, we have $f(x_0) = \sup\{f(x) \mid x \in X\}$. The following theorem was established by Bishop-Phelps [1]: Let C be a closed convex subset of E. Then (a) the support points of C are dense in the boundary ∂C of C, and (b) the support functionals of C are norm dense in the set $\{f \in E^* \mid \sup_C f < \infty\}$.

In connection with the Bishop–Phelps theorem, we make the following comments:

- (i) If $Int(C) \neq \emptyset$, then every $x \in C$ is a support point of C; this follows at once from the Mazur separation theorem.
- (ii) If C is the closed unit ball in E, then the set $\{f \in E^* \mid f(x) = ||f|| \text{ for some } x \in \partial C\}$ is norm dense in E^* ; this is a special case of the Bishop-Phelps theorem.
- (iii) If C is the closed unit ball in E, then [each $f \in E^*$ is a support functional of C] \Leftrightarrow [the space E is reflexive] (theorem of James [11]).
 - (iv) Let $\varphi: E \to R$ be convex and lower semicontinuous. Let

$$\partial \varphi(x) = \{ f \in E^* \mid f(y - x) \le \varphi(y) - \varphi(x) \text{ for } y \in E \}$$

be the subdifferential of φ at $x \in E$. Because the elements of $\partial \varphi(x)$ can be identified with support functionals of the closed convex epigraph $\operatorname{epi}(\varphi) \subset E \times R$ of φ at $(x, \varphi(x))$, the Bishop-Phelps theorem leads to the following theorem: The set $\{x \in E \mid \partial \varphi(x) \neq 0\}$ is dense in E. This important result (and, in fact, its "extended" version valid for functions φ possibly equal to ∞), is due to Brøndsted-Rockafellar [4].

- (2) The order-theoretic Cantor theorem implies the usual Cantor theorem. Indeed, let $\{F_n\}_{n\in N}$ be a decreasing sequence of nonempty closed sets in a complete metric space (X,d) (we can always assume $F_0=X$) such that $\inf_{n\in N} \operatorname{diam} F_n=0$. Let $x\preceq y$ if x=y or there exists $n\in N$ such that $y\in F_n$ and $x\not\in F_n$. Then \preceq is compatible with the metric since $Tx=\{x\}$ if $x\in \cap_{n\in N} F_n$ and $Tx=\{x\}\cup F_{n(x)+1}$ otherwise, where $n(x)=\max\{n\in N\mid x\in F_n\}$. Clearly, any maximal element belongs to $\cap_{n\in N} F_n$.
- (3) The theorem of Daneš can be proved by replacing the norm by a function $\varphi: E \to R \cup \{\infty\}$ which is l.s.c., coercive, bounded below and convex.

(4) The formulation of the Bishop-Phelps theorem is taken from [8]; the result appeared in a different form in the survey by Phelps [14] written in 1971. For various interrelations between results related to the Bishop-Phelps theorem, the reader is referred to [6] and [13].

References

- 1. E. Bishop and R. R. Phelps, The support functionals of a convex set, in: *Proc. Sympos. Pure Math.* 7, Amer. Math. Soc., 1963, pp. 27-35.
- 2. A. Brøndsted, On a lemma of Bishop and Phelps, *Pacific J. Math.* **55** (1974), 335-341.
- 3. A. Brøndsted, Common fixed points and partial orders, *Proc. Amer. Math. Soc.* **77** (1979), 385-388.
- 4. A. Brøndsted and R. T. Rockafellar, On the subdifferentiability of convex functions, *Proc. Amer. Math. Soc.* **16** (1965), 605-611.
- 5. J. Caristi, Fixed point theorems for mappings satisfying the inwardness condition, *Trans. Amer. Math. Soc.* **215** (1976), 241-251.
- 6. J. Daneš, Equivalence of some geometric and related results of nonlinear functional analysis, *Comment. Math. Univ. Carolin.* **26** (1985), 443-454.
- 7. J. Daneš, A geometric theorem useful in nonlinear analysis, *Boll. Un. Mat. Ital.* **6** (1972), 369-372.
- 8. J. Dugundji and A. Granas, *Fixed Point Theory*, Vol. I, Polish Scientific Publishers, Warszawa, 1982.
- 9. I. Ekeland, Sur les problèmes variationnels, C. R. Acad. Sci. Paris Sér. I Math. 275 (1972), 1057-1059.
- 10. A. Granas and C. Horvath, Order-theoretic Cantor theorem and its applications, to appear.
- 11. R. C. James, Reflexivity and the sup of linear functionals, *Israel J. Math.* **13** (1972), 289-300.
- 12. S. Nadler, Multivalued contracting mappings, *Pacific J. Math.* **30** (1969), 475-488.
- 13. J. P. Penot, The drop theorem, the petal theorem and Ekeland's variational principle, *Nonlinear Anal.* **10** (1986), 813-822.
- R. P. Phelps, Support cones in Banach spaces and their applications, Adv. Math. 13 (1974), 1-19.
- W. Takahashi, Existence theorems generalizing fixed point theorems for multivalued mappings, in: Fixed Point Theory and Applications, M. A. Thera and J. B. Baillon, eds., Pitman Res. Notes in Math. 252, Longman, 1990, pp. 397-406.

Andrzej Granas Department of Mathematics Université de Montréal Montreal, Quebec, Canada E-mail: granasa@dms.umontreal.ca

Charles D. Horvath Department of Mathematics Université de Perpignan 66860 Perpignan Cedex, France E-mail: horvath@univ-perp.fr