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AN INFINITE-DIMENSIONAL HEISENBERG
UNCERTAINTY PRINCIPLE

Yuh-Jia Lee† and Aurel Stan‡

Abstract. An analogue of the classical Heisenberg inequality is given
for an infinite-dimensional space. The proof relies on a commutation
relationship and integration by parts formula for Gaussian measure. We
also discuss when the equality holds.

1. Introduction

The well-known Heisenberg uncertainty principle [8] says that for any func-
tion f ∈ L2(Rn) with |f |2 = 1, we have∫

Rn
|xf(x)|2dx ·

∫
Rn
|γf̂(γ)|2dγ ≥ n2

4(2π)n−1
,(1)

where f̂ is the Fourier transform of f . Since lim
n→∞

n2

(2π)n−1 = 0, it appears that
there is no such uncertainty principle for the infinite-dimensional case. This is
reflected by the fact that the Lebesgue measure does not exist in an infinite-
dimensional space. Moreover, the Fourier transform needs to be generalized
to such a space.

First we briefly describe the idea to obtain an infinite-dimensional ana-
logue of the above inequality. Take a basic Gel’fand triple E ⊂ E ⊂ E ′; e.g.,
S(R) ⊂ L2(R) ⊂ S ′(R), where S(R) is the Schwartz space of rapidly decreasing
functions on R. Let | · |0 denote the norm on E. The space Rn is replaced
by E ′ and the Lebesgue measure on Rn is replaced by the standard Gaussian
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measure µ on E ′. Let (L2) denote the complex L2(µ)-space with norm ‖ · ‖0.
Let (E) ⊂ (L2) ⊂ (E)∗ be the associated Gel’fand triple (see [3, Section 4.2]
for details).

The multiplication by x in (1) is replaced by a multiplication operator Q̃η

which is continuous from (E)∗ into itself [3, Theorem 9.18]. The Fourier trans-
form is replaced by the Fourier-Wiener transform (or the second quantization
operator Γ(iI) of iI). Thus the infinite-dimensional analogue of the inequality
in (1) takes the form[∫

E′
|〈x, η〉ϕ(x)|2 µ(dx)

] [∫
E′
|〈x, η〉Fϕ(x)|2 µ(dx)

]
≥ |η|40 ‖ϕ‖

4
0,(2)

where 〈·, ·〉 denotes the E ′−E pairing and F is the Fourier-Wiener transform,
i.e.,

Fϕ(x) =
∫
E′
ϕ(
√

2y + ix)µ(dy),

for any η ∈ E and ϕ ∈ (L2) (see [5]).
The inequality (1) may be proved directly by integration by parts formula.

It can also be shown that the equality in Heisenberg inequality holds if and
only if ϕ is of the form

ϕ(x) = e
α
2 〈x,uη〉

2
ϕ(Pη⊥x),

where α is a real number such that |α| < 1.
In Section 2, we will provide a brief background concerning the Gel’fand

triples E ⊂ E ⊂ E ′ and (E) ⊂ (L2) ⊂ (E)∗. The inequality in (2) will be proved
in Section 3. We will discuss the equality in (2) in Section 4.

2. Background

2.1. Concept and Notations

Let E be a real separable Hilbert space with norm | · |0. Let A be a
densely defined self-adjoint operator on E, whose eigenvalues {λ}n≥1 satisfy
the following conditions:

• 1 < λ1 < λ2 < λ3 < · · · .

•
∞∑
n=1

λ−2
n <∞. (Hence A−1 is a Hilbert-Schmidt operator.)
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For any p ≥ 0, we consider the space Ep := {f ∈ E | |Apf |0 < ∞}. On the
space Ep we introduce the norm |f |p = |Apf |0. Each of these spaces is a Hilbert
space and we have the inclusion Eq ⊂ Ep for p < q. By the second condition
the inclusion i : Ep+1 −→ Ep is a Hilbert-Schmidt operator. Thus the space
E =

⋂
p≥0 Ep, equipped with the topology given by the family {| · |p}p≥0 of

seminorms, is a nuclear space.
It can be shown that for all p ≥ 0, the dual space of Ep is isomorphic

to E−p, which is the completion of the space E with respect to the norm
|f |−p = |A−pf |0. Moreover, we have E ′ =

⋃
p≥0 E−p and for any 0 < p < q,

E ⊂ Eq ⊂ Ep ⊂ E0 ⊂ E−p ⊂ E−q ⊂ E ′.

Equip E ′ with the inductive limit topology. The triple E ⊂ E ⊂ E ′ becomes
a Gel’fand triple.

