TAIWANESE JOURNAL OF MATHEMATICS
Vol. 3, No. 4, pp. 529-538, December 1999

AN INFINITE-DIMENSIONAL HEISENBERG UNCERTAINTY PRINCIPLE

Yuh-Jia Lee ${ }^{\dagger}$ and Aurel Stan ${ }^{\ddagger}$

Abstract

An analogue of the classical Heisenberg inequality is given for an infinite-dimensional space. The proof relies on a commutation relationship and integration by parts formula for Gaussian measure. We also discuss when the equality holds.

1. Introduction

The well-known Heisenberg uncertainty principle [8] says that for any function $f \in L^{2}\left(\mathbb{R}^{n}\right)$ with $|f|_{2}=1$, we have

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}|x f(x)|^{2} d x \cdot \int_{\mathbb{R}^{n}}|\gamma \hat{f}(\gamma)|^{2} d \gamma \geq \frac{n^{2}}{4(2 \pi)^{n-1}}, \tag{1}
\end{equation*}
$$

where \hat{f} is the Fourier transform of f. Since $\lim _{n \rightarrow \infty} \frac{n^{2}}{(2 \pi)^{n-1}}=0$, it appears that there is no such uncertainty principle for the infinite-dimensional case. This is reflected by the fact that the Lebesgue measure does not exist in an infinitedimensional space. Moreover, the Fourier transform needs to be generalized to such a space.

First we briefly describe the idea to obtain an infinite-dimensional analogue of the above inequality. Take a basic Gel'fand triple $\mathcal{E} \subset E \subset \mathcal{E}^{\prime}$; e.g., $\mathcal{S}(\mathbb{R}) \subset L^{2}(\mathbb{R}) \subset \mathcal{S}^{\prime}(\mathbb{R})$, where $\mathcal{S}(\mathbb{R})$ is the Schwartz space of rapidly decreasing functions on \mathbb{R}. Let $|\cdot|_{0}$ denote the norm on E. The space \mathbb{R}^{n} is replaced by \mathcal{E}^{\prime} and the Lebesgue measure on \mathbb{R}^{n} is replaced by the standard Gaussian

[^0]measure μ on \mathcal{E}^{\prime}. Let $\left(L^{2}\right)$ denote the complex $L^{2}(\mu)$-space with norm $\|\cdot\|_{0}$. Let $(\mathcal{E}) \subset\left(L^{2}\right) \subset(\mathcal{E})^{*}$ be the associated Gel'fand triple (see [3, Section 4.2] for details).

The multiplication by x in (1) is replaced by a multiplication operator \widetilde{Q}_{η} which is continuous from $(\mathcal{E})^{*}$ into itself [3, Theorem 9.18]. The Fourier transform is replaced by the Fourier-Wiener transform (or the second quantization operator $\Gamma(i I)$ of $i I)$. Thus the infinite-dimensional analogue of the inequality in (1) takes the form

$$
\begin{equation*}
\left[\int_{\mathcal{E}^{\prime}}|\langle x, \eta\rangle \varphi(x)|^{2} \mu(d x)\right]\left[\int_{\mathcal{E}^{\prime}}|\langle x, \eta\rangle \mathcal{F} \varphi(x)|^{2} \mu(d x)\right] \geq|\eta|_{0}^{4}\|\varphi\|_{0}^{4} \tag{2}
\end{equation*}
$$

where $\langle\cdot, \cdot\rangle$ denotes the $\mathcal{E}^{\prime}-\mathcal{E}$ pairing and \mathcal{F} is the Fourier-Wiener transform, i.e.,

$$
\mathcal{F} \varphi(x)=\int_{\mathcal{E}^{\prime}} \varphi(\sqrt{2} y+i x) \mu(d y)
$$

for any $\eta \in \mathcal{E}$ and $\varphi \in\left(L^{2}\right)$ (see [5]).
The inequality (1) may be proved directly by integration by parts formula. It can also be shown that the equality in Heisenberg inequality holds if and only if φ is of the form

$$
\varphi(x)=e^{\frac{\alpha}{2}\left\langle x, u_{\eta}\right\rangle^{2}} \varphi\left(P_{\eta}{ }^{\perp} x\right)
$$

where α is a real number such that $|\alpha|<1$.
In Section 2, we will provide a brief background concerning the Gel'fand triples $\mathcal{E} \subset E \subset \mathcal{E}^{\prime}$ and $(\mathcal{E}) \subset\left(L^{2}\right) \subset(\mathcal{E})^{*}$. The inequality in (2) will be proved in Section 3. We will discuss the equality in (2) in Section 4.

