TAIWANESE JOURNAL OF MATHEMATICS Vol. 3, No. 4, pp. 529-538, December 1999

AN INFINITE-DIMENSIONAL HEISENBERG UNCERTAINTY PRINCIPLE

Yuh-Jia Lee[†] and Aurel Stan[‡]

Abstract. An analogue of the classical Heisenberg inequality is given for an infinite-dimensional space. The proof relies on a commutation relationship and integration by parts formula for Gaussian measure. We also discuss when the equality holds.

1. INTRODUCTION

The well-known Heisenberg uncertainty principle [8] says that for any function $f \in L^2(\mathbb{R}^n)$ with $|f|_2 = 1$, we have

(1)
$$\int_{\mathbb{R}^n} |xf(x)|^2 dx \cdot \int_{\mathbb{R}^n} |\gamma \hat{f}(\gamma)|^2 d\gamma \ge \frac{n^2}{4(2\pi)^{n-1}},$$

where \hat{f} is the Fourier transform of f. Since $\lim_{n\to\infty} \frac{n^2}{(2\pi)^{n-1}} = 0$, it appears that there is no such uncertainty principle for the infinite-dimensional case. This is reflected by the fact that the Lebesgue measure does not exist in an infinite-dimensional space. Moreover, the Fourier transform needs to be generalized to such a space.

First we briefly describe the idea to obtain an infinite-dimensional analogue of the above inequality. Take a basic Gel'fand triple $\mathcal{E} \subset E \subset \mathcal{E}'$; e.g., $\mathcal{S}(\mathbb{R}) \subset L^2(\mathbb{R}) \subset \mathcal{S}'(\mathbb{R})$, where $\mathcal{S}(\mathbb{R})$ is the Schwartz space of rapidly decreasing functions on \mathbb{R} . Let $|\cdot|_0$ denote the norm on E. The space \mathbb{R}^n is replaced by \mathcal{E}' and the Lebesgue measure on \mathbb{R}^n is replaced by the standard Gaussian

Communicated by H.-H. Kuo.

Received February 10, 1998; revised January 4, 1999.

¹⁹⁹¹ Mathematics Subject Classification: 46E50, 81T99, 60H99, 28C20, 60B05.

Key words and phrases: Gaussian measure, second quantization, Heisenberg uncertainty principle.

[†] Research supported by the National Science Council of Taiwan.

[‡] Research supported by U.S. Army Research Office grant # DAAH04-94-G-0249.

measure μ on \mathcal{E}' . Let (L^2) denote the complex $L^2(\mu)$ -space with norm $\|\cdot\|_0$. Let $(\mathcal{E}) \subset (L^2) \subset (\mathcal{E})^*$ be the associated Gel'fand triple (see [3, Section 4.2] for details).

The multiplication by x in (1) is replaced by a multiplication operator Q_{η} which is continuous from $(\mathcal{E})^*$ into itself [3, Theorem 9.18]. The Fourier transform is replaced by the Fourier-Wiener transform (or the second quantization operator $\Gamma(iI)$ of iI). Thus the infinite-dimensional analogue of the inequality in (1) takes the form

(2)
$$\left[\int_{\mathcal{E}'} |\langle x, \eta \rangle \varphi(x)|^2 \, \mu(dx)\right] \left[\int_{\mathcal{E}'} |\langle x, \eta \rangle \mathcal{F}\varphi(x)|^2 \, \mu(dx)\right] \ge |\eta|_0^4 \, \|\varphi\|_0^4,$$

where $\langle \cdot, \cdot \rangle$ denotes the $\mathcal{E}' - \mathcal{E}$ pairing and \mathcal{F} is the Fourier-Wiener transform, i.e.,

$$\mathcal{F}\varphi(x) = \int_{\mathcal{E}'} \varphi(\sqrt{2}y + ix)\mu(dy),$$

for any $\eta \in \mathcal{E}$ and $\varphi \in (L^2)$ (see [5]).

