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ASPECTS OF STRUCTURAL COMBINATORICS
(Graph Homomorphisms and Their Use)

Jaroslav Nešetřil∗

Abstract. This paper is based on a course delivered by the author at
NCTS, National Chiao Tung University, Taiwan in Febuary 1999. We
survey results related to structural aspects of graph homomorphism. Our
aim is to demonstrate that this forms today a compact collection of re-
sults and methods which perhaps deserve its name : structural combina-
torics. Due to space limitations we concentrate on a sample of areas only:
representation of algebraic structures by combinatorial ones (graphs), the
poset of colour classes and corresponding algorithmic questions which
lead to homomorphism dualities, blending algebraic and complexity ap-
proaches.

1. Introduction

Graph theory receives its mathematical motivation from the two main ar-
eas of mathematics: algebra and geometry (topology) and it is fair to say
that graphical notions stood at the birth of algebraic topology. Consequently,
various operations and comparisons (relations) for graphs stress either its alge-
braic aspects (e.g., colorings and various products and spaces associated with
graphs) or its geometrical aspects (e.g., contraction, subdivision). It is only
natural that the key place in modern graph theory is played by (fortunate)
mixtures of both approaches as exhibited best by the various modifications of
the notion of graph minor. However from the algebraic point of view perhaps
the most natural graph notion is that of a homomorphism.
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Given two graphs G and G′, a homomorphism f of G to G′ is any mapping
f : V (G)→ V (G′) which satisfies the following condition :

[x, y] ∈ E(G)⇒ [f(x), f(y)] ∈ E(G′).

This condition should be understood as follows: on both sides of the im-
plication one considers the same type of edges (undirected or directed). Anal-
ogous definitions give the notions of homomorphism for hypergraphs (set sys-
tems) and relational systems (of a given type, to be specified later).

The existence of a homomorphism from G to H is denoted by G→ H, in
which case we also say that G is homomorphic to H; the non-existence of such
a homomorphism is denoted by G 6→ H and in such a case we say that G is not
homomorphic to H. If G is homomorphic to H and also H is homomorphic
to G, then we say that G and H are homomorphically equivalent (or simply
hom-equivalent) and we denote this by G ∼ H.

The homomorphism is an algebraic notion which in graph theory finds its
way to problems related to products, reconstruction and chromatic polynomi-
als, just to name a few.

A combinatorial approach is motivated usually by the connection of homo-
morphisms to vertex coloring, expressed by the following observation which
holds for every undirected graph G:

G→ Kk if and only if χ(G) ≤ k.

An algebraic approach leads to groups, monoids, posets and categories.
In categories, the most general of these concepts, we speak about objects

(for example, graphs), morphisms (for example, homomorphisms) and compo-
sition (for example, the composition of mappings).

Abstractly, we can think of this situation as an oriented multigraph with
labeled arcs together with “composition of arrows”; see Figure 1.

However, this (categorical) setting brings out certain features and gives
rise to new perspectives. A spectacular example we want to introduce now is
the following:

Given two graphs G, H, we denote by Hom(G,H) the set of all homomor-
phisms from G to H; formally, Hom(G,H) = {f ; f : G→ H} (sometimes the
notation 〈G,H〉 is used).

We also denote by h(G,H) the cardinality of the set Hom(G,H); formally,
we put h(G,H) = |Hom(G,H)|. By h(H) (sometimes the notation 〈H〉 is
used) we mean the infinite vector whose coordinates are indexed by finite
graphs; we consider non-isomorphic graphs only. More formally,

h(H) = (h(G,H);G finite graph).
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Figure 1

This formal approach (which typically involves large sets and which in
this setting relates to invariants like the Tutte-Grothendieck polynomial and
to problems in statistical physics) has been a remarkable success in many
respects. In addition to recent applications to problems related to statistical
physics (see, e.g., [65, 10, 6]), we wish to stress purely combinatorial problems.
We motivate this by the following two results:

Theorem 1.1 (Lovász [42]). For any two graphs G, H,

h(G) = h(H) if and only if G ∼= H.

It has been shown by Lovász [43] that Theorem 1.1 holds in most “combi-
natorial” categories covering particularly relational systems of arbitrary type.

Theorem 1.2 (Müller [48]). If G is a graph with n vertices and m >
n log n edges, then G is edge reconstructible.

Concerning Theorem 1.2, let us first recall the famous edge reconstruction
conjecture (see, e.g., the survey by Bondy [5]):

Conjecture 1. For undirected graphs G, H with at least 4 edges, the
following two statements are equivalent:

( i ) G and H are isomorphic;

(ii) there exists a bijection ι : E(G)→ E(H) such that G− e ∼= H − ι(e) for
every e ∈ E(G).

This conjecture fails to be true for several (in fact four) small graphs, hence
the assumption that G and H have as least 4 edges. Obviously (i) implies (ii)
and thus the validity of the opposite implication is the core of the conjecture.
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Now it is well-known that the above condition (ii) is equivalent to the
following condition (ii’):

There exists a bijection

ι : {A;A ⊂ E(G)} −→ {B;B ⊂ E(H)}

such that (V (G), A) is isomorphic to (V (H), ι(A)) for every A ⊂ E(G).

The edge reconstruction conjecture is related to Ulam’s vertex reconstruc-
tion conjecture and Müller’s result is one of the strongest results supporting
its validity. As an illustration of the techniques, we prove the following (less
technical) result of Lovász [43] which motivated Müller’s result.

Theorem 1.3 [43]. Let G be a graph with n vertices and m edges, and
let m >

(n
2

)
/2. Then G is edge-reconstructible.

Proof. Let G = (V,E), H = (V,E′) be graphs such that condition (ii’)
holds:

Let ι : {A,A ⊂ E} → {B;B ⊂ E′} be a bijection such that

(V,A) ∼= (V, ι(A)).

We shall need two more definitions:
Given two graphs G1, G2, we denote by i(G1, G2) the number of injective

homomorphisms f : G1 −→ G2. G denotes the complement of graph G:
V (G) = V (G), E(G) =

(V (G)
2

)
− E(G).

Using Inclusion-Exclusion Principle, we can express the number of injective
homomorphisms as follows:

i(G,H) = i((V, ∅), (V, ∅))−
∑
e1∈E

i((V, {e1}),H)

+
∑

e1 6=e2∈E
i((V, {e1 e2}),H)− . . .+ (−1)|E|i(G,H).

(1)

Similarly,

i(H,H) = i((V, ∅), (V, ∅))−
∑
e1∈E′

i((V, {e1}),H)

+
∑

e1 6=e2∈E′
i((V, {e1 e2}),H)− . . .+ (−1)|E

′|i(H,H).
(2)

Obviously, |E| = |E′|, but also, according to our assumption (ii’), for
every 1 ≤ k < |E|, the bijection ι associates to any set {e1, . . . , ek} a set
ι({e1, . . . , ek}) = {e′1, . . . , e′k} such that (V, {e1, . . . , ek}) ∼= (V, {e′1, . . . , e′k}).
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Thus the terms on the right side of expressions (1) and (2) are pairwise
the same. Thus

i(G,H)− i(H,H) = (−1)|E|(i(G,H)− i(H,H)).(3)

However the left side of (3) is zero as both G and H have too many edges.
On the other side, i(H,H) > 0 and thus i(G,H) 6= 0 too.

Let us summarize : we proved that there exist injective homomorphism
G −→ H.

Now we can repeat the same proof for pairs i(G,G) and i(H,G) and obtain
similarly i(H,G) 6= 0.

But then, as our graphs are finite, we have G ∼= H. (Alternatively, it
suffices to prove i(G,H) 6= 0 as we know that both G and H have the same
number of edges. Thus any injective homomorphism is necessarily an isomor-
phism.)

Perhaps this example of use of combinatorics of maps provides a good
motivation for this paper where we want to introduce more examples. Due to
the space limitations, we have to concentrate on a few sample areas only.

In Chapter 2, we deal with algebraic aspects of graph homomorphisms
from the point of view of categories (of graphs and their homomorphisms)
and posets (induced by the existence of homomorphism). Particularly, we
review the recent development related to the notion of density (and we give
three proofs of the fundamental result for undirected graphs).

