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BLOWUP BEHAVIOR OF MEAN FIELD TYPE EQUATIONS

Chiun-Chuan Chen and Chang-Shou Lin

Dedicated to Professor Fon-Che Liu on his sixtieth birthday

Abstract. Some recent results on the equation

4gu + ρ

(
heu

∫
M

heu
− 1

)
= 0 on M

are reviewed. We focus on the variational structure and the blowup
behavior of the solutions.

1. Introduction

Let (M, g) be a compact Riemann surface without boundary and h(x) be
a smooth positive function on M . Assume the area of M is 1. We consider
the mean field type equation

4gu + ρ

(
heu

∫
M heu

− 1

)
= 0 on M,

where 4g is the Laplace Beltrami operator with respect to g and ρ > 0 is
a constant. When (M, g) is the standard sphere and ρ = 8π, the problem
to find a solution to equation (1.1) is called “Nirenberg problem”. The geo-
metric significance of this problem is that from a solution u, we can obtain
a new conformal metric eug which has curvature h. This problem has been
studied by Moser [32], Kazdan-Warner [27], Hong [24], Chen-Ding [17, 18],
Chang-Yang [8, 9, 10], Chang-Gursky-Yang [7], and others. When formulated
on bounded domains of R2 with Dirichlet boundary conditions, equation (1.1)
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was considered as the mean field limit of point vortices for two-dimensional Eu-
ler equations in Caglioti, Lions, Marchiore and Pulvirenti [5, 6] and Kiessling
[28]. When (M, g) is a flat torus, equation (1.1) is related to the study of
condensate solutions of some Chern-Simons-Higgs models; see Taubes [40, 41],
Hong, Kim and Pac [25], Jackiw and Weinberg [26], Spruck and Yang [37], Caf-
farelli and Yang [4], Tarantello [29], Struwe and Tarantello [28], Ding, Jost, Li
and Wang [20, 21], and the references therein. We report some recent works
on this equation in this paper.

One approach to study the existence of solutions of equation (1.1) is by
variational methods. Let

E0 =
{

u ∈ H1(M) :
∫

M
u dvg = 0

}
.

Then solutions of (1.1) correspond to critical points of the functional

Jρ =
1
2

∫

M
|∇gu|2 dvg − ρ log

∫

M
heu dvg, u ∈ E0.

By the Moser-Trudinger inequality

(8π − ε)
[
log

∫

M
eu dvg − 1

vol(M)

∫

M
u dvg

]
≤ 1

2

∫

M
|∇gu|2 dvg + C(ε),

Jρ is bounded from below when ρ < 8π. It is not difficult to obtain the
existence of a solution to (1.1) in this case. When ρ > 8π, the Moser-Trudinger
inequality cannot be applied directly since the coefficient 8π− ε before the log
term is smaller than ρ and Jρ is no longer bounded from below. Therefore it
is interesting to know what happens in the limiting case ρ = 8π for Jρ and
ε = 0 for the Moser-Trudinger inequality. In Ding, Jost, Li and Wang [20],
and Nolasco and Tarantello [33], a sharp inequality and some existence results
were obtained for this limiting case.

When (M, g) is a flat torus with fundamental domain [0, 1] × [0, 1] and
h ≡ 1, Struwe and Tarantello [38] showed that in the range 8π < ρ < 4π2,
Jρ exhibits a mountain-pass structure around 0. From it, they obtained a
nontrivial solution to (1.1).

Another approach to study the existence of solutions of equation (1.1) is
by the Leray-Schauder degree as proposed by Li [29]. By the results of Brezis
and Merle [3] and Li and Shafrir [30], all solutions of (1.1) stay bounded when
ρ lies in compact subsets of R \ ∪m≥1{8mπ}. Therefore if we write equation
(1.1) in the form

u− ρ(−4g)−1

(
heu

∫
M h(x)eu

− 1

)
= 0,
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the corresponding Leray-Schauder degree can be defined when ρ 6= 8mπ. Let
dρ denote the Leray-Schauder degree. By the homotopy invariance, dρ is a
constant for ρ in each interval (8mπ, 8(m + 1)π). It is well-known that dρ = 1
for ρ < 8π. Thus, to obtain a formula for dρ, it suffices to know the jump
values of dρ at 8mπ. Since we do not have a priori estimtes as ρ → 8mπ,
the most crucial step in calculating the jump-values is to study the blowup
behavior of solutions.

