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A LIMIT PROPERTY OF ARBITRARY DISCRETE
INFORMATION SOURCES

Liu Wen

Abstract. In this paper the notion of stochastic conditional entropy
is introduced, and the asymptotic relation between this notion and the
relative entropy density is studied. A strong limit theorem which holds
for arbitrary discrete information sources is obtained. In the proof an
analytic technique to study the strong limit properties of discrete infor-
mation sources is proposed.

1. Introduction

A question of importance in information theory is the study on the Shannon-
McMillan-Breiman theorem. In previous works, conditions such as ergodicity,
stationarity or asymptotic stationarity were assumed (cf. [1]-[2], [4]-[9]). In
this paper we avoid these assumptions and give a strong limt theorem concern-
ing relative entropy density and random conditional entropy, which holds for
arbitrary discrete information sources. In the proof an analytic technique to
study the strong limit properties of discrete information sources is proposed.
The crucial part is the application of Lebesgue’s theorem on differentiabil-
ity of monotone functions together with the convergence theorem of infinite
products.

Let {Xn, n ≥ 1} be a sequence of successive letters produced by an arbi-
trary information source with the alphabet S = {1, 2, . . . , N} and with the
joint distribution

P (X1 = x1, . . . , Xn = xn) = p(x1, . . . , xn) > 0.(1)
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Let

fn(ω) = −(1/n) ln p(X1, . . . , Xn),(2)

where ω is a sample point, Xi stands for Xi(ω) for brief, and the quantity
fn(ω) is called the relative entropy density of {Xi, 1 ≤ i ≤ n} (see [2]). Let

pn(xn|x1, . . . , xn−1) = P (Xn = x1, . . . , Xn−1 = xn−1), n ≥ 2.(3)

Then

p(x1, . . . , xn) = p(x1)
n∏
k=2

pk(xk|x1, . . . , xk−1);(4)

fn(ω) = −(1/n)

[
ln p(X1) +

n∑
k=2

ln pk(Xk|X1, . . . , Xk−1)

]
.(5)

2. A realization of Arbitrary Information Source

Throughout this paper we shall deal with the underlying probability space
([0, 1),F , P ), where F is the class of Borel sets in the interval [0, 1), and P is
the Lebesgue measure. We first give a realization of an arbitrary information
source with distribution (1) in the above probability space.

Split the interval [0, 1) into N right-semiopen intervals:

I1 = [0, p(1)), I2 = [p(1), p(1) + p(2)), . . . , IN = [1− p(N), 1).

These intervals will be called intervals of the first order. Proceeding induc-
tively by splitting each nth order interval IX1···Xn into N right-semiopen in-
tervals Ix1···xn 1, Ix1···xn 2, . . ., Ix1···xnN according to the ratio p (x1, . . . , xn, 1) :
p(x1, . . . , xn, 2) : . . . : p(x1, . . . , xn, N), the intervals of the (n+ 1)st order are
created. It is easy to see that for n ≥ 1,

P (Ix1···xn) = p(x1, . . . , xn).(6)

Define, for n ≥ 1, a random variable Xn : [0, 1)→ S as follows:

Xn(ω) = xn, if ω ∈ Ix1···xn .(7)

By (6) and (7), {Xn, n ≥ 1} has the distribution (1).
We are going to prove the following limit theorem by using the above

realization.
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3. Main Result

Definition 1. For k ≥ 2, let

hk(x1, . . . , xk−1) = −
N∑

xk=1

pk(xk|x1, . . . , xk−1) ln pk(xk|x1, . . . , xk−1);(8)

Hk(ω) = hk(X1, . . . , Xk−1).(9)

Hk(ω) is called the random conditional entropy.