2. Background

2.1. Concept and Notations

Let E be a real separable Hilbert space with norm $|\cdot|_{0}$. Let A be a densely defined self-adjoint operator on E, whose eigenvalues $\{\lambda\}_{n \geq 1}$ satisfy the following conditions:

- $1<\lambda_{1}<\lambda_{2}<\lambda_{3}<\cdots$.
- $\sum_{n=1}^{\infty} \lambda_{n}^{-2}<\infty$. (Hence A^{-1} is a Hilbert-Schmidt operator.)

For any $p \geq 0$, we consider the space $\mathcal{E}_{p}:=\left\{\left.f \in E| | A^{p} f\right|_{0}<\infty\right\}$. On the space \mathcal{E}_{p} we introduce the norm $|f|_{p}=\left|A^{p} f\right|_{0}$. Each of these spaces is a Hilbert space and we have the inclusion $\mathcal{E}_{q} \subset \mathcal{E}_{p}$ for $p<q$. By the second condition the inclusion $i: \mathcal{E}_{p+1} \longrightarrow \mathcal{E}_{p}$ is a Hilbert-Schmidt operator. Thus the space $\mathcal{E}=\bigcap_{p \geq 0} \mathcal{E}_{p}$, equipped with the topology given by the family $\left\{|\cdot|_{p}\right\}_{p \geq 0}$ of seminorms, is a nuclear space.

It can be shown that for all $p \geq 0$, the dual space of \mathcal{E}_{p} is isomorphic to \mathcal{E}_{-p}, which is the completion of the space E with respect to the norm $|f|_{-p}=\left|A^{-p} f\right|_{0}$. Moreover, we have $\mathcal{E}^{\prime}=\bigcup_{p \geq 0} \mathcal{E}_{-p}$ and for any $0<p<q$,

$$
\mathcal{E} \subset \mathcal{E}_{q} \subset \mathcal{E}_{p} \subset \mathcal{E}_{0} \subset \mathcal{E}_{-p} \subset \mathcal{E}_{-q} \subset \mathcal{E}^{\prime}
$$

Equip \mathcal{E}^{\prime} with the inductive limit topology. The triple $\mathcal{E} \subset E \subset \mathcal{E}^{\prime}$ becomes a Gel'fand triple.

By Minlos' theorem, there exists a unique probability measure μ on \mathcal{E}^{\prime} such that for all $f \in \mathcal{E}$, the random variable $\langle\cdot, f\rangle$ is normally distributed with mean 0 and variance $|f|_{0}^{2}$. Here $\langle\cdot, \cdot\rangle$ is the duality between \mathcal{E}^{\prime} and \mathcal{E}. Because of the denseness of \mathcal{E} in E, we can define for each $f \in E$, a random variable $\langle\cdot f\rangle$ on \mathcal{E}^{\prime} which is normally distributed with mean 0 and variance $|f|_{0}^{2}$.

For $x \in \mathcal{E}^{\prime}$, we define

$$
: x^{\otimes n}:=\sum_{k=0}^{[n / 2]} \frac{(-1)^{k} n!}{(n-2 k)!k!2^{k}} \tau^{\widehat{\otimes} k} \widehat{\otimes} x^{\otimes(n-2 k)},
$$

where $\tau \in(\mathcal{E} \otimes \mathcal{E})^{\prime}$ is defined by $\langle\tau, \xi \otimes \eta\rangle=\langle\xi, \eta\rangle$. Let E_{c} denote the complexification of E. We denote by $\left(L^{2}\right)$ the space of all complex-valued square integrable functions on \mathcal{E}^{\prime}. It can be proved that for each $\varphi \in\left(L^{2}\right)$, there exists a unique sequence $\left\{f_{n}\right\}_{n \geq 0}, f_{n} \in E_{c}^{\widehat{\otimes} n}$, such that:

$$
\varphi(x)=\sum_{n=0}^{\infty}\left\langle: x^{\otimes n}:, f_{n}\right\rangle .
$$