Let {ui} be a sequence of solutions of (1.1) with ρ = ρi → 8mπ for some
m ≥ 1. A point p on M is called a blowup point if there are xi → p such that

lim
i→∞

ui(xi) = ∞.

Some questions then follow:
(a) How many blowup points can a sequence of solutions have?
(b) What are the locations of the blowup points?
(c) What are the profiles of solutions near a blowup point?
After a suitable scaling, we can approximate a solution near a blowup point

by a limiting function. However it is not easy to get a sharp estimate of the dif-
ference between these two functions. Li [29] first obtained a uniform estimate
for the difference on a given fixed neighborhood of a blowup point. Based on
this, the authors showed in [31] and [14] that if the sup-norm of a solution is
very large, it exhibits “concentration-induced” symmetry. The second author
in [31] further used this “induced symmetry” to get the Leray-Schauder degree
for ρ ∈ (8π, 16π)∪ (16π, 24π) in the case M = S2. In [15], the authors further
found the dominant terms in the differences between blowup solutions and
the corresponding limiting functions when h(x) is not degenerate. This result
indicates a possible method to find the Leray-Schauder degree for all ρ > 8π
and ρ 6= 8mπ.

2. Variational Approach

For ρ < 8π, as mentioned in Introduction, we can apply the Moser-
Trudinger inequality and the assumption vol(M) = 1 to obtain

log
∫

M
heu dvg ≤ log

∫

M
eu dvg + log(maxh)

and

Jρ(u)≥ 1
2

∫

M
|∇gu|2 dvg −

(
1

16π
+ ε

)
ρ

∫

M
|∇gu|2 dvg − C(ε)− log(maxh)

≥ c1

∫

M
|∇gu|2 dvg − c2.
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Here we assume 1
vol(M)

∫
M u dvg = 0. If we take a minimizing sequence of

Jρ, then the L2-norms of their gradients are bounded by the values of Jρ.
Hence some subsequence of the minimizing sequence converges weakly. By a
standard argument, the existence of a minimizer of Jρ follows. We have the
following well-know result.

Theorem 2.1. If ρ < 8π, then the minimum of Jρ can be attained and
equation (1.1) has a solution.

The case ρ = 8π is the limiting case for functional Jρ. It also corresponds to
the limiting case for the Moser-Trudinger inequality. Ding, Jost, Li and Wang
[20] studied the behavior of a sequence of minimizers of Jρ in the space Eo

when ρ → 8π−. Nolasco and Tarantello [33] constructed a special minimizing
sequence of Jρ for ρ = 8π. When (M, g) is a flat torus, both of their results
imply the following.

Theorem 2.2. Let ρ = 8π and (M, g) be a flat torus. If there is some
p ∈ M such that h(p) = maxh and

4 log h(p) > −8π,

then the minimum of Jρ can be attained, and consequently equation (1.1) has
a solution.

Let G(x, y) be the Green function satisfying

4G = 1− δy,∫

M
G = 0,

(2.1)

where δy is the delta function at y. In a normal coordinate system near x, we
write

8πG(x, y) = −4 log r + A(y) + b1x1 + b2x2 + O(r2),(2.2)

where r(x) = dist(x, p) and A(y) is the regular part of G. Also, we write ∇h =
(h1, h2) in this normal coordinate system. For a general compact Riemann
surface, Ding, Jost, Li and Wang [20] also obtained

Theorem 2.3. Let ρ = 8π and (M, g) be a compact Riemann surface.
Let K(x) be its Gauss curvature. If there is some p ∈ M such that A(p) +
2 log h(p) = max[A(x) + 2 log h(x)] and

4h(p) + 2[b1(p)h1(p) + b2(p)h2(p)] > −h(p)[8π + b2
1(p) + b2

2(p)− 2K(p)],
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then the minimum of Jρ can be attained, and consequently equation (1.1) has
a solution.

A consequence follows from this result.

Theorem 2.4. Let (M, g) be a flat torus with fundamental domain [0, 1]×
[0, 1]. Then Moser-Trudinger’s inequality holds for the limiting case, that is,

8π

[
log

∫

M
eu dvg − 1

vol(M)

∫

M
u dvg

]
≤ 1

2

∫

M
|∇gu|2 dvg + CM

for u ∈ H1.