The inequality (1) may be proved directly by integration by parts formula. It can also be shown that the equality in Heisenberg inequality holds if and only if φ is of the form

$$\varphi(x) = e^{\frac{\alpha}{2} \langle x, u_\eta \rangle^2} \varphi(P_\eta^{\perp} x),$$

where α is a real number such that $|\alpha| < 1$.

In Section 2, we will provide a brief background concerning the Gel'fand triples $\mathcal{E} \subset E \subset \mathcal{E}'$ and $(\mathcal{E}) \subset (L^2) \subset (\mathcal{E})^*$. The inequality in (2) will be proved in Section 3. We will discuss the equality in (2) in Section 4.

2. Background

2.1. Concept and Notations

Let *E* be a real separable Hilbert space with norm $|\cdot|_0$. Let *A* be a densely defined self-adjoint operator on *E*, whose eigenvalues $\{\lambda\}_{n\geq 1}$ satisfy the following conditions:

- $1 < \lambda_1 < \lambda_2 < \lambda_3 < \cdots$.
- $\sum_{n=1}^{\infty} \lambda_n^{-2} < \infty$. (Hence A^{-1} is a Hilbert-Schmidt operator.)

For any $p \ge 0$, we consider the space $\mathcal{E}_p := \{f \in E \mid |A^p f|_0 < \infty\}$. On the space \mathcal{E}_p we introduce the norm $|f|_p = |A^p f|_0$. Each of these spaces is a Hilbert space and we have the inclusion $\mathcal{E}_q \subset \mathcal{E}_p$ for p < q. By the second condition the inclusion $i : \mathcal{E}_{p+1} \longrightarrow \mathcal{E}_p$ is a Hilbert-Schmidt operator. Thus the space $\mathcal{E} = \bigcap_{p\ge 0} \mathcal{E}_p$, equipped with the topology given by the family $\{|\cdot|_p\}_{p\ge 0}$ of seminorms, is a nuclear space.

It can be shown that for all $p \geq 0$, the dual space of \mathcal{E}_p is isomorphic to \mathcal{E}_{-p} , which is the completion of the space E with respect to the norm $|f|_{-p} = |A^{-p}f|_0$. Moreover, we have $\mathcal{E}' = \bigcup_{p>0} \mathcal{E}_{-p}$ and for any 0 ,

$$\mathcal{E} \subset \mathcal{E}_q \subset \mathcal{E}_p \subset \mathcal{E}_0 \subset \mathcal{E}_{-p} \subset \mathcal{E}_{-q} \subset \mathcal{E}'.$$

Equip \mathcal{E}' with the inductive limit topology. The triple $\mathcal{E} \subset E \subset \mathcal{E}'$ becomes a Gel'fand triple.

By Minlos' theorem, there exists a unique probability measure μ on \mathcal{E}' such that for all $f \in \mathcal{E}$, the random variable $\langle \cdot, f \rangle$ is normally distributed with mean 0 and variance $|f|_0^2$. Here $\langle \cdot, \cdot \rangle$ is the duality between \mathcal{E}' and \mathcal{E} . Because of the denseness of \mathcal{E} in E, we can define for each $f \in E$, a random variable $\langle \cdot f \rangle$ on \mathcal{E}' which is normally distributed with mean 0 and variance $|f|_0^2$.

For $x \in \mathcal{E}'$, we define

$$: x^{\otimes n} := \sum_{k=0}^{\lfloor n/2 \rfloor} \frac{(-1)^k n!}{(n-2k)! k! 2^k} \tau^{\widehat{\otimes} k} \widehat{\otimes} x^{\otimes (n-2k)},$$

where $\tau \in (\mathcal{E} \otimes \mathcal{E})'$ is defined by $\langle \tau , \xi \otimes \eta \rangle = \langle \xi , \eta \rangle$. Let E_c denote the complexification of E. We denote by (L^2) the space of all complex-valued square integrable functions on \mathcal{E}' . It can be proved that for each $\varphi \in (L^2)$, there exists a unique sequence $\{f_n\}_{n\geq 0}, f_n \in E_c^{\widehat{\otimes}n}$, such that:

$$\varphi(x) = \sum_{n=0}^{\infty} \langle : x^{\otimes n} : , f_n \rangle.$$

Moreover, we have $\|\varphi\|_0^2 = \sum_{n=0}^{\infty} n! |f_n|_0^2$.