Moreover, we have $\|\varphi\|_{0}^{2}=\sum_{n=0}^{\infty} n!\left|f_{n}\right|_{0}^{2}$.
The second quantization operator $\Gamma(A)$ of A is defined by

$$
\Gamma(A) \varphi=\sum_{n=0}^{\infty}\left\langle: \cdot{ }^{\otimes n}: A^{\otimes n} f_{n}\right\rangle .
$$

By using $\left(L^{2}\right)$ and $\Gamma(A)$ instead of E and A, respectively, we can construct a Gel'fand triple $(\mathcal{E}) \subset\left(L^{2}\right) \subset(\mathcal{E})^{*}$. The elements in (\mathcal{E}) are called test functions on \mathcal{E}^{\prime}. The elements in $(\mathcal{E})^{*}$ are called generalized functions on \mathcal{E}^{\prime}.

The bilinear pairing between $(\mathcal{E})^{*}$ and (\mathcal{E}) is denoted by $\ll \cdot,>$. It must be mentioned that if $\varphi \in\left(L^{2}\right)$ and $\psi \in(\mathcal{E})$, then $\ll \varphi, \psi \gg=(\varphi, \bar{\psi})$, where (\cdot, \cdot) is the inner product of the complex Hilbert space $\left(L^{2}\right)$.

Let $\varphi \in\left(L^{2}\right)$ be represented by $\varphi(x)=\sum_{n=0}^{\infty}\left\langle: x^{\otimes n}:, f_{n}\right\rangle$. It can be shown that $\varphi \in(\mathcal{E})$ if and only if for all $p \geq 0$, we have

$$
\|\varphi\|_{p}^{2}:=\sum_{n=0}^{\infty} n!\left|f_{n}\right|_{p}^{2}<\infty .
$$

On the other hand, each $\Phi \in(\mathcal{E})^{*}$ can be represented as

$$
\Phi=\sum_{n=0}^{\infty}\left\langle: \cdot \otimes^{\otimes n}:, F_{n}\right\rangle, \quad F_{n} \in\left(\mathcal{E}_{c}^{\prime}\right)^{\widehat{\otimes}^{n}}
$$

and there exists a $p>0$ depending on Φ such that

$$
\|\Phi\|_{-p}^{2}:=\sum_{n=0}^{\infty} n!\left|F_{n}\right|_{-p}^{2}<\infty
$$

For $\Phi \in(\mathcal{E})^{*}$ and $\varphi \in(\mathcal{E})$ from above we have

$$
\ll \Phi, \varphi \gg=\sum_{n=0}^{\infty} n!\left\langle F_{n} f_{n}\right\rangle .
$$

2.2. Differential Operators and the Adjoints

Consider a simple test function $\varphi(x)=\left\langle: x^{\otimes n}:, f\right\rangle \in(\mathcal{E})$. Let $y \in \mathcal{E}^{\prime}$. We can show that

$$
\lim _{t \rightarrow 0} \frac{\varphi(x+t y)-\varphi(x)}{t}=n\left\langle: x^{\otimes(n-1)}:, y \widehat{\otimes}_{1} f\right\rangle,
$$

where $y \widehat{\otimes}_{1} \cdot: E_{c}^{\widehat{\otimes} n} \longrightarrow E_{c}^{\widehat{\otimes}(n-1)}$ is the unique continuous and linear map such that

$$
y \widehat{\otimes}_{1} g^{\otimes n}=\langle y, g\rangle g^{\otimes(n-1)}, \quad g \in E_{c} .
$$

This shows that the function φ has Gâteaux derivative $D_{y} \varphi$. In general, for $\varphi(x)=\sum_{n=0}^{\infty}\left\langle: x^{\otimes n}:, f_{n}\right\rangle \in(\mathcal{E})$, we may define

$$
D_{y} \varphi(x)=\sum_{n=1}^{\infty} n\left\langle: x^{\otimes(n-1)}:, y \widehat{\otimes}_{1} f_{n}\right\rangle .
$$

It can be checked that D_{y} is a continuous linear operator on (\mathcal{E}) (see [3, Theorem 9.1]).