In Chapter 3, we survey complexity questions, both hard and polynomial
instances of the basic decision problem (the existence of an H-coloring). We
close with a characterization of finitary dualities which is an analogy for col-
orings of the Robertson-Seymour-Thomas program. We close the paper with
yet another view relating this paper to fundamental results (and insights) of
P. Erdös.

The paper is organized as follows:
Chapter 2: Ordering by Homomorphism (Structure of Color Classes)

1. Categories and Representations

2. Concreteness

3. Universality

4. Independent Families

5. Density and Gaps

Chapter 3: Paradoxes of Complexity

1. Hard Cases
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2. Polynomial Cases and Homomorphism Dualities
3. Finitary Dualities
4. Gaps and Dualities
5. Final View

2. Ordering by Homomorphisms

(Structure of Color Classes)

2.1. Categories and Representations

Consider all finite graphs together with all homomorphisms between them.
What can we say about a structure of such a situation?

This is certainly a complicated situation, on the first glance undescrib-
ably complicated. But there is a simple basic structure which underlies this
situation and in fact this is a common structure to many situations. This
underlying structure is called a category.

In order to define a category K we always specify objects (we denote them
by capital letters A, B, C, . . . ) and morphisms.

Morphisms are labeled arrows denoted by A f−→ B or f : A −→ B. What
this means is that each morphism f : A −→ B has specified two objects
d(f) = A and r(f) = B (the domain and the range of f). Denote by 〈A,B〉,
or Hom(A,B) , the set of all morphisms f satisfying d(f) = A, r(f) = B
(more precisely, we should write 〈A,B〉K). As we work exclusively with finite
objects (like finite graphs), we assume that for any pair of objects A, B, the
set 〈A,B〉 is finite (and of course it may be empty).

Two more features describe our situation:
For every triple A,B,C of objects, we have a mapping

◦ : 〈B,C〉 × 〈A,B〉 −→ 〈A,C〉,

which assigns to morphisms f , g their composition f ◦ g (this composition
f ◦ g need not be a composition of maps as even f , g need not be mappings).
We further assume that the operation ◦ (it is in fact a partial operation) is
associative: (f ◦ g) ◦ h = f ◦ (g ◦ h) whenever one of the sides of the equality
is defined.

Finally we are given to very object A a morphism 1A which satisfies

1A ◦ f = f and g ◦ 1A = g

whenever the left-hand side makes sense. 1A is called the identity on A.
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This completes the description of our situation. If objects, morphisms,
composition and unit objects are specified and the above minimal requirements
(〈A,B〉 finite set, identity and associativity of ◦) are satisfied, then we say that
we have an instance of a category. (We specified the notion of category in finite
set theory. We make no attempts to generalize to infinity; so we have countably
many objects and morphisms but between any two objects only finitely many
morphisms. This is a paper on finite combinatorics.)

Categories are abundant and so is the literature about them (we want to
single out three books : MacLane’s classical modern [45], very elementary but
rigorous [41], and [61] which is closest to our combinatorial setting).

Here are some examples:
SET = category of all finite sets and all mappings between them;
ORD = category of all finite linearly ordered sets and all monotone map-

pings between them (this is also called simplicial category);
GRA = category of all finite graphs and all their homomorphisms;
(X,≤) = the category induced by any partially ordered set : x −→ y if

and only if x ≤ y; in this category 〈x, y〉 consists of at most one morphism –
such a category is called thin;

Any group (X, ·, e) can be considered as a category with one object X
only; morphisms X −→ X are labeled by elements of group with composition
defined as multiplication;

Any monoid (X, ·, 1) can be treated similarly as a category with one object,
(monoid is a semigroup with unit element).

As indicated by these examples, category theory is a minimal calculus
common to most mathematical theories. It is a (rather schematic) world in
which most mathematics (and mathematicians) live.

We mostly use categories and category theory to motivate and to formulate
easily general things which otherwise would be hard to describe. We usually
do not use calculus of categories to prove a particular statement. But there
are exceptions. Even in combinatorics there are exceptions and some of them
we shall describe in this chapter.

We need to compare categories. This is straightforward (by now; however
it took some time before proper concepts were isolated):

Let K, L be categories. A mapping F which maps

F : OBJECTS(K) −→ OBJECTS(L),

F : MORPHISMS(K) −→MORPHISMS(L)

is called a functor provided the following hold:
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(i) r(F (f)) = F (r(f));

(ii) d(F (f)) = F (d(f));

(iii) F (f) ◦ F (f) = F (f ◦ g) (more exactly, we should write E(f)◦LF (g) =
F (f◦Kg));

(iv) F (1A) = 1F (A)

for all morphisms f , g (provided that the right-hand side in (iii) is defined).
We write F : K → L.

We say that a functor F is faithful provided that it is one-to-one on every
set 〈A,B〉 of morphisms in K. We say that a functor F is embedding provided
F is one-to-one (both on OBJECTS(K) and MORPHISMS(K)) and

{F (f); f ∈ 〈A,B〉} = 〈F (A), F (B)〉.

Finally, we say that functor F : K −→ L is an embedding of K into L or
that F is a representation of K in L.

The notion of embedding or representation should capture the following
results:

Theorem 2.1 [14]. Every group is isomorphic to the group of automor-
phisms of a graph.

Theorem 2.2 [20]. Every monoid is isomorphic to the monoid endomor-
phisms of a graph.

Theorem 2.3 [25]. Every finite category can be represented by balanced
directed graphs.

(An oriented graph is balanced if any cycle in it contains the same number
of forwarding and backwarding arcs.)

All these theorems are consequences of a much more general approach
which we shall now outline.

2.2. Concreteness - a Combinatorial Obstacle

The above results indicate that somehow everything is true. There are
embeddings of categories in all possible directions. It seems that we can rep-
resent every category K by any other L if only L is sufficiently “non-trivial”
(however there are exceptions, bounded degree, bounded genus, orientation;
see [1, 2, 26]. The situation seems to be reminiscent to the theory of NP -
completeness, where the initial joy (of being able to “narrow” P -NP gap)
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turned to realistic scepticism (that virtualy “everything” seems to be NP -
complete).

But for representation of categories there is one striking difference. There
is a non-trivial necessary condition when a category is representable, say, by
the category GRA of all finite graphs and all their homomorphisms. This is
related to the following notion:

Definition 1. A category K is said to be concrete if there is a faithful
functor F : K −→ SET .

Most categories (“from real life”) are concrete as the morphism between
their objects represent (special) mappings and one mapping usually does not
correspond to two different morphisms(which corresponds to the faithfulness
of the functor).

To be more precise, for example, the following functor F : GRA → SET
is faithful and thus GRA is a concrete category:

F (G) = V (G), F (f) = f.

But the situation is different and less easy if the morphisms in a category
K are “abstract arrows”. Then we have to find sets to represent objects and
assign to morphisms mappings between corresponding sets in such a way that
the composition in K becomes a simple composition of mappings. Consider,
for example, a poset (X,≤). If we view (X,≤) as a category (as we did above;
it was a thin category), then what we want to do is to replace each x ∈ X
by a set Mx and each pair x ≤ y by a mapping fxy : Mx −→ My so that
composition holds : fyz ◦ fxy = fxz.

Having said that, it is easy to guess such a representation. We can put

Mx = {y; y ≤ x}

and fxy(z) = z for z ≤ x (or,equivalently, z ∈Mx).
Similarily, to prove that a given group (or a given monoid), if considered

as a (single object) category, is concrete, amounts to finding a representation
of a group (or monoid) by mappings. This is well-known and, for example,
left translations turn every group (or monoid) to an isomorphic permutation
group (or monoid of mappings) and that is what we wanted to prove. After
realizing this, perhaps the following question is justified:

Problem 1. Is every category concrete?

This nice problem took a full decade to solve. A nice combinatorics is
involved and curiously enough this result misses most monographies on theory
of categories. After all, this result perhaps belongs to a more combinatorial
context.



390 Jaroslav Nešetřil

Figure 2 Figure 3

The solution (and indeed the problem itself) started with John Isbell [34]
when he discovered that the answer to the above problem is negative:

If a category K is concrete, then it has to satisfy the following Isbell’s
condition which we are going to explain now:

For every two objects A, B of K, denote by L(A,B) the set of all pairs
(a, b) of morphisms of K which satisfy: d(a) = d(b) and r(a) = A, r(b) = B;
see Figure 2.