For ρ > 8π, Jρ is not bounded below. When (M, g) is a flat torus with
fundamental domain [0, 1]× [0, 1] and h ≡ 1, Struwe and Tarantello [38] found
that in the range 8π < ρ < 4π2, Jρ exhibits a mountain-pass structure around
0. From it, they obtained a nontrivial solution of (1.1).

Theorem 2.5. For every ρ ∈ (8π, 4π2), there exits a nontrivial solution
u of (1.1) satisfying

Jρ ≥ c0

(
1− ρ

4π2

)

for some constant c0 independent of ρ.

By a result of Ricciardi and Tarantello [34], the corresponding one-dimensional
problem

u′′ + +ρ

(
eu

∫
M eu

− 1

)
= 0

admits a nonconstant solution of period 1 if and only if ρ > 4π2. Hence
Theorem 2.5 captures the two-dimensional nature of equation (1.1) and this
indicates the role played by the value 4π2 is important.

3. Blowup Behavior

As we mentioned above, a sequence of solutions {ui} of (1.1) with ρ = ρi

may blow up if ρi → 8mπ for some positive integer m. Since the cases in
Theorems 2.2 and 2.3 in Section 2 correspond to the case ρ = 8π, some
detailed analysis for blowup minimizing sequences is needed in the proofs
of these theorems. With these detailed analysis, the limiting value of Jρ and
the limit equation that a minimizing sequence satisfies can be estimated or
expressed in simple terms. If the limiting information is not consistent with
the assumptions, then the minimizing sequence cannot blow up and some
subsequence must converge to a minimizer.
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More generally, we consider a sequence of blowup solutions {ui} which may
not be a minimizing sequence. Let p be a blowup point of {ui} and xi be a
local maximum point of ui which tends to p as i → ∞. First, in a normal
coordinate system centered at xi, we can take a suitable scaling to let

Ui(y) = ui


 y

ρ
1
2
i h(0)

1
2 e

1
2
ui(0)


− ui(0).

Then after passing to a subsequence, Ui tends to some function U satisfying

4U + eU = 0 in R2,

U(0) = maxU = 0, and
∫

R2
eU < ∞

(3.1)

on any compact set of R2. This is equivalent to, in a normal coordinate system
centered at xi,

max
|x|<ri

|ui(x)− ui(0)− U(ρ
1
2
i h(0)

1
2 e

1
2
ui(0)x)| = o(1),(3.2)

where ri ≥ c ρ
− 1

2
i h(0)−

1
2 e−

1
2
ui(0) for any fixed c. By a result of Chen and Li

[19], U(y) can be solved uniquely as

U(y) = log
1

1 + 1
8 |y|2

.

Another important fact is that blowup solutions accumulate to Green’s
functions. Assume that z1, ..., zs are blowup points of {ui} and

ūi =
1

volM

∫

M
ui.

Then after passing to a subsequence,

ui − ūi →
j=s∑

j=1

cj G(·, zj)

for some cj > 0 in C2
loc(M \ {z1, ..., zs}), where G(x, y) is the Green function

defined in (2.1).
It was conjectured by Brezis and Merle [3] that each cj can be written as

cj = 8πkj for some positive integer kj . Although by (3.2), we know the shape
of ui well when |x| < ri, the problem is that ri may tend to zero as i → ∞.
If ri tends to zero, then the control for ui in (3.2) is too weak to answer this
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question. The conjecture was proved by Li and Shafrir [30]. More recently, Li
[29] obtainded a uniform estimate for ui with a non-shrinking ri. This result
implies actually cj = 8π. More precisely, we have the following; see [29].

Theorem 3.1. Let {ui} be a sequence of solutions of (1.1) with ρ = ρi →
8πm and max |ui| → ∞. Then after passing to a subsequence, there are exactly
m blowup points {z1, ..., zm} and m subsequences of points zj,i → zj such that:
(a) When i is large, zj,i is the unique maximum point of ui in the neighborhood
{x|dist(x, zj) ≤ 1

2 minj 6=l(zj , zl)}. Moreover, ui(zj,i) →∞.
(b) Near each blowup point zj , we have in a normal coordinate system centered
at zj,

max
|x|<ro

|ui(x)− ui(0)− U(ρ
1
2
i h(0)

1
2 e

1
2
ui(0)x)| ≤ C,

where ro = 1
4 minj 6=l(zj , zl) and C > 0 is independent of i.