We can define the adjoint operator D_{y}^{*} of D_{y} by the duality between $(\mathcal{E})^{*}$ and (\mathcal{E}), i.e.,

$$
\left\langle\left\langle D_{y}^{*} \Phi, \psi\right\rangle\right\rangle=\left\langle\left\langle\Phi, D_{y} \psi\right\rangle\right\rangle, \quad \Phi \in(\mathcal{E})^{*}, \psi \in(\mathcal{E})
$$

The adjoint D_{y}^{*} is a continuous linear operator.
For $\Phi(x)=\sum_{n=0}^{\infty}\left\langle: x^{\otimes n}:, F_{n}\right\rangle \in(\mathcal{E})^{*}$, we have

$$
D_{y}^{*} \Phi(x)=\sum_{n=0}^{\infty}\left\langle: x^{\otimes(n+1)}:, y \widehat{\otimes} F_{n}\right\rangle .
$$

For $y \in \mathcal{E}$, the differential operator D_{y} extends by continuity to a continuous linear operator from $(\mathcal{E})^{*}$ into itself [3, Theorem 9.10]. The extension is denoted by \widetilde{D}_{y}. Moreover, for such $y \in \mathcal{E}$, the restriction of D_{y}^{*} to (\mathcal{E}) is a continuous linear operator from (\mathcal{E}) into itself [3, Corollary 9.14].

2.3. Multiplication Operators

If $\varphi, \psi \in(\mathcal{E})$, then the pointwise multiplication $\varphi \cdot \psi$ is also in (\mathcal{E}). Let $\Phi \in(\mathcal{E})^{*}$ be fixed. For $\varphi \in(\mathcal{E})$, define $\Phi \cdot \varphi \in(\mathcal{E})^{*}$ by

$$
\langle\langle\Phi \cdot \varphi, \psi\rangle\rangle=\langle\langle\Phi, \varphi \cdot \psi\rangle\rangle, \quad \psi \in(\mathcal{E}) .
$$

This multiplication operator by Φ is a continuous linear operator from (\mathcal{E}) into $(\mathcal{E})^{*}$.

In particular, if $\eta \in \mathcal{E}$, then the multiplication by $\langle\cdot, \eta\rangle$, denoted by Q_{η}, is a continuous linear operator from (\mathcal{E}) into itself and can be extended to a continuous linear operator \widetilde{Q}_{η} from $(\mathcal{E})^{*}$ into itself. The operators $\widetilde{Q}_{\eta}, \widetilde{D}_{\eta}$, and D_{η}^{*} are related by the formula

$$
\widetilde{Q}_{\eta}=\widetilde{D}_{\eta}+D_{\eta}^{*}
$$

(see [3, Theorem 9.18]).

2.4. The exponential Functions

Let $x \in \mathcal{E}_{c}^{\prime}$. We define the following function

$$
: e^{\langle\langle, x\rangle}:=\sum_{n=0}^{\infty} \frac{1}{n!}\left\langle: .^{\otimes n}:, x^{\otimes n}\right\rangle .
$$

It is easy to see that

$$
\left\|: e^{\langle, x\rangle}:\right\|_{p}=e^{|x|_{p}^{2} / 2} .
$$

Thus for all $x \in \mathcal{E}_{c}^{\prime}$, we have $: e^{\langle\ulcorner, x\rangle}: \in(\mathcal{E})^{*}$. Also : $e^{\langle,, x\rangle}: \in\left(L^{2}\right)$ if and only if $x \in E_{c}$ and $: e^{\langle\cdot, x\rangle}: \in(\mathcal{E})$ if and only if $x \in \mathcal{E}_{c}$.

If $x \in \mathcal{E}_{c}^{\prime}$ and $\xi \in \mathcal{E}_{c}$, then we have

$$
\left\langle\left\langle: e^{\langle\cdot, x\rangle}:,: e^{\langle, \xi\rangle}:\right\rangle\right\rangle=e^{\langle x, \xi\rangle} .
$$

The exponential functions $\left\{: e^{\langle\cdot, \xi\rangle}: \mid \xi \in \mathcal{E}_{c}\right\}$ are linearly independent and span a dense subspace of (\mathcal{E}).

2.5. The S-transform

For all $\Phi \in(\mathcal{E})^{*}$, we define the \mathbf{S}-transform of Φ to be the function on \mathcal{E}_{c}

$$
S \Phi(\xi)=\left\langle\left\langle\Phi,: e^{\langle\cdot, \xi\rangle}:\right\rangle\right\rangle, \quad \xi \in \mathcal{E}_{c} .
$$

Because the exponential functions span a dense subspace of (\mathcal{E}), the S-transform is injective.