On the set L(A,B), define an equivalence ∼ as follows :
(a, b) ∼ (a′, b′) if and only if for every pair (f, g) of morphisms d(f) = A,

d(g) = B, r(f) = r(g), we have f ◦ a = g ◦ b⇔ f ◦ a′ = g ◦ b′.
In other words, (a, b) ∼ (a′, b′) if no pair of outcoming morphisms (f, g)

distinguishes (a, b) from (a′, b′); see Figure 3.
(It is easy to see that ∼ is an equivalence.)
Now we have

Theorem 2.4 (Isbell [34]). If K is a concrete category, then for any
pair A,B of objects of K the equivalence ∼ has only finitely many classes.

Proof. Let F : K → SET be a faithful functor. So let K be a concrete
category. Then we can identify K with its F - image in SET and thus we may
assume without loss of generality that K is a category of (some) sets and of
(some) mappings between them.

To any pair (a, b) of mappings with d(a) = d(b) = C, r(a) = A, r(b) = B,
we associate the following relation R(a, b) on A ∪B (A,B are sets now):

R(a, b) = {(a(u), b(u));u ∈ C}.

Assume now that R(a, b) = R(a′, b′) and that f ◦a = g ◦ b. Then obviously
f ◦a′ = g◦b′ (as if f(a(u)) = g(b(u)), then also f(a′(u′)) = g(b′(u′)) for some u′
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satisfying (a(u), b(u)) = (a′(u′), b′(u′))). Thus we have that R(a, b) = R(a′, b′)
implies (a, b) ∼ (a′, b′).

But R(a, b) ⊆ A×B and thus the number of possible equivalence classes
of ∼ on L(A,B) is ≤ 2|A||B| – a large yet finite number.

Thus there are additional structural combinatorial conditions for concrete
categories. This we believe is a surprising fact. Even if it is not surprising, it
certainly is the only such additional conditions. However it took a long time
(a full decade) before coresponding theorems were proved. These results we
shall introduce now. First we complete the solution of Problem 1:

Theorem 2.5. For a category K, the following two statements are equiv-
alent:

(1) K is concrete;

(2) K satisfies Isbell’s Condition for every pair of its objects.

This theorem was proved by J. Vinárek [63] (extending an earlier result
of P. Freyd [13]) . We proved (1) ⇒ (2) only. (2) ⇒ (1) is a bit harder. In
a sense it may be viewed as an on-line version of the proof of the following
special case. In this proof we also introduce an important construction.

Theorem 2.6. Every finite category K is concrete.

Proof. We are given finitely many objects A1, . . . , An together with finitely
many morphisms f : Ai −→ Aj, 1 ≤ i, j ≤ n. Let us define a functor which we
will denote by symbol 〈 〉 :

For object Ai, we put 〈Ai〉 =
⋃n
k=1〈Ak, Ai〉; for morphism f : Ai −→ Aj,

we put 〈f〉(ϕ) = f ◦ ϕ (for any morphism ϕ with r(ϕ) = Ai).
This perhaps needs some explanation which is contained in the following

Figure 4:

Figure 4
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We have 〈1A〉 = 1〈A〉 and 〈f ◦K g〉 = 〈f〉 ◦ 〈g〉.
Moreover, if f and g are different morphisms in 〈Ai, Aj〉 of K, then f ◦1Ai =

f 6= g = g ◦1Ai and thus 〈f〉 6= 〈g〉 and 〈 〉 is a faithful functor into SET. Thus
K is concrete.

The functor 〈 〉 introduced in the proof of the previous theorem is actually
one-to-one and it is called Cayley-MacLane Representation from reason which
will be evident in the next section.

Remark 1. Observe how close the functor 〈 〉 is to the Lovász vector 〈A〉.
To support (and not to confuse) this connection, we decided to use the same
symbol in two different (yet related) meanings (in two different parts of this
paper).

2.3. Representations
Thus we know by Theorem 2.6 (and 2.5) that all finite categories are

concrete. Now we shall generalize this result (which gives the existence of a
faithful functor) to the following results (which give embedding):

Theorem 2.7. Any finite category is representable by graphs. Explicitly,
for every finite category K, there exists an embedding F : K −→ GRA.

This theorem was proved in [21] (see, e.g., [61, 25]) and it extends repre-
sentations of groups and monoids which were stated earlier as Theorems 2.1
and 2.2.

The proof is a combination of two (by now) standard techniques: we first
reduce the problem to relational systems (i.e., colored graphs) and then use a
replacement trick to reduce colored graphs to graphs.

2.3.1. Relational Systems Instead of Graphs

Definition 2. An m-relational system S of order r is a pair (X; (Ri; i =
1, . . . ,m)), where Ri ⊆ X ×X.

(Alternatively, an m-relational system is a directed graph with arc colored
by m distinct colors.)

Given relational systems S = (X, (Ri; i = 1, . . . ,m)) and S′ = (X ′, ((R′i; i =
1, . . . ,m)), a homomorphism f : S −→ S′ is a mapping f : X −→ X ′ which
satisfies for every i = 1, . . . ,m:

(x, y) ∈ Ri =⇒ (f(x), f(y)) ∈ R′i.

We shall denote by REL(m) the category of all finite m-relational systems
and all homomorphisms between them.
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Somehow it is easier to represent categories by relational systems. For
example, we have the following:

Theorem 2.8. Every finite category can be represented for some m by
REL(m). Explicitly, for every finite category K, there exists m and an em-
bedding F : K −→ REL(m).

Proof. LetK have objects a = {A1, . . . , An} and morphismsm = {f1, . . . , fm}.
Let us define functor F : K −→ SET as follow:

F (A) = 〈A〉,

F (f)(ϕ) = f ◦ ϕ.

(This is again Cayley-MacLane functor, sometimes called hom-functor.)
On each set 〈A〉, define relations RA

1 , . . . , R
A
m as follows:

(ϕ,ϕ′) ∈ Ri if and only if ϕ′ = ϕ ◦ fi.

(This is a generalization of the right translation from groups to categories.)
We shall prove that the above functor F is in fact an embedding K −→

REL(m).
For this, it clearly suffices to prove:

(1) For every fi : A −→ A′, the mapping F (fi) is a homomorphism (in
REL(m))

(〈A〉, (RA
i )) −→ (〈A′〉, (RA

′

i )).

(2) For every hommorphism

g : (〈A〉, (RAi )) −→ (〈A′〉, (RA′

i )),

there exists fi such that g = F (fi).

However (1) is clear (as if (ϕ,ϕ′) ∈ RA
j then ϕ′ = ϕ ◦ fj and F (fi)(ϕ) =

fi ◦ ϕ, F (fi)(ϕ′) = fi ◦ ϕ′ = fi ◦ ϕ ◦ fj and thus (F (fi)(ϕ), F (fi)(ϕ′) ∈ RA
′

j ).
For (2), we define f by f = g(1A) : A −→ A′. It is routine to check that

F (f) = g.

2.3.2. Arrow Construction (Amalgamation Technique)

The construction which we are going to introduce has many variants and
many analogies in virtually any type of structures: algebraical, geometrical
and combinatorial; see book [61] for many examples. But the nature of all
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these applications is similar, in many cases the same. So we can restrict
ourselves to a simple illustrative example:

A graph I with two distinquished vertices a, b is called an indicator.
Given an oriented graph G = (V,E) and an indicator (I, a, b), we define

graph G ∗ (I, a, b) = (W,F ) as follows:

W = (E × V (I))/ ∼,

where the equivalence ∼ is generated by the following pairs:

((x, y), a) ∼ (x, y′), a),

((x, y), b) ∼ (x′, y), b),

((x, y), b) ∼ ((y, z), a).

Thus the vertices of G are equivalence classes of the equivalence ∼. For a
pair (e, x) ∈ E × V (I), its equivalence class will be denoted by [e, x]. We put
{[e, x], [e′, x′]} ∈ F ⇐⇒ e = e′ and {x, x′} ∈ E(I).

This construction, which is called an arrow construction, is schematically
indicated on Figure 5.

From a homomorphism point of view, the arrow construction has many
convenient properties and, in many instances, one can guarantee that some
properties of G ∗ (I, a, b) depend on the indicator (I, a, b) only. Particularly,
one can guarantee that for every oriented graph G, in many cases the following
holds:

G −→ G′ if and only if G ∗ (I, a, b) −→ G′ ∗ (I, a, b).