By Minlos’ theorem, there exists a unique probability measure µ on E ′
such that for all f ∈ E , the random variable 〈·, f〉 is normally distributed with
mean 0 and variance |f |20. Here 〈·, ·〉 is the duality between E ′ and E . Because
of the denseness of E in E, we can define for each f ∈ E, a random variable
〈· f〉 on E ′ which is normally distributed with mean 0 and variance |f |20.

For x ∈ E ′, we define

: x⊗n :=
[n/2]∑
k=0

(−1)kn!
(n− 2k)!k!2k

τ ⊗̂k⊗̂x⊗(n−2k),

where τ ∈ (E ⊗ E)
′

is defined by 〈τ , ξ ⊗ η〉 = 〈ξ , η〉. Let Ec denote the
complexification of E. We denote by (L2) the space of all complex-valued
square integrable functions on E ′. It can be proved that for each ϕ ∈ (L2),
there exists a unique sequence {fn}n≥0, fn ∈ E⊗̂nc , such that:

ϕ(x) =
∞∑
n=0

〈: x⊗n : , fn〉.

Moreover, we have ‖ϕ‖20 =
∞∑
n=0

n! |fn|20.

The second quantization operator Γ(A) of A is defined by

Γ(A)ϕ =
∞∑
n=0

〈: ·⊗n : A⊗nfn〉.

By using (L2) and Γ(A) instead of E and A, respectively, we can construct
a Gel’fand triple (E) ⊂ (L2) ⊂ (E)∗. The elements in (E) are called test
functions on E ′. The elements in (E)∗ are called generalized functions on E ′.
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The bilinear pairing between (E)∗ and (E) is denoted by � · , · �. It must be
mentioned that if ϕ ∈ (L2) and ψ ∈ (E), then � ϕ ,ψ �= (ϕ, ψ̄), where (·, ·)
is the inner product of the complex Hilbert space (L2).

Let ϕ ∈ (L2) be represented by ϕ(x) =
∞∑
n=0
〈: x⊗n : , fn〉. It can be shown

that ϕ ∈ (E) if and only if for all p ≥ 0, we have

‖ϕ‖2p :=
∞∑
n=0

n!|fn|2p <∞.

On the other hand, each Φ ∈ (E)∗ can be represented as

Φ =
∞∑
n=0

〈: ·⊗n : , Fn〉, Fn ∈ (E ′c)⊗̂n,

and there exists a p > 0 depending on Φ such that

‖Φ||2−p :=
∞∑
n=0

n!|Fn|2−p <∞.

For Φ ∈ (E)∗ and ϕ ∈ (E) from above we have

� Φ, ϕ�=
∞∑
n=0

n!〈Fn fn〉.

2.2. Differential Operators and the Adjoints

Consider a simple test function ϕ(x) = 〈: x⊗n : , f〉 ∈ (E). Let y ∈ E ′. We
can show that

lim
t→0

ϕ(x+ ty)− ϕ(x)
t

= n〈: x⊗(n−1) : , y⊗̂1f〉,

where y⊗̂1· : E⊗̂nc −→ E⊗̂(n−1)
c is the unique continuous and linear map such

that
y⊗̂1g

⊗n = 〈y , g〉g⊗(n−1), g ∈ Ec.

This shows that the function ϕ has Gâteaux derivative Dyϕ. In general, for

ϕ(x) =
∞∑
n=0
〈: x⊗n : , fn〉 ∈ (E), we may define

Dyϕ(x) =
∞∑
n=1

n〈: x⊗(n−1) : , y⊗̂1fn〉.
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It can be checked that Dy is a continuous linear operator on (E) (see [3,
Theorem 9.1]).

We can define the adjoint operator D∗y of Dy by the duality between (E)∗

and (E), i.e.,

〈〈D∗yΦ , ψ〉〉 = 〈〈Φ , Dyψ〉〉, Φ ∈ (E)∗, ψ ∈ (E).

The adjoint D∗y is a continuous linear operator.

For Φ(x) =
∞∑
n=0
〈: x⊗n : , Fn〉 ∈ (E)∗, we have

D∗yΦ(x) =
∞∑
n=0

〈: x⊗(n+1) : , y⊗̂Fn〉.

For y ∈ E , the differential operator Dy extends by continuity to a continu-
ous linear operator from (E)∗ into itself [3, Theorem 9.10]. The extension is
denoted by D̃y. Moreover, for such y ∈ E , the restriction of D∗y to (E) is a
continuous linear operator from (E) into itself [3, Corollary 9.14].