2.6. Commutation Relation

For all $\xi, \eta \in \mathcal{E}$, the commutator of \widetilde{D}_{ξ} and D_{η}^{*} is given by

$$
\left[\widetilde{D}_{\xi}, D_{\eta}^{*}\right]=\langle\xi, \eta\rangle I
$$

(see [3, Theorem 9.15]).

3. Heisenberg Uncertainty Principle

It is well-known that every member $\varphi \in(\mathcal{E})$ has an analytic extension $\tilde{\varphi}$ to \mathcal{E}_{c} (see [4]) so that every $\varphi \in(\mathcal{E})$ is Fréchet differentiable on \mathcal{E}^{\prime}. Thus $D_{\eta} \varphi$ is defined for every $\eta \in \mathcal{E}^{\prime}$. If $\eta \in \mathcal{E}$, we have $D_{\eta}^{*} \varphi(x)=(x, \eta) \varphi(x)-D_{\eta} \varphi(x)$.

Proposition 1. [5] For $\varphi \in(\mathcal{E})$, let $\mathcal{F} \varphi$ be the Fourier-Wiener transform of φ, i.e., $\mathcal{F} \varphi(x)=\int_{\mathcal{E}^{\prime}} \widetilde{\varphi}(\sqrt{2} y+i x) \mu(d y)$. Then \mathcal{F} is continuous from (\mathcal{E}) onto itself and

$$
\|\mathcal{F} \varphi\|_{L^{2}}=\|\varphi\|_{L^{2}}
$$

The inverse transform of \mathcal{F} is given by

$$
\mathcal{F}^{-1} \varphi(y)=\int_{\mathcal{E}^{\prime}} \widetilde{\varphi}(\sqrt{2} x-i y) \mu(d x) .
$$

Moreover, \mathcal{F} is extended to a continuous operator on $(\mathcal{E})^{*}$. Denote this extension also by \mathcal{F}. Then \mathcal{F} is a unitary operator on $\left(L^{2}\right)$.

Proposition 2. For $\eta \in \mathcal{E}$ and for $\varphi \in(\mathcal{E})^{*}$, we have

$$
\begin{equation*}
\mathcal{F}\left\{\left(D_{\eta}^{*}-\widetilde{D}_{\eta}\right) \varphi\right\}=i \widetilde{Q}_{\eta} \mathcal{F} \varphi \tag{3}
\end{equation*}
$$

Proof. By Proposition 1, it is sufficient to verify (3) for $\varphi \in(\mathcal{E})$. Applying integration by parts formula, we obtain, for any $y \in \mathcal{E}^{\prime}$,

$$
\begin{aligned}
\mathcal{F}\left(D_{\eta}^{*}+D_{\eta}\right) \varphi(y) & =\mathcal{F}\{\langle\cdot, \eta\rangle \varphi\}(y) \\
& =\int_{\mathcal{E}^{\prime}}\langle\sqrt{2} x+i y, \eta\rangle \widetilde{\varphi}(\sqrt{2} x+i y) \mu(d x) \\
& =\sqrt{2} \int_{\mathcal{E}^{\prime}}\langle x, \eta\rangle \widetilde{\varphi}(\sqrt{2} x+i y) \mu(d x)+i\langle y, \eta\rangle \mathcal{F} \varphi(y) \\
& =2 \int_{\mathcal{E}^{\prime}} \widetilde{D_{\eta} \varphi}(\sqrt{2} x+i y) \mu(d x)+i\langle y, \eta\rangle \mathcal{F} \varphi(y) \\
& =2 \mathcal{F}\left(D_{\eta} \varphi\right)(y)+i \widetilde{Q}_{\eta} \mathcal{F} \varphi(y) .
\end{aligned}
$$

It follows that $\mathcal{F}\left\{\left(D_{\eta}^{*}-D_{\eta}\right) \varphi\right\}(y)=i \widetilde{Q}_{\eta} \mathcal{F} \varphi(y)$.
Theorem 3. For any $\varphi \in\left(L^{2}\right)$ and $\eta \in \mathcal{E}$, we have

$$
\left[\int_{\mathcal{E}^{\prime}}|\langle x, \eta\rangle \varphi(x)|^{2} \mu(d x)\right]\left[\int_{\mathcal{E}^{\prime}}|\langle x, \eta\rangle \mathcal{F} \varphi(x)|^{2} \mu(d x)\right] \geq|\eta|_{0}^{4}\|\varphi\|_{0}^{4} .
$$

Proof. It is enough to verify the inequality for a real-valued function φ. It follows from the commutation relation $\widetilde{D}_{\eta} D_{\eta}^{*}-D_{\eta}^{*} \widetilde{D}_{\eta}=|\eta|_{0}^{2} I$ that we have

$$
\left\langle\left\langle\widetilde{Q} \varphi,\left(D_{\eta}^{*}-\widetilde{D}_{\eta}\right) \varphi\right\rangle\right\rangle=|\eta|_{0}^{2}\|\varphi\|_{0}^{2}
$$

Then the theorem follows immediately from Proposition 1, Proposition 2 and Schwarz inequality.