Figure 5
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Figure 6

Figure 7

Even more so: for every homomorphism g : G ∗ (I, a, b) −→ G′ ∗ (I, a, b),
there is a homomorphism f : G −→ G′ such that

g([(u, v), x] = ([f(u), f(v)], x).

An indicator satisfying this property is called a rigid indicator.
Examples of rigid indicators are easy to find. For example, oriented graph

I1 on Figure 6 is a rigid oriented indicator and also undirected graph I2 on
Figure 7 is an example of rigid indicator.

Let us prove this at least for the second graph I = I2 (see [22, 25]). The
graph I has the following properties:

( i ) χ(I) = 4 and χ(I ′) < 4 for every vertex deleted subgraph I ′ of I.

(ii) Every vertex x of I belongs to a triangle; moreover, for every two ver-
tices x and y, there exists a path x = x0, x1, x2, . . . , xn = y such that
{xi−1, xi, xi+1} forms a triangle in I for every i.

(iii) Identity is the only automorphism of I (such graphs are called asymmet-
ric).

Combining (i) and (iii), we get that the only homomorphism I −→ I is
the identity. Such graph is called a rigid graph. Moreover, this together with
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(ii) implies that for every oriented graph G, the graph G ∗ (I, a, b) has the
following property:

For every homomorphism f : I → G∗(I, a, b), there exists an edge e ∈ E(G)
such that f(x) = [e, x] for every x ∈ V (I).

Now this clearly implies that I is a rigid indicator.
Combining the above definition with the rigidity of the (symmetric) indi-

cator I, we just constructed an embedding F of the category REL = REL(1)
of all finite relations into the category GRA of all finite undirected graphs:

Given an oriented graph G, we put F (G) = G ∗ (I, a, b), and for a homo-
morphism f : G→ G′, we put F (f)([u, v], x) = (f(u), f(v)], x).

Observe further that many combinatorial properties of graphs G ∗ (I, a, b)
are determined for any graph G:

(1) If I has a k-coloring so that the vertices a and b get the same color, then
G ∗ (I, a, b) is k-colorable too.

(2) If I has maximal clique size k and a, b 6∈ E(I), then G ∗ (I, a, b) has
maximal clique size k.

(3) If I has girth k and the distance of vertices a and b is ≥ 2k, then
G ∗ (I, a, b) has girth k.

Thus in fact we embedded the category REL into a category of 4-chromatic
graphs with clique size 3. Or we could also say that we reduced relations and
their homomorphisms to homomorphisms of undirected 4-chromatic graphs
with clique size 3. This leads to the study of rigid graphs and rigid indicators
(more examples of rigid graphs are given, e.g., in [8, 25, 53, 40]).

The situation is reminiscent of problems in Theoretical Computer Science,
where we often use such techniques to reduce one problem to another while
preserving a certain particular property.

Recall for example polynomial reductions which lead toNP -complete (and,
say, isomorphism complete) problems. (In a sense, the monograph [61] resem-
bles [17] in that it provides a catalogue of structures and reductions between
them.)

Let us return to our main theme: We do not have to use one indicator
only. Suppose that (I1, a1, b1), (I2, a2, b2), . . . , (Im, am, bm) are indicators. Let
(X, (Ri; i = 1, . . . ,m)) be an m-relational system. Let (X, (Ri; i = 1, . . . , r)) ∗
((Ii, ai, bi); i = 1, . . . ,m) (or shortly (X, (Ri)) ∗ (Ii, ai, bi)) denote the variant
of arrow construction where we replace edge e ∈ Ri by a copy of indicator
(Ii, ai, bi). It is easy to modify the arrow construction (we use all the notation
used above in the definition of arrow construction G ∗ (I, a, b)):

(X, (Ri)) ∗ (Ii, ai, bi) = (W,F ), where W =
⋃r

i=1
(Ri × V (Ii))/ ∼
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with the equivalence ∼ generated by the pairs

((x, y), ai) ∼ ((x, y′), aj) where (x, y) ∈ Ri, (x, y′) ∈ Rj,

((x, y), bi) ∼ (x′, y), bj) where (x, y) ∈ Ri, (x′, y) ∈ Rj,

(x, y), bi) = ((y, z), aj) where (x, y) ∈ Ri, (y, z) ∈ Rj,

(we could also briefly say that ((x, y), ai) ∼ ((x, y′), aj) whenever these expres-
sions belong to W ), and

F = {{[e, x], [e′, x′]}; e = e′ ∈ Ri, {x, x′} ∈ E(Ii)}.

We continue to proceed analogously to the above:
We say that the set of indicators (I1, a1, b1), . . . , (Im, am, bm) is rigid if for

every m-relational system (X, (Ri)) and for every i, every homomorphism

f : Ii −→ (X, (Ri)) ∗ (Ii, ai, bi)

has the form f(x) = [e, x] for some pair e ∈ Ri.
Examples of such indicators are easy to obtain. For example, if we use the

above oriented indicator I, we can get set Ii by enlarging the length of the
cycle. See schematic Figure 8.

It is routine to prove that Ii have these properties. Note that an oriented
rigid indicator (I, a, b) need not have a cycle and that the vertices a and b may
be on the same level. This implies that the arrow construction G ∗ (I, a, b) is
a balanced graph for every graph G. An example of such a graph is given on
the following Figure 9.

Combining the above construction together with Theorem 12, we finally
obtain Theorems 2.1, 2.2, and 2.3. More concretely, we also proved:

Figure 8
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Figure 9

Theorem 2.9. Every finite category K is representable by oriented bal-
anced graphs of a given girth.

2.4. Poset of Homomorphisms - Independent Families

We can consider the finite graphs with the relation ≤ induced by the
existence of a homomorphism:

G ≤ H if and only if G→ H.(4)

The relation ≤ is a quasiorder on the set of all graphs. However, we
can think of this set as a partially ordered set if we restrict our attention to
minimal graphs which are called cores: A graph G is called a core [23] if every
homomorphism f : G → G is an authomorphism. One can prove easily that
for every graph G there exists, up to isomorphism, a unique subgraph G′ such
that G′ is a core and G → G′. The graph G′ is called the core of G. Not
suprisingly, most graphs are cores (and it is NP -complete to decide whether
a given graph is a core or not).

We denote this poset by C. C is a countable poset which is very rich. In
fact, we have the following:

Theorem 2.10. C is a universal countable poset. Explicitly, every count-
able poset is isomorphic to a subposet of C.

This is a non-trivial result due to Z. Hedrĺın and L. Kučera; see [61]. No
simple proof of this is presently known.

Note that for finite posets this is a much easier result which follows from
the previous section. For finite posets one can also prove stronger results, for
example, the following result proved in [58].

Theorem 2.11. Every finite poset may be represented by homomorphisms
between finite oriented paths.
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An extension of this result to countable posets is presently unknown and,
as proved in [58], this is equivalent to the on-line representability of finite
posets.

Some particular cases of the universality property of C proved to be more
useful than others and they were studied intensively. Two of such examples –
independency and density – are subjects of this and of the following section.

We say that a set {G1, G2, · · · , Gn, · · ·} of graphs (finite or infinite) is inde-
pendent if for no two graphs Gi, Gj, i 6= j, there is a homomorphism Gi → Gj.
Recall that a graph G is called rigid if the identity is the only homomor-
phism G → G. We say that a set {G1, G2, · · · , Gn, · · ·} of graphs (finite or
infinite) is mutually rigid if for no two graphs Gi, Gj there is a non-identical
homomorphism Gi → Gj.

We used the mutually rigid families in the above proof of Theorem 2.3.
It is easy to construct an exponentially large set of mutually rigid graphs.

This may be proved as follows:
Let G = (V,E) be an undirected rigid graph with m edges. Let G1, · · · , GM

be all the orientations of the graph G (i.e., M = 2m). This set {G1, . . . , GM}
is mutually rigid. This is easy to see as every homomorphism f : Gi → Gj is
also a homomorphism f : G→ G, and hence necessarily f is the identity and
thus Gi is rigid and i = j.

Consequently, we have exponentially many mutually rigid oriented graphs.
If we want to have undirected graphs with the same property, we can con-
sider the set {G1 ∗ (I, a, b), · · · , GM ∗ (I, a, b)} for an undirected rigid indicator
(I, a, b).