The second quantization operator $\Gamma(A)$ of A is defined by

$$\Gamma(A)\varphi = \sum_{n=0}^{\infty} \langle : \cdot^{\otimes n} : A^{\otimes n} f_n \rangle.$$

By using (L^2) and $\Gamma(A)$ instead of E and A, respectively, we can construct a Gel'fand triple $(\mathcal{E}) \subset (L^2) \subset (\mathcal{E})^*$. The elements in (\mathcal{E}) are called test functions on \mathcal{E}' . The elements in $(\mathcal{E})^*$ are called generalized functions on \mathcal{E}' . The bilinear pairing between $(\mathcal{E})^*$ and (\mathcal{E}) is denoted by $\ll \cdot, \cdot \gg$. It must be mentioned that if $\varphi \in (L^2)$ and $\psi \in (\mathcal{E})$, then $\ll \varphi, \psi \gg = (\varphi, \overline{\psi})$, where (\cdot, \cdot) is the inner product of the complex Hilbert space (L^2) .

Let $\varphi \in (L^2)$ be represented by $\varphi(x) = \sum_{n=0}^{\infty} \langle : x^{\otimes n} : , f_n \rangle$. It can be shown that $\varphi \in (\mathcal{E})$ if and only if for all $p \ge 0$, we have

$$\|\varphi\|_{p}^{2} := \sum_{n=0}^{\infty} n! |f_{n}|_{p}^{2} < \infty.$$

On the other hand, each $\Phi \in (\mathcal{E})^*$ can be represented as

$$\Phi = \sum_{n=0}^{\infty} \langle : \cdot^{\otimes n} : , F_n \rangle, \quad F_n \in (\mathcal{E}'_c)^{\widehat{\otimes} n},$$

and there exists a p > 0 depending on Φ such that

$$\|\Phi\|_{-p}^2 := \sum_{n=0}^{\infty} n! |F_n|_{-p}^2 < \infty.$$

For $\Phi \in (\mathcal{E})^*$ and $\varphi \in (\mathcal{E})$ from above we have

$$\ll \Phi, \varphi \gg = \sum_{n=0}^{\infty} n! \langle F_n f_n \rangle.$$

2.2. Differential Operators and the Adjoints

Consider a simple test function $\varphi(x) = \langle : x^{\otimes n} : , f \rangle \in (\mathcal{E})$. Let $y \in \mathcal{E}'$. We can show that

$$\lim_{t \to 0} \frac{\varphi(x+ty) - \varphi(x)}{t} = n \langle : x^{\otimes (n-1)} : , y \widehat{\otimes}_1 f \rangle,$$

where $y \widehat{\otimes}_1 \cdot : E_c^{\widehat{\otimes}n} \longrightarrow E_c^{\widehat{\otimes}(n-1)}$ is the unique continuous and linear map such that

$$y \widehat{\otimes}_1 g^{\otimes n} = \langle y , g \rangle g^{\otimes (n-1)}, \quad g \in E_c.$$

This shows that the function φ has Gâteaux derivative $D_y \varphi$. In general, for $\varphi(x) = \sum_{n=0}^{\infty} \langle : x^{\otimes n} : , f_n \rangle \in (\mathcal{E})$, we may define

$$D_y\varphi(x) = \sum_{n=1}^{\infty} n \langle : x^{\otimes (n-1)} : , y \widehat{\otimes}_1 f_n \rangle$$

It can be checked that D_y is a continuous linear operator on (\mathcal{E}) (see [3, Theorem 9.1]).