4. Equality in the Heisenberg Uncertainty Principle

Theorem 4. The equality in the inequality (2) holds if and only if there exist real constants K_{1} and K_{2}, not both zero, such that

$$
\begin{equation*}
K_{1}\langle\cdot, \eta\rangle \varphi=K_{2} D_{\eta} \varphi . \tag{4}
\end{equation*}
$$

Proof. The well-known criterion in real analysis for the equality in the Schwarz inequality implies that the equality in the inequality (2) holds if and
only if there exist constants $A \geq 0, B \geq 0$, not both 0 , such that, for almost all x with respect to μ,

$$
\begin{equation*}
A|(x, \eta) \varphi(x)|^{2}=B\left|D_{\eta}^{*} \varphi(x)-D_{\eta} \varphi(x)\right|^{2} . \tag{5}
\end{equation*}
$$

It follows from the identity $(x, \eta) \varphi(x)-2 D_{\eta} \varphi(x)=D_{\eta}^{*} \varphi(x)-D_{\eta} \varphi(x)$ that
(i) if $A=0, B \neq 0$, then $(x, \eta) \varphi(x)=2 D_{\eta} \varphi(x)$;
(ii) if $B=0, A \neq 0$, then $(x, \eta) \varphi(x)=0$;
(iii) if $A B>0$, then $(x, \eta) \varphi(x)-2 D_{\eta} \varphi(x)=$ const. $(x, \eta) \varphi(x)$.

All the above three cases imply that there exist real numbers K_{1} and K_{2}, not both zero, such that

$$
K_{1}\langle x, \eta\rangle \varphi(x)=K_{2} D_{\eta} \varphi(x) .
$$

Conversely, if condition (4) holds, then condition (5) holds and hence the equality in the inequality (2) holds.

Now we solve completely the equation (4). Let $\eta \in \mathcal{E} \backslash\{0\}$ and let $u_{\eta}=$ $\eta /|\eta|_{0}$. Denote by P_{η} the projection $P_{\eta}(x)=\left\langle x, u_{\eta}\right\rangle u_{\eta}$ and define $P_{\eta}{ }^{\perp}=I-P_{\eta}$.

Theorem 5. Equality in Theorem 3 holds if and only if φ is of the form

$$
\begin{equation*}
\varphi(x)=e^{\frac{\alpha}{2}\left\langle x, u_{\eta}\right\rangle^{2}} \varphi\left(P_{\eta}{ }^{\perp} x\right) \tag{6}
\end{equation*}
$$

where α is a real number such that $|\alpha|<\frac{1}{2}$.
Proof: Without loss of generality, we may assume that $|\eta|_{0}=1$. It is clear that if $\varphi=0$, then we have equality in Theorem 3, so we may assume that $\varphi \neq 0$. It is easy to check that the functions of the form (6) satisfies condition (4). Hence by Theorem 4 the equality in Theorem 3 holds.

Now suppose that φ is a function in $\left(L^{2}\right)$ which satisfies the equality in Theorem 3. Then by Theorem 4, φ satisfies condition (4). Since $\varphi \neq 0$, the costant $K_{2} \neq 0$. Apply the S-transform to both sides of condition (4). Then $S \varphi$ satisfies the following equation:

$$
\begin{equation*}
\alpha\langle\xi, \eta\rangle S \varphi(\xi)=(1-\alpha) S\left(D_{\eta} \varphi\right)(\xi), \tag{7}
\end{equation*}
$$

where $\alpha=\frac{K_{1}}{K_{2}}$ and $\xi \in \mathcal{E}$.
The case $\alpha=1$ implies that $S \varphi(\xi)=0$ except for $\xi \perp \eta$. If $\xi \perp \eta$, then $\forall t \in R \backslash\{0\}, \xi+t \eta$ is not perpendicular to η. Since $S \varphi$ is continuous on \mathcal{E}_{c}, making $t \rightarrow 0$ we can see that $S \varphi(\xi)=0$. Hence $S \varphi(\xi)=0$ for all $\xi \in \mathcal{E}$ which, in turn, implies that $\varphi=0$. Therefore $\alpha \neq 1$.