However, this is not the end of the story and we can ask what the maximal
size of a set of mutually rigid graphs on a given set X (of vertices) is. This
clearly depends on the size of the set X only and thus denote by mr(k) the
maximal size of the set of mutually rigid graphs on a set with k points. We
have the following two basic results:

Theorem 2.12. (Mutually Rigid Families on Finite Sets). mr(k) =( (k2)
b(k2)/2c

)
(1 + o(1)).

This is a result on finite combinatorics. Let us make an exception at this
moment and state an important infinite result related to our main theme.

Theorem 2.13. (Mutually Rigid Families on Infinite Sets). mr(k) =
2k for every infinite k.

The first result is due to Koubek and Rödl [40] and uses probabilistic tools.
The second result will follow easily again by arrow construction calculus; see
also [52]. However, we have to use the following [64]:
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Theorem 2.14. On every set, there exists a rigid relation.

Proof of Theorem 2.13. Let X be a set of cardinality k and let (X,R) be
a rigid relation. Using an undirected rigid indicator, we get a rigid undirected
graph G again on the set X. Considering all possible 2k orientations of G, we
obtain 2k mutually rigid relations on the set X, and if we want, we can apply
again (the same) undirected rigid indicator to obtain 2k mutually rigid graphs
on the set X.

Particularly, there is a continuum of countable graphs which are mutually
rigid. This useful fact is sometimes referred to as Ulam’s problem; see [61].

Let us return to finite sets. We note that the above techniques have some
further corollaries and for example one can construct an infinite independent
set of finite graphs Gi which have the following properties:

1. each of the graphs Gi is planar;

2. each of the graphs Gi has all vertices ≤ 3.

This should be compared with results mentioned in Section 2.3, where we
stated that neither planar, and more generally graphs with bounded genus, nor
bounded degree graphs fail to represent all finite categories-even finite groups
and finite monoids. See also the problems stated in the following section and
in Section 3.5.4.

2.5. Density

Let us continue our study of the properties of the poset C induced by
all finite graphs and the existence of homomorphisms between them. As we
have seen, this is a very rich poset and in a sense universal poset (compare
Theorems 2.2 and 2.10).

Here we are going to proceed in yet another direction. As we are going
to discuss order-theoretic notions, we shall denote graphs by capital letters
A,B, . . ..

The key to this section is the following definition:

Definition 3. A pair (A,B) of graphs is said to be a gap in C if A < B
and there is no graph C such that A < C < B. Similarly, for a subset K of C,
a pair (A,B) of graphs of K is said to be a gap in K if A < B and there is no
graph C ∈ K such that A < C < B.

The Density Problem for a class K is the problem of describing all gaps
of the class K. This is a challenging problem even in the simplest case of all
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undirected graphs. This question has been asked first by [47] in the context
of the structure properties of classes of languages and grammar forms. The
problem has been solved by E. Welzl [66]:

Theorem 2.15 (Density Theorem for Undirected Graphs). The
pairs (K0,K1) and (K1,K2) are the only gaps for the class of all undirected
graphs. Explicitly, given undirected graphs G1, G2 with G1 < G2, G1 6= K0 and
G1 6= K1, there is a graph G satisfying G1 < G < G2.

In this survey, we give three proofs of the Density Theorem 2.15 which
were recently found and which put this result in a new context.

2.5.1. Probabilistic Proof of Undirected Graph Density

The proof is based on the following Sparse Incomparability Lemma first
isolated in [53]:

Lemma 1. Let G,H be fixed graphs, H non-bipartite, and ` a positive
integer. Assume G → H and H 6→ G. Then there exists a graph G′ with the
following properties:

( i ) G′ → H,
(ii) G′ 6→ G 6→ G′, H 6→ G′,
(iii) G′ has girth > `.

See Figure 10.
This of course strengthens the classical Erdős result [11] on high chromatic

graphs with given girth (say, for H = Kk and G = Kk−1). Sparse Incompara-
bility Lemma seems to be a useful tool and [53] originally applied this result
to graphs without given symmetries and endomorphisms (the so called rigid
graphs).

Figure 10
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First, we show that Density Theorem of Undirected Graphs follows easily
from the Sparse Incomparability Lemma:

Proof (first proof of 2.15). Let G1 < G2 be given. Apply Sparse Incompa-
rability Lemma for ` = |V (G2)|, H = G2, and G = G1 to get a graph G′ with
stated properties. Put G = G′ ∪ G1. Then G has all the desired properties:
G1 → G obviously and G→ G2 by (i) of Sparse Incomparability Lemma. On
the other hand, G2 6→ G by girth and G 6→ G1 by (ii).

An interested reader may observe that we did not use the full strength of
condition (ii) of Sparse Incomparability Lemma. We used only the fact that
H was non-bipartite while G′ contained no short odd cycles. This is much
easier to guarantee and we shall return to this in the next section.

Proof of Sparse Incomparability Lemma. Let graphs G,H be given, and let
` be a given positive integer. Let t denote the number of vertices of the graph
G and, without loss of generality, let the set of vertices of H be {1, 2, . . . , k}.
For a (large) positive integer n, consider pairwise disjoint sets V1, V2, . . . , Vk,
each of size n.

Let G be a random graph with vertex set V = ∪ki=1Ai, where the edges are
chosen independently from the family {{x, y}; x ∈ Vi, y ∈ Vj, {i, j} ∈ E(H)},
each with the probability p = nδ−1, where 0 < δ < 1/`.

A set A ⊂ V is said to be large if there are i, j, 1 ≤ i < j ≤ k, such that
|A ∩ Vi| ≥ n/t and also |A ∩ Vj| ≥ n/t. For evey large set A, we consider
all such pairs {i, j} and we call them good pairs of A. For a large set A,
denote by |G/A| the minimum number of edges of G which lie in the set
{{x, y}; x ∈ Vi, y ∈ Vj} for a good pair of A.

We first estimate probability

α = Prob [A large implies |G/A| ≥ n].

We have

1− α ≤
∑
Alarge

Prob[|G/A|] < n] ≤ 2kn ·
((kn

2

)
n

)
· (1− p)n

2

r2 .

Now bounding very roughly with((kn
2

)
n

)
≤
(
k2n2

n

)
≤ k2nn2n < ecn log2 n

and
(1− p)n

2

t2 ≤ e−pn
2

t2 ,
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we obtain
1− α < ecn log2 n−c

′n1+δ

for some positive constants c and c′ which are independent on n.
Thus we get Prob[A large implies |G/A| ≥ n] = 1− o(1).
On the other hand if we denote by c(G) the number of edges contained in

all cycles of length 3, 4, . . . , ` in G, then by the linearity of expected value we
have

E(c(G)) ≤ 3!
kn

3
p3 + 4!

kn

4
p4 + . . .+ `!

kn

`
p` = ` · k

ln`nδ`

n`
< nδ` = o(n).

Thus there exists a graph G′′ (an instance of the random graph G) such that

( i ) if i, j is a good pair of a large set A, then G′′ has at least n edges in the
set {{x, y}; x ∈ Vi, y ∈ Vj},

(ii) there exist n− 1 edges e1, e2, . . . , en−1 such that the graph G′ which we
obtain from G′′ by deleting edges e1, e2, ..., en−1 has girth > `.

We prove that the graph G′ satisfies the conditions of Sparse Incompara-
bility Lemma. Properties (i) and (iii) are evident from the construction of G′.
To prove (ii), let us suppose that f is a homomorphism G′ → G. Define a
mapping g : V (H) → V (G) by g(i) = y if |f−1(y) ∩ Vi| ≥ n/t (we could call
g a majority mapping). Clearly, for every i one can choose g(i) (if there are
more possibilities we choose one arbitrarily). It follows from the properties (i)
and (ii) of graph G′ that the majority mapping g is a homomorphism H → G,
which is a final contradiction.

This is the only non-arrow which one has to prove for (ii) (the remaining
non-arrows follow from the girth of graph G′).

2.5.2. Constructive Proof of Undirected Graph Density via
Products

This proof is due to M. Perles and J. Nešetřil (see, e.g., [49]; the proof is
implicit in [53]) and is particularly simple. It uses product and the existence
of high chromatic graphs without short odd cycles.