Theorem 1. Let {Xn, n ≥ 1} be a sequence of succesive letters produced by
an arbitrary information source with the alphabet S and the joint distribution
(1), {an, n ≥ 1} an increasing sequence of positive real numbers such that

∞∑
n=1

(1/an)2 <∞,(10)

and fn(ω) and Hk(ω) defined, respectively, by (2) and (9). Then

∞∑
k=2

(1/ak)[ln pk(X1, . . . , Xk−1) +Hk(ω)] converges a.e.;(11)

lim
n→∞

(1/an)
n∑
k=2

[ln pk(Xk|X1, . . . , Xk−1) +Hk(ω)] = 0 a.e.(12)

Proof. For k ≥ 2, λ = 1 or −1, let

Qk(λ;x1, . . . , xk−1) =
N∑

xk=1

pk(xk|x1, . . . , xk−1)

exp{λ[ln pk(xk|x1, . . . , xk−1)

+hk(xk|x1, . . . , xk−1)]/ak}.

(13)

Let the collection of intervals of all orders be denoted by A. Define a set
function µ on A as follows. Let

µ(Ix1) = p(x1),(14)

and for n ≥ 2, let
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µ(Ix1···xn)

=
p(x1, . . . , xn) exp

{
λ

n∑
k=2

[ln pk(xk|x1, . . . , xk−1) + hk(x1, . . . , xk−1)]/ak
}

n∏
k=2

Qk(λ;x1, . . . , xk−1)
.

(15)
By (4) and (13)-(15), it is easy to see that µ is an additive function on A.
Therefore there exists an increasing function fλ defined on [0, 1] such that, for
any Ix1···xn ,

µ(Ix1···xn) = fλ(I+
x1···xn − fλ(I−x1···xn),(16)

where I−x1···xn and I+
x1···xn denote, respectively, the left and right endpoints of

Ix1···xn . Let

tn(λ, ω)=
fλ(I+

x1···xn)− fλ(I−x1···xn)
I+
x1···xn − I−x1···xn

=
µ(Ix1···xn)
P (Ix1···xn)

, ω ∈ Ix1···xn .

(17)

Ler A(λ) be the set of points of differentiability of fλ. Then P (A(λ)) = 1 by
the theorem on the existence of derivative of monotone function (cf. [3], p.
424). Let ω ∈ A(λ), and ω ∈ Ix1···xn (n = 1, 2, . . .). In virtue of a property of
derivative (cf. [3], p. 423), we have by (17),

lim
n→∞

tn(λ, ω) = a finite number, ω ∈ A(λ).(18)

By (17), (14), (6) and (7),

tn(λ, ω)=
µ(IX1···Xn)
P (IX1···Xn)

=
exp

{
λ

n∑
k=2

[ln pk(Xk|X1, . . . , Xk−1) + hk(X1, . . . , Xk−1)]/ak
}

n∏
k=2

Qk(λ;X1, . . . , Xk−1)
.

(19)

For the sake of simplicity, denote pk(xk|x1, . . . , xk−1) and hk(x1, . . . , xk−1) by
pk and hk, respectively. We have by (8),

N∑
xk=1

pk(ln pk + hk) = 0.(20)
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By (13), (20), the inequality 0 ≤ ex−1−x ≤ x2e|x| and the entropy inequality
hk ≤ lnN , we have

0 ≤ Qk(λ;x1, . . . , xk−1)− 1

=
N∑

xk=1

pk{exp[λ(ln pk + hk)/ak]− 1− λ(ln pk + hk)/ak}

≤ (1/ak)2
N∑

xk=1

pk(ln pk + hk)2 exp[(− ln pk + lnN)/ak].

(21)

Since ak →∞ (as k →∞), there exists a positive integer m such that ak ≥ 2
as k ≥ m. Hence as k ≥ m, we have by (21) and the entropy inequality,

0 ≤ Qk(λ;x1, . . . , xk−1)− 1

≤ N(1/ak)2
N∑

xk=1

p
1/2
k (ln pk + hk)2

< N(1/ak)2
N∑

xk=1

[p1/2
k (ln pk)2 − 2(lnN)p1/2

k ln pk + (lnN)2].