We can define the adjoint operator D_y^* of D_y by the duality between $(\mathcal{E})^*$ and (\mathcal{E}) , i.e.,

$$\langle\!\langle D_y^* \Phi , \psi \rangle\!\rangle = \langle\!\langle \Phi , D_y \psi \rangle\!\rangle, \quad \Phi \in (\mathcal{E})^*, \ \psi \in (\mathcal{E}).$$

The adjoint D_y^* is a continuous linear operator.

For
$$\Phi(x) = \sum_{n=0}^{\infty} \langle : x^{\otimes n} : , F_n \rangle \in (\mathcal{E})^*$$
, we have
$$D_y^* \Phi(x) = \sum_{n=0}^{\infty} \langle : x^{\otimes (n+1)} : , y \widehat{\otimes} F_n \rangle.$$

For $y \in \mathcal{E}$, the differential operator D_y extends by continuity to a continuous linear operator from $(\mathcal{E})^*$ into itself [3, Theorem 9.10]. The extension is denoted by \widetilde{D}_y . Moreover, for such $y \in \mathcal{E}$, the restriction of D_y^* to (\mathcal{E}) is a continuous linear operator from (\mathcal{E}) into itself [3, Corollary 9.14].

2.3. Multiplication Operators

If $\varphi, \psi \in (\mathcal{E})$, then the pointwise multiplication $\varphi \cdot \psi$ is also in (\mathcal{E}) . Let $\Phi \in (\mathcal{E})^*$ be fixed. For $\varphi \in (\mathcal{E})$, define $\Phi \cdot \varphi \in (\mathcal{E})^*$ by

$$\langle\!\langle \Phi \cdot \varphi , \psi \rangle\!\rangle = \langle\!\langle \Phi , \varphi \cdot \psi \rangle\!\rangle, \quad \psi \in (\mathcal{E}).$$

This multiplication operator by Φ is a continuous linear operator from (\mathcal{E}) into $(\mathcal{E})^*$.

In particular, if $\eta \in \mathcal{E}$, then the multiplication by $\langle \cdot, \eta \rangle$, denoted by Q_{η} , is a continuous linear operator from (\mathcal{E}) into itself and can be extended to a continuous linear operator \widetilde{Q}_{η} from $(\mathcal{E})^*$ into itself. The operators \widetilde{Q}_{η} , \widetilde{D}_{η} , and D_{η}^* are related by the formula

$$\widetilde{Q}_{\eta} = \widetilde{D}_{\eta} + D_{\eta}^*$$

(see [3, Theorem 9.18]).

2.4. The exponential Functions

Let $x \in \mathcal{E}'_c$. We define the following function

$$:e^{\langle\cdot,x\rangle}:=\sum_{n=0}^\infty \frac{1}{n!}\langle:\cdot^{\otimes n}:\,,x^{\otimes n}\rangle.$$

Yuh-Jia Lee and Aurel Stan

It is easy to see that

$$\|: e^{\langle \cdot, x \rangle} : \|_p = e^{|x|_p^2/2}.$$

Thus for all $x \in \mathcal{E}'_c$, we have $: e^{\langle \cdot, x \rangle} :\in (\mathcal{E})^*$. Also $: e^{\langle \cdot, x \rangle} :\in (L^2)$ if and only if $x \in E_c$ and $: e^{\langle \cdot, x \rangle} :\in (\mathcal{E})$ if and only if $x \in \mathcal{E}_c$.

If $x \in \mathcal{E}'_c$ and $\xi \in \mathcal{E}_c$, then we have

$$\langle\!\langle : e^{\langle \cdot, x \rangle} : , : e^{\langle \cdot, \xi \rangle} : \rangle\!\rangle = e^{\langle x, \xi \rangle}.$$

The exponential functions $\{: e^{\langle \cdot, \xi \rangle} : |\xi \in \mathcal{E}_c\}$ are linearly independent and span a dense subspace of (\mathcal{E}) .