Proof (second proof of Theorem 2.15). Let G1 and G2 be given undirected
graphs, let f : G1 → G2 be a homomorphism, and suppose there is no ho-
momorphism G2 → G1. As this pair is not equivalent to the gap (K1,K2),
at least one component of the graph G2 has chromatic number greater than
2. Also, at least one component of G2 fails to be homomorphic to G1, and
this component may be assumed to be non-bipartite; let it contain an odd
cycle of length k. Now choose a graph H with the following properties: H
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contains no odd cycle of length k or less, and the chromatic number of H is
greater than nn2

1 , where n1 and n2 denote the number of vertices of the graphs
G1 and G2, respectively. Such a graph exists by the celebrated theorem of
Erdős [11], but the existence also follows much more easily and one can give
an easy construction of such graphs (shift graphs).

Now let G = G1 ∪ (H × G2). Here × denotes the direct product of two
graphs and ∪ means the disjoint union. We shall prove that G has the desired
properties. Obviously G1 → G, and G→ G2 follows as the second projection
of H × G2 is a homomorphism into G2. On the other hand, there is no
homomorphism from G2 into G, as homomorphisms preserve odd cycles and
they cannot increase the length of the shortest of them. Thus it suffices to
prove that there is no homomorphism G→ G1. Let us suppose for producing
the contradiction that there is a homomorphism f : H × G2 → G1. Thus for
any vertex x of H we have an induced mapping fx : V (G2)→ V (G1) defined
by fx(y) = f(x, y). (This mapping need not be a homomorphism.) As there
are at most nn2

1 such mappings, there are vertices x and x′ forming an edge of
H such that the mappings fx and f ′x are identically equal, say, to g. However,
in this case g is a homomorphism of G2 into G1, contrary to our assumption.

Note that the construction of graph G given in the proof can be used to
prove that Sparse Incomparability Lemma holds for large odd girth (and in
this setting this proof is implicit in [53]).

This is a good opportunity to review yet another construction:
Given two graphs G and H, one can define G power of H, denoted by HG,

as the following graph: V (HG) = {f : V (G)→ V (H)} and a pair (f, g) forms
an edge if (f(x), g(y)) ∈ E(H) for every edge (x, y) ∈ E(G). (We define the
G power of H by the same formula for both undirected or directed graphs.)

This construction was isolated in the graph theoretic concept in [42]; how-
ever this is also a standard category theory construction (where it is called
“map object” or exponentiation; see, e.g., [41]) and this led to the notion of
cartesian closed category. The power graph construction plays an important
role in the study of Hedetniemi conjecture [68].

The following is the crucial property which we use (and which in fact
defines the power construction):

For every graph K, K → HG holds if and only if K ×G→ H.

This is easy to see: given f : K → HG, define g : K × G → H by
g(x, y) = f(x)(y). Conversely, given g, we may define f by the same formula.
One can easily check that f is a homomorphism K → HG if and only if g is a
homomorphism K ×G→ H.

Thus in the above proof, we have H × G2 → G if and only if H → G1
G2 .
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Thus we may assume that the chromatic number of H is greater than the
chromatic number of G1

G2 . As G2 6→ G1, there are no loops in G1
G2 and it is

also clear that the chromatic number of G1
G2 is at most the number of vertices

of G1
G2 . (However we do not try to optimize at this point.)

Neither of these proofs solves the density problem for oriented graphs,
which remained the main open problem for several years. Until recently, the
best result in this direction was [58], where all the gaps were characterized
for the class of all oriented paths. This result may look modest on the first
glance, but even the following problem is presently open:

Problem 2 (Tree Problem). Describe all the gaps of finite oriented
trees.

This problem is particularly interesting in view of the gap characterization
which we state below as Theorem 3.12.

But even for classes of undirected graphs, the density presents challenging
problems. One such problem (due to Welzl [66] on the circulants) was recently
solved by C. Tardif [62].

Let us list two more problems which probably call for a new method.

Problem 3. Describe all gaps for the class of all (undirected) planar
graphs.

Problem 4. Describe all gaps for the class of all undirected graphs with
maximal degree bounded by a fixed number k (i.e., fork-bounded graphs).

In both cases, the only gap presently known is the trivial (K1,K2) gap.

3. Paradoxes of Complexity

We consider here the following decision problem called H-coloring problem:

Problem 5.
Instance: A graph G.
Question: Does there exist a homomophism G −→ H?

This problem covers many concrete problems which were and are studied:

( i ) For Kk, we get a k-coloring problem.

(ii) For graphs Gd
k, we get circular chromatic numbers; see e.g. [69].

(iii) For Kneser graphs K
(n
k

)
, we get multicoloring.
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Further examples include the so-called T-colorings; see, e.g., [69, 60, 7].
Equivalently, the H-coloring problem may be considered as a decision prob-

lem related to the following class of graphs:

−→ H = {G;G −→ H}.

Such classes (sometimes denoted by CH) are called color classes and their
structure is one of the leitmotifs of this paper. For example, in the previous
section we proved that, with the unique exception, the partial ordering defined
by the inclusion of color classes is dense (for undirected graphs). We also know
that we can restrict ourselves to those color classes −→ H where H is a core.

3.1. Hard Cases

Here we deal with complexity issues. The situation is well-understood for
complete graphs: For any fixed k ≥ 3, the Kk-coloring problem (which is
equivalent to the deciding of χ(G) ≤ k) is NP -complete. On the other hand
K1 - and K2-coloring problems are easy. Thus, in the undirected case, we will
always assume that the graph H is not bipartite.

Some other problems are easy to solve. For example, if H = C5, then
we can consider the arrow construction which we introduced in the previous
section :

Let the indication (I, a, b) be path of length 3 with ith end vertices called a
and b. It is then easy to prove that for any undirected graph G, the following
two statements are equivalent:

( i ) G −→ K5;

(ii) G ∗ (I, a, b) −→ C5.

(In fact, in this case G∗ (I, a, b) takes a very simple form : We subdivide every
edge by two points.)

This example is not isolated (the same trick may be used, e.g., for any odd
cycle). Using similar indicators (and subindicators, and edge-subindicators),
the following has been proved by Hell and Nešetřil in 1987 [24]:

Theorem 3.1. For a graph H, the following two statements are equivalent:

1) H is non-bipartite;

2) H-coloring problem is NP-complete.

This theorem (and its proof) have some particular features, which we are
now going to explain:
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(a) The result claimed by the theorem is expected. In fact, the result has
been conjectured in [47] and elsewhere, but it took nearly 10 years before
the conjecture had been verified.

(b) Though the statement is expected, the proof is unexpected.
What one would expect in this situation?
Well, we should first prove that C2k+1-coloring is NP -complete (which
is easy and in fact we sketched this above) and then we would “observe”
that the problem is hereditary:
If H-coloring problem is NP -complete and H ′ ⊇ H, then also H ′-
coloring problem is NP -complete.

This statement may sound plausible but there is no known direct proof
of this statement. It is certainly a true statement (by virtue of Theorem
3.1) but the only known proof is again via the proof of Theorem 3.1. In
fact, there may be here more than meets the eye: For oriented graphs
the analogy of this statement does not hold (Gutjahr was the first to
give a counterexample) .

(c) Having said that, we should point out that (as it stands) Theorem 3.1
fails to be true. We have to assume that all graphs are undirected. In
this context, this is not a technical assumption but a rather deep and
profound restriction:

One can construct easily an orientation ~H of bipartite graph H such
that ~H-coloring problem is NP -complete. Even more so, one can con-
struct a balanced oriented graph H for which H-coloring problem is
NP -complete; an oriented graph is called balanced if every cycle has the
same number of forwarding and backwarding arcs.

This can be done using again the indicator technique: Let (I, a, b) be
the indicator which is a path oriented in such a way that

1) I has an automorphism which exchanges a and b, and
2) every homomorphism G ∗ (I, a, b) −→ H ∗ (I, a, b) induces a homo-

morphism G −→ H (G, H are undirected graphs).

Once these conditions are spelled out, it is easy to satisfy them. In fact,
an example of such an indicator is depicted in Figure 9 above.