(22)

Let
M1 = max{x1/2(lnx)2, 0 < x ≤ 1};

M2 = max{−x1/2 lnx, 0 < x ≤ 1}.
From (22) and (10) it follows that

∞∑
k=m

[Qk(λ;X1, . . . , Xk−1)− 1]

<
∞∑
k=m

(N/ak)2{M1 + 2M2 lnN + (lnN)2} <∞.
(23)

By the convergence theorem of infinite product, (23) implies that

∞∏
k=2

[Qk(λ;X1, . . . , Xk−1) converges.(24)

(18), (19) and (24) imply that

lim
n→∞

exp

{
λ

n∑
k=2

[ln pk(Xk|X1, . . . , Xk−1) + hk(X1, . . . , Xk−1)]/ak

}
= a finite number a.e..

(25)

Letting λ = 1 and λ = −1 respectively, we have
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lim
n→∞

exp

{
n∑
k=2

[ln pk(Xk|X1, . . . , Xk−1) + hk(X1, . . . , Xk−1)]/ak

}
= a finite number a.e.

(26)

lim
n→∞

exp

{
−

n∑
k=2

[ln pk(Xk|X1, . . . , Xk−1) + hk(X1, . . . , Xk−1)]/ak

}
= a finite number a.e..

(27)

(26) and (27) imply that

n∑
k=2

{[ln pk(Xk|X1, . . . , Xk−1) + hk(X1, . . . , Xk−1)]/ak} converges a.e.(28)

i. e., (11) is true. By Kronecker’s lemma, (12) follows from (28).
This completes the proof of the theorem.

4. Some Corollaries

Corollary 1. Let fn(ω) be defined by (5). Then under the hypotheses of
the theorem we have

lim
n→∞

[
fn(ω)− (1/n)

n∑
k=1

Hk(ω)

]
= 0 a.e..(29)

Proof. Let an = 1/n. Then (29) follows from (12) and (5) immediately.

Corollary 2. Let p > 1/2 be a constant. Then under the hypotheses of
the theorem we have

lim
n→∞

n−1/2(lnn)−p
n∑
k=2

[ln pk(Xk|X1, . . . , Xk−1) +Hk(ω)] = 0 a.e..(30)

Proof. Since
∞∑
n=2

n−1(lnn)−2p < ∞, the corollary is obtained immediately

from the theorem.

Corollary 3. Let {Xn, n ≥ 1} be a sequence of successive letters produced
by a nonhomogeneous Markov information source with the initial distribution
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p(1), P (2), · · · , p(N), p(i) > 0, i ∈ S(31)

and the transition matrix

Pn = (pn(i, j)), pn(i, j) > 0, i, j ∈ S, n ≥ 1,(32)

where pn(i, j) = P (Xn = j|Xn−1 = i), {an, n ≥ 1} is an increasing sequence
of positive numbers such that (10) holds, and H(p1, . . . , pn) is the entropy of
the distribution (p1, . . . , pn). Then

lim
n→∞

(1/an)
n∑
k=1

{ln pk(Xk−1, Xk) +H[pk(Xk−1, . . . , pk(Xk−1, N)]}

= 0 a.e..

(33)

Proof. By Markov property, (33) follows from (12) immediately.

Corollary 4. Let p > 1/2 be a constant. Then under the hypotheses of
Corollary 3 we have

lim
n→∞

{
fn(ω)− (1/n)

n∑
k=1

H[pk(Xk−1, 1), . . . , pk(Xk−1, N)]

}
= 0 a.e.,(34)

where

fn(ω) = −(1/n)

[
ln p(X0) +

n∑
k=1

ln pk(Xk−1, Xk)

]
(35)

is the relative entropy density of the Markov information source.

Proof. Let an = n. Then (34) follows from (33) and (5) directly.
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