To solve equation (7), for any fixed $\xi \in \mathcal{E}$ define the function f on \mathbb{R} by

$$
f(t)=S \varphi\left(t \eta+P_{\eta}^{\perp} \xi\right) .
$$

Then f is differentiable and

$$
f^{\prime}(\langle\xi, \eta\rangle)=\frac{\alpha}{(1-\alpha)}\langle\xi, \eta\rangle f(\langle\xi, \eta\rangle) .
$$

Put $t=\langle\xi, \eta\rangle$, and the above equation becomes

$$
f^{\prime}(t)=\frac{\alpha}{(1-\alpha)} t f(t) .
$$

It is easy to see that the solution f is given by

$$
f(t)=f(0) e^{\frac{\alpha}{(1-\alpha)} t^{2}} .
$$

Observe that $f(\langle\xi, \eta\rangle)=S \varphi(\xi)$ and $f(0)=S \varphi\left(P_{\eta}{ }^{\perp} \xi\right) . S \varphi$ is given by

$$
S \varphi(\xi)=e^{\frac{\alpha}{2(1-\alpha)}\langle\xi, \eta\rangle^{2}} S \varphi\left(P_{\eta}{ }^{\perp} \xi\right) .
$$

Taking the inverse S-transform, we obtain

$$
\begin{equation*}
\varphi(x)=e^{\frac{\alpha}{2}\langle x, \eta\rangle^{2}} \Phi\left(P_{\eta}^{\perp} x\right), \tag{8}
\end{equation*}
$$

where

$$
\Phi(x)=\sqrt{(1-\alpha)} \int_{\mathcal{E}^{\prime}} \varphi(x+\langle\eta, y\rangle \eta) \mu(d y) .
$$

Since $\varphi \in\left(L^{2}\right)$, we must have $|\alpha|<\frac{1}{2}$. Finally, if we replace x by $P_{\eta}^{\perp} x$ in (8), we find that

$$
\varphi\left(P_{\eta}^{\perp} x\right)=\Phi\left(P_{\eta}^{\perp} x\right) .
$$

This proves the theorem.

References

1. H. Dym and H. P. Mckean, Fourier Series and Integrals, Academic Press, 1972.
2. H.-H. Kuo, Integration by parts for abstract Wiener measures, Duke Math. J. 41 (1974), 373-378.
3. H.-H. Kuo, White Noise Distribution Theory, CRC Press, 1996.
4. Y.-J. Lee, Analytic version of test functionals, Fourier transform and a characterization of measures in white noise calculus, J. Func. Anal. 100 (1991), 359-380.
5. Y.-J. Lee, Integral representation of second quantization and its application to white noise analysis, J. Func. Anal. 133 (1995), 253-276.
6. N. Obata, White Noise Calculus and Fock Space, Lecture Notes in Mathematics, vol. 1571, Springer-Verlag, 1994.
7. K. R. Parthasarathy, An Introduction to Quantum Stochastic Calculus, Birkhauser, 1992.
8. R. Strichartz, A Guide to Distribution Theory and Fourier Transforms, CRC Press, 1994.
9. J. von Neumann, Mathematical Foundations of Quantum Mechanics, Princeton University Press, 1955.

Yuh-Jia Lee
Department of Mathematics, National Cheng Kung University
Tianan, 701, Taiwan
E-mail: yjlee@mail.ncku.edu.tw

Aurel Stan
Department of Mathematics, Louisiana State University
Baton Rouge, LA 70803, U.S.A.
E-mail: stan@marais.math.lsu.edu

[^0]: Receieived February 10, 1998; revised January 4, 1999.
 Communicated by H.-H. Kuo.
 1991 Mathematics Subject Classification: 46E50, 81T99, 60H99, 28C20, 60B05.
 Key words and phrases: Gaussian measure, second quantization, Heisenberg uncertainty principle.
 ${ }^{\dagger}$ Research supported by the National Science Council of Taiwan.
 ${ }^{\ddagger}$ Research supported by U.S. Army Research Office grant \# DAAH04-94-G-0249.