But then as stated, G −→ H if and only if

G ∗ (I, a, b) −→ H ∗ (I, a, b),

and thus, e.g., K3 ∗ (I, a, b) is an NP -complete problem.
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Now one can go further and in this way one can omit in H all cycles (not
necessarily oriented) of short lengths. But it is perhaps a bit surprising
that one can omit all cycles. Namely, one has the following proved in
[18] and [28]:

Theorem 3.2. There are oriented trees T (i.e., T is an orientation of
an undirected tree) such that the T -coloring problem is NP-complete.

In [18], such a tree with 258 vertices has been constructed while in [28]
a tree T0 with 45 vertices with the same property has been found.

We see that T0 has a very simple structure (and it is called triad in
[28, 27]). We should remark that 45 is not such a large number here. T0

has to be a core and this already implies that T0 has at least 15 vertices
and this is just a very first estimate.

(d) Thus for oriented graphs, we face a much more complicated situation.
Even for special classes, very special classes indeed. For example, the
following are presently open problems:

Problem 6. Characterize oriented trees T for which T-coloring problem
is NP-complete.

(This is open even for triads. Triads are in a way minimal examples as
P -coloring problem is polynomial for every oriented path P ; see [29] and
the following section.)

It seems that the problem lies in “sparse” graphs. On the other side of
the spectrum, the following [3] has been shown.

Theorem 3.3. For a tournament T (i.e., T is an orientation of a
complete graph), the following two statements are equivalent:

(1) T-coloring problem is NP-complete;
(2) T contains two directed cycles.

(Bang- Jensen, Hell and MacGilliwray in fact prove the same result for
“semicomplete graphs”.)

(e) But in general the H-coloring problem seems to be a very hard problem.
Presently there is no conjecture which should capture NP -completeness
instances of H-coloring problem.
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But maybe there is even no such conjecture.

There is some evidence for this. For examples, as was shown in [15] the
H-coloring problem for relational systems (i.e., we allow more relations
on the same set) is reducible to the H-coloring problem for oriented
graphs. (Motivation to [15] research comes from data base theory.)

The following problem is posed in [15]:

Problem 7 (Dichotomy). Is it true that the H-coloring problem for
any graph H is either polynomially solvable or NP-complete?

An important line of research has been started with [10], where a charac-
terization is given of those H-coloring problems for which the counting of
the number h(G,H) of homomorphisms G→ H is a NP - hard problem.

Let us finish with that and turn to polynomially solvable instances.

3.2. Polynomial Cases and Homomorphism Dualities

Coloring problems have to be solved. But how to approach them?
A standard approach in a combinatrial setting is to look for obstacles,

that is, configurations which are obstructing our goal, in our case, the desired
homomorphism G −→ H. These obstructions (i.e., “bad green dwarfs”) can
be special subgraphs as we have it in the bipartite case: G −→ K2 if and only
if G does not contain an odd cycle.

As we are interested in the existence of homomorphism G −→ H, these
forbidden subgraphs (obstructions) are closed on homomorphism too:

If F 6−→ H and F −→ F ′, then F ′ 6−→ H.

Let us approach this more formally:
We introduced already the class −→ H = {G;G −→ H}. The comple-

mentary class {G;G 6−→ H} will be denoted by 6−→ H. As we just observed,
6−→ H is closed on homomorphism:

F ∈ (6−→ H) and F −→ F ′ imply F ′ ∈ ( 6−→ H).

Thus there exists a set F of graphs such that 6−→ H = {G;F −→ G
for some F ∈ F}. The latter class will be denoted by F −→. Explicitly,
F −→ consists of all graphs G for which there exists a graph F ∈ F which is
homomorphic to G.

Similarily, we denote by F 6−→ the class of all graphs G for which no
member F ∈ F is homomorphic to G.
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Thus we have equality
F 6−→=−→ H.(5)

We observe that for any H, there exists a family F such that (5) holds.
Simply take F = 6−→ H. But our goal is more demanding: We would like
to find a simple family F , if possible, such that the membership of the class
F −→ would be easy to prove.

Theorems which have structure as in (5) are called Homomorphism Duality
Theorems.

We shall give some examples to make the duality point of view more ex-
plicit.

A typical example is the case of oriented paths. According to [29], a
digraph G is homomorphic to an oriented path P if and only if each oriented
path P ′ homomorphic to G is also homomorphic to P . Thus in this case the
obstructions are oriented paths P ′ homomorphic to G but not to P . To make
this obstruction point of view more explicit, we restate the characterization
(for the case when P is an oriented path) as follows: A diagraph G is not
homomorphic to P if and only if there exists an oriented path P ′ which is
homomorphic to G but not to P .

In other words, we have Path Duality (proved in [29]):

Theorem 3.4. Let P be an oriented path. Then

P 6−→=−→ P,

where P is the family of all paths P ′ which are not homomorphic to P .

Another class of digraphs with a similar characterization theorem is the
class of unbalanced cycles. An unbalanced cycle is an oriented cycle in which
the number of forward edges is different from the number of backward edges
(with respect to some fixed traversal of the cycle). According to [30], a digraph
G is not homomorphic to an unbalanced cycle C if and only if there is an
oriented cycle C ′ homomorphic to G but not homomorphic to C.

In other words, we have Cycle Duality (proved in [30]):

Theorem 3.5. Let C be an unbalanced cycle. Then

Cy 6−→=−→ C,

where Cy is the family of all cycles C ′ which are not homomorphic to C.

We know that H-coloring problems can be hard even when H is an ori-
ented tree T . However, there are also many oriented trees T for which there
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is a structure to the T -coloring problem, which can be exploited to find a
polynomial algorithm. The class of digraphs homomorphic to such a “nice”
oriented tree T can often be characterized by the absence of certain subtrees.

Specifically, we say that H-coloring problem has tree duality if the following
property holds for all digraphs G: A digraph G is not homomorphic to H if
and only if there exists an oriented tree homomorphic to G but not to H. Tree
duality seems to be a surprisingly useful property. In particular, one can prove
that if H has tree duality then the H-coloring problem is polynomial [27].

This fits to our scheme (4): H has a tree duality if and only if

T 6−→=−→ H,

where T is the set of all trees F which are not homomorphic to H.
The class of digraphs H with polynomial H-coloring problems can be fur-

ther enlarged by generalizing tree duality to Tree Width-k Duality and to
Bounded Tree Width Duality.

First, let us give some definitions.
An undirected graph is a k-tree if its maximal clique is of size k+ 1 and it

does not contain an induced cycle of length > 3. It follows from basic graph
theory that k-trees have indeed a tree structure; a k-tree can be obtained from
a (k+1)-clique by repeatedly adding a vertex joined to existing vertices which
form a k-clique (Thus a tree is a 1-tree.) An undirected graph is said to have
treewidth k, or to be a partial k-tree, if it is a subgraph of a k-tree. This is
denoted by tw(G) ≤ k. Partial k-trees have small separating sets and, as
a consequence, they admit efficient algorithms for many hard computational
problems; see, e.g., [36]. We say that an oriented graph has treewidth k (or is
an oriented partial k-tree) if its underlying undirected graph has treewidth k.

Definition 4. We say a digraph H has treewidth-k duality if the following
property holds for all digraphs G: A digraph G is not homomorphic to H if
and only if there exists an oriented partial k-tree homomorphic to G but not
to H.

An H-coloring problem is said to have bounded treewidth duality if there
exists a positive integer k = k(H) such that the following holds:

G is homomorphic to H if and only if every graph F homomorphic to G
with treewidth ≤ k is also homomorphic to H.

This fits to our scheme (4): H has k-treewidth duality if and only if

Tk 6−→=−→ H,

where Tk is the set of all partial k-trees F which are not homomorphic to H.
Explicitly, for every graph G, the non-existence of a homomorphism G −→ H
is equivalent to the existence of an F , tw(F ) ≤ k, such that F → G.
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The following has been proved independently and in different contexts in
[27] and [15]:

Theorem 3.6. Every H-coloring problem with bounded treewidth duality
is polynomial time decidable.

Presently, Theorem 3.6 is the strongest tool for proving the polynomial
time decidability of H-coloring problems. In fact, presently all known polyno-
mial time decidable H-coloring problems are covered by Theorem 3.6.

On the other hand, if we assume P 6= NP , then all NP -complete H-
coloring problems do not possess bounded treewidth duality.

This line was pursued in [59], where the following has been shown directly
(i.e., without the assumption P 6= NP ) :

Theorem 3.7. For an undirected graph H, the H-coloring problem has
no bounded treewidth duality if and only if H contains an odd cycle.