2.5. The S-transform

For all $\Phi \in (\mathcal{E})^*$, we define the **S-transform** of Φ to be the function on \mathcal{E}_c

$$S\Phi(\xi) = \langle\!\langle \Phi , : e^{\langle \cdot, \xi \rangle} : \rangle\!\rangle, \quad \xi \in \mathcal{E}_c.$$

Because the exponential functions span a dense subspace of (\mathcal{E}) , the S-transform is injective.

2.6. Commutation Relation

For all $\xi, \eta \in \mathcal{E}$, the commutator of \widetilde{D}_{ξ} and D_{η}^* is given by

$$[D_{\xi}, D_{\eta}^*] = \langle \xi, \eta \rangle I$$

(see [3, Theorem 9.15]).

3. Heisenberg Uncertainty Principle

It is well-known that every member $\varphi \in (\mathcal{E})$ has an analytic extension $\tilde{\varphi}$ to \mathcal{E}_c (see [4]) so that every $\varphi \in (\mathcal{E})$ is Fréchet differentiable on \mathcal{E}' . Thus $D_\eta \varphi$ is defined for every $\eta \in \mathcal{E}'$. If $\eta \in \mathcal{E}$, we have $D_\eta^* \varphi(x) = (x, \eta) \varphi(x) - D_\eta \varphi(x)$.

Proposition 1. [5] For $\varphi \in (\mathcal{E})$, let $\mathcal{F}\varphi$ be the Fourier-Wiener transform of φ , i.e., $\mathcal{F}\varphi(x) = \int_{\mathcal{E}'} \tilde{\varphi}(\sqrt{2y} + ix)\mu(dy)$. Then \mathcal{F} is continuous from (\mathcal{E}) onto itself and

$$\|\mathcal{F}\varphi\|_{L^2} = \|\varphi\|_{L^2}.$$

The inverse transform of \mathcal{F} is given by

$$\mathcal{F}^{-1}\varphi(y) = \int_{\mathcal{E}'} \widetilde{\varphi}(\sqrt{2}x - iy)\mu(dx).$$

Moreover, \mathcal{F} is extended to a continuous operator on $(\mathcal{E})^*$. Denote this extension also by \mathcal{F} . Then \mathcal{F} is a unitary operator on (L^2) .

Proposition 2. For $\eta \in \mathcal{E}$ and for $\varphi \in (\mathcal{E})^*$, we have

(3)
$$\mathcal{F}\{(D_{\eta}^* - \widetilde{D}_{\eta})\varphi\} = i\widetilde{Q}_{\eta}\mathcal{F}\varphi.$$

Proof. By Proposition 1, it is sufficient to verify (3) for $\varphi \in (\mathcal{E})$. Applying integration by parts formula, we obtain, for any $y \in \mathcal{E}'$,

$$\begin{split} \mathcal{F}(D_{\eta}^{*}+D_{\eta})\varphi(y) &= \mathcal{F}\{\langle\cdot,\eta\rangle\varphi\}(y) \\ &= \int_{\mathcal{E}'} \langle\sqrt{2}x+iy,\eta\rangle\widetilde{\varphi}(\sqrt{2}x+iy)\mu(dx) \\ &= \sqrt{2}\int_{\mathcal{E}'} \langle x,\eta\rangle\widetilde{\varphi}(\sqrt{2}x+iy)\mu(dx)+i\langle y,\eta\rangle\mathcal{F}\varphi(y) \\ &= 2\int_{\mathcal{E}'} \widetilde{D_{\eta}}\varphi(\sqrt{2}x+iy)\mu(dx)+i\langle y,\eta\rangle\mathcal{F}\varphi(y) \\ &= 2\mathcal{F}(D_{\eta}\varphi)(y)+i\widetilde{Q}_{\eta}\mathcal{F}\varphi(y). \end{split}$$

It follows that $\mathcal{F}\{(D_{\eta}^* - D_{\eta})\varphi\}(y) = i\widetilde{Q}_{\eta}\mathcal{F}\varphi(y).$