2.3. Multiplication Operators

If ϕ, ψ ∈ (E), then the pointwise multiplication ϕ · ψ is also in (E). Let
Φ ∈ (E)∗ be fixed. For ϕ ∈ (E), define Φ · ϕ ∈ (E)∗ by

〈〈Φ · ϕ , ψ〉〉 = 〈〈Φ , ϕ · ψ〉〉, ψ ∈ (E).

This multiplication operator by Φ is a continuous linear operator from (E) into
(E)∗.

In particular, if η ∈ E , then the multiplication by 〈· , η〉, denoted by Qη,
is a continuous linear operator from (E) into itself and can be extended to a
continuous linear operator Q̃η from (E)∗ into itself. The operators Q̃η, D̃η,
and D∗η are related by the formula

Q̃η = D̃η +D∗η

(see [3, Theorem 9.18]).

2.4. The exponential Functions

Let x ∈ E ′c . We define the following function

: e〈·,x〉 : =
∞∑
n=0

1
n!
〈: ·⊗n : , x⊗n〉.
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It is easy to see that
‖ : e〈·,x〉 : ‖p = e|x|

2
p/2.

Thus for all x ∈ E ′c, we have : e〈·,x〉 :∈ (E)∗. Also : e〈·,x〉 :∈ (L2) if and only if
x ∈ Ec and : e〈·,x〉 :∈ (E) if and only if x ∈ Ec.

If x ∈ E ′c and ξ ∈ Ec, then we have

〈〈: e〈·,x〉 : , : e〈·,ξ〉 :〉〉 = e〈x,ξ〉.

The exponential functions {: e〈·,ξ〉 : |ξ ∈ Ec} are linearly independent and span
a dense subspace of (E).

2.5. The S-transform

For all Φ ∈ (E)∗, we define the S-transform of Φ to be the function on Ec

SΦ(ξ) = 〈〈Φ , : e〈 ·,ξ 〉 :〉〉, ξ ∈ Ec.

Because the exponential functions span a dense subspace of (E), the S-transform
is injective.

2.6. Commutation Relation

For all ξ, η ∈ E , the commutator of D̃ξ and D∗η is given by

[D̃ξ , D
∗
η] = 〈ξ , η〉I

(see [3, Theorem 9.15]).

3. Heisenberg Uncertainty Principle

It is well-known that every member ϕ ∈ (E) has an analytic extension ϕ̃
to Ec (see [4]) so that every ϕ ∈ (E) is Fréchet differentiable on E ′. Thus Dηϕ
is defined for every η ∈ E ′. If η ∈ E , we have D∗ηϕ(x) = (x, η)ϕ(x)−Dηϕ(x).

Proposition 1. [5] For ϕ ∈ (E), let Fϕ be the Fourier-Wiener transform
of ϕ, i.e., Fϕ(x) =

∫
E′ ϕ̃(
√

2y+ ix)µ(dy). Then F is continuous from (E) onto
itself and

‖Fϕ‖L2 = ‖ϕ‖L2 .

The inverse transform of F is given by

F−1ϕ(y) =
∫
E′
ϕ̃(
√

2x− iy)µ(dx).
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Moreover, F is extended to a continuous operator on (E)∗. Denote this exten-
sion also by F . Then F is a unitary operator on (L2).

Proposition 2. For η ∈ E and for ϕ ∈ (E)∗, we have

F{(D∗η − D̃η)ϕ} = iQ̃ηFϕ.(3)

Proof . By Proposition 1, it is sufficient to verify (3) for ϕ ∈ (E). Applying
integration by parts formula, we obtain, for any y ∈ E ′,

F(D∗η +Dη)ϕ(y) = F{〈·, η〉ϕ}(y)

=
∫
E′
〈
√

2x+ iy, η〉ϕ̃(
√

2x+ iy)µ(dx)

=
√

2
∫
E′
〈x, η〉ϕ̃(

√
2x+ iy)µ(dx) + i〈y, η〉Fϕ(y)

= 2
∫
E′
D̃ηϕ(

√
2x+ iy)µ(dx) + i〈y, η〉Fϕ(y)

= 2F(Dηϕ)(y) + iQ̃ηFϕ(y).

It follows that F{(D∗η −Dη)ϕ}(y) = iQ̃ηFϕ(y).

Theorem 3. For any ϕ ∈ (L2) and η ∈ E , we have[∫
E′
|〈x, η〉ϕ(x)|2µ(dx)

] [∫
E′
|〈x, η〉Fϕ(x)|2µ(dx)

]
≥ |η|40‖ϕ‖40.