(c) There is some C > 0 independent of i such that

max
1≤j≤m

|ui(zj,i) + ūi| ≤ C.

(d)

ui − ūi →
j=m∑

j=1

8πG(·, zj)

in C2
loc(M \ {z1, ..., zm}) and

1∫
M ρiheui

ρiheui → 8π
m∑

j=1

δzj

in the sense of measure, where δzj is the delta function at zj.

It is interesting that the main estimate, part (b) in Theorem 3.1, was
proved by the method of moving planes, which was developed by Alexandrov
[1], Serrin [36], and Gidas, Ni and Nirenberg [22, 23] and others. This method
was used to obtain a priori estimates by Schoen [35], Brezis, Li and Shafrir
[2], and Chen and Lin [11, 12, 13].

By parts (c) and (d) of Theorem 3.1, ūi → −∞ as i → ∞ and the mass
of (1/

∫
M ρiheui) ρiheui concentrates to delta functions at the blowup points

{zj}. In Lin [31] and Chen and Lin [14], it was shown that concentration of
mass implies {ui} has some symmetry when i is large. When (M, g) is the
standard S2, Lin [31] obtained.

Theorem 3.2. Let (M, g) be the standard S2 and let {ui} be a sequence
of solutions of (1.1) with h ≡ 1, ρ = ρi → 16π and max |ui| → ∞. Then for
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large i, we have ρi > 16π and ui is axially symmetric with respect to some
direction.

When (M, g) is a flat torus with a rectangle fundamental domain, Chen
and Lin [14] obtained the following.

Theorem 3.3. Let (M, g) be a flat torus with a rectangle fundamental
domain and let {ui} be a sequence of solutions of (1.1) with h ≡ 1, ρ = ρi → 8π
and max |ui| → ∞. Then for large i, ui is symmetric with respect to the
maximum point in both x and y directions.

Theorem 3.4. Let (M, g) be a flat torus with a rectangle fundamental
domain and let {ui} be a sequence of solutions of (1.1) with h ≡ 1, ρ = ρi →
16π and max |ui| → ∞. Then for large i, after a translation, there are two
local maximum points with one local maximum at the center of the fundamental
domain and the other at the corner. Moreover, the solutions are symmetric
with respect to the x and y directions.

As mentioned above, the Leray-Schauder degree dρ equals 1 when ρ < 8π.
Using the symmetry of blowup solutions, Lin [31] was able to obtain the degree
for S2 when 8π < ρ < 24π.

Theorem 3.5. Let (M, g) be the standard S2. Then (a) dρ = −1 for
8π < ρ < 16π and (b) dρ = 0 for 16π < ρ < 24π.

One method to find the value dρ for more general situations is to obtain
sharper estimates for blowup solutions. We have in [15] the following.

Theorem 3.6. Let {ui} be a sequence of solutions of (1.1) with ρ = ρi →
8π, max |ui| → ∞ and

∫
M ui = 0. Let λi = 1

2 maxui, p be the blowup point
and pi → p be the maximum point of ui. Then
(a)

|∇
(

log h +
A

2

)
(pi)| = O(λie

−λi),

where A is the regular part of the Green function defined in (2.2).
(b)

|ui − vi − ηi − λi| = O(λie
−λi),

where vi is a scaling of U in (3.1) and ηi is a weighted integral of h− h(pi).
(c)

ρi − 8π = c(4 log h + 8πĝ)λie
−λi + O(e−λi)

for some c > 0, where ĝ is the genus of M .
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Theorem 3.6 is for the case with one blowup point. For the case with more
than one blowup point, that is, ρi → 8mπ with m > 1, we can obtain a similar
result. Applying these estimates, we have in [16] the following.

Theorem 3.7.
(a) Let (M, g) be the standard S2. Then dρ = 0 for ρ > 16π and ρ 6= 8mπ.
(b) Let (M, g) be a flat torus. Then dρ = 1 for all ρ 6= 8mπ.

From this therom, we conclude that equation (1.1) always has a solution
when M is a torus and ρ 6= 8mπ.
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