Theorem 3. For any $\varphi \in (L^2)$ and $\eta \in \mathcal{E}$, we have

$$\left[\int_{\mathcal{E}'} |\langle x, \eta \rangle \varphi(x)|^2 \mu(dx)\right] \left[\int_{\mathcal{E}'} |\langle x, \eta \rangle \mathcal{F}\varphi(x)|^2 \mu(dx)\right] \ge |\eta|_0^4 \|\varphi\|_0^4.$$

Proof. It is enough to verify the inequality for a real-valued function φ . It follows from the commutation relation $\widetilde{D}_{\eta}D_{\eta}^* - D_{\eta}^*\widetilde{D}_{\eta} = |\eta|_0^2 I$ that we have

$$\langle\!\langle \widetilde{Q} \varphi, (D_{\eta}^* - \widetilde{D}_{\eta}) \varphi
angle\!\rangle = |\eta|_0^2 \|\varphi\|_0^2.$$

Then the theorem follows immediately from Proposition 1, Proposition 2 and Schwarz inequality.

4. Equality in the Heisenberg Uncertainty Principle

Theorem 4. The equality in the inequality (2) holds if and only if there exist real constants K_1 and K_2 , not both zero, such that

(4)
$$K_1\langle \cdot,\eta\rangle\varphi = K_2 D_\eta\varphi.$$

Proof. The well-known criterion in real analysis for the equality in the Schwarz inequality implies that the equality in the inequality (2) holds if and

Yuh-Jia Lee and Aurel Stan

only if there exist constants $A \ge 0$, $B \ge 0$, not both 0, such that, for almost all x with respect to μ ,

(5)
$$A|(x,\eta)\varphi(x)|^2 = B|D^*_{\eta}\varphi(x) - D_{\eta}\varphi(x)|^2.$$

It follows from the identity $(x,\eta)\varphi(x) - 2D_{\eta}\varphi(x) = D_{\eta}^*\varphi(x) - D_{\eta}\varphi(x)$ that

- (i) if $A = 0, B \neq 0$, then $(x, \eta)\varphi(x) = 2D_{\eta}\varphi(x)$;
- (ii) if B = 0, $A \neq 0$, then $(x, \eta)\varphi(x) = 0$;
- (iii) if AB > 0, then $(x, \eta)\varphi(x) 2D_{\eta}\varphi(x) = \text{const.}(x, \eta)\varphi(x)$.

All the above three cases imply that there exist real numbers K_1 and K_2 , not both zero, such that

$$K_1\langle x,\eta\rangle\varphi(x) = K_2 D_\eta\varphi(x).$$

Conversely, if condition (4) holds, then condition (5) holds and hence the equality in the inequality (2) holds.

Now we solve completely the equation (4). Let $\eta \in \mathcal{E} \setminus \{0\}$ and let $u_{\eta} = \eta/|\eta|_0$. Denote by P_{η} the projection $P_{\eta}(x) = \langle x, u_{\eta} \rangle u_{\eta}$ and define $P_{\eta}^{\perp} = I - P_{\eta}$.

Theorem 5. Equality in Theorem 3 holds if and only if φ is of the form

(6)
$$\varphi(x) = e^{\frac{\alpha}{2} \langle x, u_\eta \rangle^2} \varphi(P_\eta^{\perp} x),$$

where α is a real number such that $|\alpha| < \frac{1}{2}$.

Proof: Without loss of generality, we may assume that $|\eta|_0 = 1$. It is clear that if $\varphi = 0$, then we have equality in Theorem 3, so we may assume that $\varphi \neq 0$. It is easy to check that the functions of the form (6) satisfies condition (4). Hence by Theorem 4 the equality in Theorem 3 holds.