Proof . It is enough to verify the inequality for a real-valued function ϕ.
It follows from the commutation relation D̃ηD

∗
η −D∗ηD̃η = |η|20I that we have

〈〈Q̃ϕ, (D∗η − D̃η)ϕ〉〉 = |η|20‖ϕ‖20.

Then the theorem follows immediately from Proposition 1, Proposition 2 and
Schwarz inequality.

4. Equality in the Heisenberg Uncertainty Principle

Theorem 4. The equality in the inequality (2) holds if and only if there
exist real constants K1 and K2, not both zero, such that

K1〈·, η〉ϕ = K2Dηϕ.(4)

Proof . The well-known criterion in real analysis for the equality in the
Schwarz inequality implies that the equality in the inequality (2) holds if and
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only if there exist constants A ≥ 0, B ≥ 0, not both 0, such that, for almost
all x with respect to µ,

A|(x, η)ϕ(x)|2 = B|D∗ηϕ(x)−Dηϕ(x)|2.(5)

It follows from the identity (x, η)ϕ(x)− 2Dηϕ(x) = D∗ηϕ(x)−Dηϕ(x) that

( i ) if A = 0, B 6= 0, then (x, η)ϕ(x) = 2Dηϕ(x);

(ii) if B = 0, A 6= 0, then (x, η)ϕ(x) = 0;

(iii) if AB > 0, then (x, η)ϕ(x)− 2Dηϕ(x) = const.(x, η)ϕ(x).

All the above three cases imply that there exist real numbers K1 and K2, not
both zero, such that

K1〈x, η〉ϕ(x) = K2Dηϕ(x).

Conversely, if condition (4) holds, then condition (5) holds and hence the
equality in the inequality (2) holds.

Now we solve completely the equation (4). Let η ∈ E \ {0} and let uη =
η/|η|0. Denote by Pη the projection Pη(x) = 〈x, uη〉uη and define Pη⊥ = I−Pη.

Theorem 5. Equality in Theorem 3 holds if and only if ϕ is of the form

ϕ(x) = e
α
2 〈x,uη〉

2
ϕ(Pη⊥x),(6)

where α is a real number such that |α| < 1
2 .

Proof : Without loss of generality, we may assume that |η|0 = 1. It is clear
that if ϕ = 0, then we have equality in Theorem 3, so we may assume that
ϕ 6= 0. It is easy to check that the functions of the form (6) satisfies condition
(4). Hence by Theorem 4 the equality in Theorem 3 holds.

Now suppose that ϕ is a function in (L2) which satisfies the equality in
Theorem 3. Then by Theorem 4, ϕ satisfies condition (4). Since ϕ 6= 0, the
costant K2 6= 0. Apply the S-transform to both sides of condition (4). Then
Sϕ satisfies the following equation:

α〈ξ, η〉Sϕ(ξ) = (1− α)S(Dηϕ)(ξ),(7)

where α = K1
K2

and ξ ∈ E .
The case α = 1 implies that Sϕ(ξ) = 0 except for ξ⊥η. If ξ⊥η, then

∀t ∈ R\{0}, ξ + tη is not perpendicular to η. Since Sϕ is continuous on Ec,
making t → 0 we can see that Sϕ(ξ) = 0. Hence Sϕ(ξ) = 0 for all ξ ∈ E
which, in turn, implies that ϕ = 0. Therefore α 6= 1.
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To solve equation (7), for any fixed ξ ∈ E define the function f on R by

f(t) = Sϕ(tη + Pη
⊥ξ).

Then f is differentiable and

f ′(〈ξ, η〉) =
α

(1− α)
〈ξ, η〉f(〈ξ, η〉).

Put t = 〈ξ, η〉, and the above equation becomes

f ′(t) =
α

(1− α)
tf(t).

It is easy to see that the solution f is given by

f(t) = f(0)e
α

2(1−α) t
2

.

Observe that f(〈ξ, η〉) = Sϕ(ξ) and f(0) = Sϕ(Pη⊥ξ). Sϕ is given by

Sϕ(ξ) = e
α

2(1−α) 〈ξ,η〉
2

Sϕ(Pη⊥ξ).

Taking the inverse S-transform, we obtain

ϕ(x) = e
α
2 〈x,η〉

2
Φ(P⊥η x),(8)

where
Φ(x) =

√
(1− α)

∫
E′
ϕ(x+ 〈η, y〉η)µ(dy).

Since ϕ ∈ (L2), we must have |α| < 1
2 . Finally, if we replace x by P⊥η x in (8),

we find that
ϕ(P⊥η x) = Φ(P⊥η x).

This proves the theorem.
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