Now suppose that φ is a function in (L^2) which satisfies the equality in Theorem 3. Then by Theorem 4, φ satisfies condition (4). Since $\varphi \neq 0$, the costant $K_2 \neq 0$. Apply the S-transform to both sides of condition (4). Then $S\varphi$ satisfies the following equation:

(7)
$$\alpha \langle \xi, \eta \rangle S\varphi(\xi) = (1 - \alpha)S(D_{\eta}\varphi)(\xi),$$

where $\alpha = \frac{K_1}{K_2}$ and $\xi \in \mathcal{E}$. The case $\alpha = 1$ implies that $S\varphi(\xi) = 0$ except for $\xi \perp \eta$. If $\xi \perp \eta$, then $\forall t \in R \setminus \{0\}, \xi + t\eta$ is not perpendicular to η . Since $S\varphi$ is continuous on \mathcal{E}_c , making $t \to 0$ we can see that $S\varphi(\xi) = 0$. Hence $S\varphi(\xi) = 0$ for all $\xi \in \mathcal{E}$ which, in turn, implies that $\varphi = 0$. Therefore $\alpha \neq 1$.

To solve equation (7), for any fixed $\xi \in \mathcal{E}$ define the function f on \mathbb{R} by

$$f(t) = S\varphi(t\eta + P_{\eta}^{\perp}\xi).$$

Then f is differentiable and

$$f'(\langle \xi, \eta \rangle) = \frac{\alpha}{(1-\alpha)} \langle \xi, \eta \rangle f(\langle \xi, \eta \rangle).$$

Put $t = \langle \xi, \eta \rangle$, and the above equation becomes

$$f'(t) = \frac{\alpha}{(1-\alpha)} t f(t).$$

It is easy to see that the solution f is given by

$$f(t) = f(0)e^{\frac{\alpha}{2(1-\alpha)}t^2}.$$

Observe that $f(\langle \xi, \eta \rangle) = S\varphi(\xi)$ and $f(0) = S\varphi(P_{\eta}^{\perp}\xi)$. $S\varphi$ is given by

$$S\varphi(\xi) = e^{\frac{\alpha}{2(1-\alpha)}\langle\xi,\eta\rangle^2} S\varphi(P_\eta^{\perp}\xi).$$

Taking the inverse S-transform, we obtain

(8)
$$\varphi(x) = e^{\frac{\alpha}{2} \langle x, \eta \rangle^2} \Phi(P_{\eta}^{\perp} x),$$

where

$$\Phi(x) = \sqrt{(1-\alpha)} \int_{\mathcal{E}'} \varphi(x + \langle \eta, y \rangle \eta) \mu(dy).$$

Since $\varphi \in (L^2)$, we must have $|\alpha| < \frac{1}{2}$. Finally, if we replace x by $P_{\eta}^{\perp} x$ in (8), we find that

$$\varphi(P_{\eta}^{\perp}x) = \Phi(P_{\eta}^{\perp}x).$$

This proves the theorem.

References

- 1. H. Dym and H. P. Mckean, Fourier Series and Integrals, Academic Press, 1972.
- H.-H. Kuo, Integration by parts for abstract Wiener measures, *Duke Math. J.* 41 (1974), 373-378.
- 3. H.-H. Kuo, White Noise Distribution Theory, CRC Press, 1996.
- 4. Y.-J. Lee, Analytic version of test functionals, Fourier transform and a characterization of measures in white noise calculus, *J. Func. Anal.* **100** (1991), 359-380.

Yuh-Jia Lee and Aurel Stan

- 5. Y.-J. Lee, Integral representation of second quantization and its application to white noise analysis, *J. Func. Anal.* **133** (1995), 253-276.
- N. Obata, White Noise Calculus and Fock Space, Lecture Notes in Mathematics, vol. 1571, Springer-Verlag, 1994.
- K. R. Parthasarathy, An Introduction to Quantum Stochastic Calculus, Birkhauser, 1992.
- 8. R. Strichartz, A Guide to Distribution Theory and Fourier Transforms, CRC Press, 1994.
- J. von Neumann, Mathematical Foundations of Quantum Mechanics, Princeton University Press, 1955.

Yuh-Jia Lee Department of Mathematics, National Cheng Kung University Tianan, 701, Taiwan E-mail: yjlee@mail.ncku.edu.tw

Aurel Stan Department of Mathematics, Louisiana State University Baton Rouge, LA 70803, U.S.A. E-mail: stan@marais.math.lsu.edu