Also for some directed graphs H, one can obtain similar results. For ex-
ample, one can prove the following (see [59]) :

Theorem 3.8. There exists an oriented cycle C such that C-coloring
problem has no bounded tree width duality.

However, the following is still open:

Problem 8. (Without P 6= NP ) prove that there exists an oriented tree
T such that T -coloring problem has no bounded treewidth duality.

Let us finish this part with another problem.
First, let us recall another result proved in [59]:

Theorem 3.9. Given two positive integers k and m, if G is a graph of
girth n > 2k+2(4km)4km−1 + 2(k + 1), then any partial k-tree homomorphic to
G is also homomorphic to the odd cycle C2m+1.

In the language of circular chromatic number χc (or star chromatic num-
ber), this implies χ

c(G) ≤ 2 + ε for any large-girth graph with bounded
treewidth.

A related result in this direction is that any large-girth planar graph is
homomorphic to a given odd cycle. Quite surprisingly, the similar results do
not hold for bounded degree and even cubic graphs. We have the following
(proved recently in [39]):

Theorem 3.10. For any g ≥ 3 and any l ≥ 10, there exists a cubic graph
G with the following properties:
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1) G has girth ≥ g,

2) G 6−→ C2e+1.

The non-constructive proof of [39] leaves the following open:

Problem 9. Is it true that any large-girth cubic graph G is homomorphic
to C5?

This problem was first discussed in [16]. It is proved in [35] that the answer
to this problem is negative for 4-regular graphs.

3.3. Gaps and Dualities

Let us return to our main theme:
All the above results fall into the framework of Homomorphism Dualities.

The following is perhaps the simplest instance of such homomorphism duality:
A Singleton Homomorphism Duality is a pair of graphs (F,H) satisfying

F 6−→=−→ H.

Similarily, Finitary Homomorphism Duality is a pair (F ,H), where F a
finite set of graphs, satisfying

F 6−→=−→ H.

In this case, we also say that H has Finitary Homomorphism Duality.
At the first glance, this scheme seems to be too restrictive and indeed it

is, at least for undirected graphs. The following result was proved essentially
in [51].

Theorem 3.11. For an undirected graph H, the following two statements
are equivalent:

1) H has finitary homomorphism duality;

2) either H = φ or H = K1.

Thus for undirected graphs, only trivial finitary homomorphism dualites
exist:

K1 6−→=−→ φ and K2 6−→=−→ K1.

We include the proof as it uses one of the basic tricks in this area:

Proof. Clearly, it suffices to prove that there are no other dualites. Assume
the contrary. So let F 6−→=−→ H be a finitary duality for a non-bipartite H.
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Put F = {F1, . . . , Ft}. Let l be larger than the shortest length of an odd cycle
in any of the graphs F1, . . . , Ft (of course, Fi 6−→ H). Now let G = Gk,l be
the Erdös graph with the following properties: χ(G) > k = |V (H)| and girth
of G > l. Then both G 6−→ H and Fi 6−→ H, which is a contradiction.

However, for other structures the singleton homomorphism dualities present
more complex patterns and capture interesting theorems. For example, for ori-
ented matroids and (convenient version of) strong maps one can prove that
singleton morphism duality gives Farkas Lemma and one can even prove that
no other such dualities (in this framework) exist; see [32].

Similarily, for ports with strong port mappings the only singleton duality
is equivalent to Menger theorem; see [33].

Even for directed graphs, this situation is far more complicated and a full
characterization was achieved (in a special case) by Komárek [38] and (in the
full generality) by Nešetřil and Tardif [55, 57].

Theorem 3.12 (Characterization of Singleton Dualities). Up to a
homomorphic equivalence, the only singleton dualities for oriented graphs have
the following form:

T 6−→=−→ HT ,

where T is an oriented tree and the graph HT is uniquely determined by T .

Theorem 3.13 (Characterization of Finitary Dualities). Up to a
homomorphic equivalence, the only finitary hommomorphism dualites for ori-
ented graphs have the form

F 6−→=−→ H,

where F is a finite set of trees {F1, . . . , Ft} and H =
∏t
i=1HFi where Fi 6−→=−→

HFi.

3.4. Duality and Density (and Gaps)

Nešetřil and Tardif established in [55] and [57] the following (perhaps sur-
prising) connection of duality pairs. This provided the key to the character-
ization not only of the dualities but also to the characterization of gaps for
classes of directed (and undirected) graphs.

We say that a gap (G,H) is connected if H is a connected graph. Observe
that if (F,H) is a duality pair, then F is necessarily connected (for if F is
a core and F1 and F2 are distinct components of F , then F 6→ Fi, and thus
Fi → H for i = 1, 2. Thus F → H, which is a contradiction).
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Theorem 3.14. There is a one-to-one correspondence between duality
pairs and gaps for the class of directed (and also undirected) graphs. Explicitly,
for any duality pair (F,H), (F ×H,F ) is a gap. Conversely, for any connected
gap (G,H), (H,GH) is a duality pair.

Proof. First, suppose that G → H 6→ G is a gap. We prove that for
any graph K, H 6→ K if and only if K → GH . Thus let a graph K be such
that H 6→ K and suppose for the contrary that K 6→ GH . Then, obviously,
G → G ∪ (G × H) → H. If H → G ∪ (K × H), then (by the connectivity
and the assumption H 6→ G) H → K ×H and thus H → K, contrary to our
assumpiton. If G ∪ (K × H) → G, then K × H → G and K → GH , again
contrary to our assumption. Thus the class H 6→ is a subclass of the class
→ GH . In order to prove the reverse inclusion, let K be a graph satisfying
K → GH and H → K. This implies H → H ×GH → G (as H ×GH → G is
equivalent to GH → GH and thus it always holds). Thus (H,HG) is a duality
pair.

Conversely, let (F,H) be a duality. We may clearly assume that F is a
core (i.e., every homomorphism F → F is an automorphism) and further F is
connected. Thus F ×H → F and F 6→ F ×H (as F → F ×H would imply
F → H). We claim that there is no graph K satisfying F ×H → K → F and
F 6→ K 6→ F × H: If K → F 6→ F × H, then the duality implies K → H
and thus K → F ×H, which contradicts our assumptions. This completes the
proof of theorem.

Theorem 3.14 leads to yet another proof of Theorem 2.15:

Proof. By Theorem 3.11, (K2,K1) and (K1,K0) are the only duality pairs.
Thus (K2×K1,K2) (which is equivalent to (K1,K2)) and (K0×K1,K1) (which
is equivalent to (K0,K1)) are the only gaps.

Thus, modulo the above “arrow calculus” in the proof of Theorem 3.14,
the density theorem for undirected graphs has been known even before it has
been formulated.

Finally, let us remark that the above also shows that Theorem 3.13 gives
all non-gap pairs for directed graphs: Let (T,HT ) be all singleton duality pairs
for oriented graphs (characterized by Theorem 3.12). Then (T × HT , T ) are
exactly all gaps.

In neither direction is Theorem 3.13 an easy result:
The construction of the graph HT is quite complicated and it has been

approached from different sides in [38] and in [57].
Here we show the opposite direction (that there are no other gaps). This

in fact solves the density problem for oriented graphs by a remarkably easy
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construction, which we have already introduced in a different context – it is
our indicator construction again.

Theorem 3.15. Let G,H be directed graphs which are cores. Let H be
connected and assume that H fails to be an orientation of a tree. Further,
assume that G → H 6→ G holds. Then there exists a directed graph K with
G→ K → H and H 6→ K 6→ G.

We shall make use of the following obvious (but key) property of the arrow
construction.

Lemma 2. Let G and H be directed graphs with χ(G) > |V (H)| and
assume every homomorphism f : I → H satisfies f(a) 6= f(b). Then G ?
(I, a, b) 6→ H.

Proof (third proof of Theorem 2.15). Let G,H be undirected graphs, H
non-bipartite, with G → H 6→ G. Clearly we may assume that G and H are
cores. Let e = {a, a′} ∈ E(H) belong to a circuit in H. Put I = H−e+{a′, b},
where b 6∈ V (H). (Thus I arises from H by deleting the edge e, adding a new
vertex b 6∈ V (H) together with the edge {a′, b}.)

It is clear that I → H (identifying vertices a and b) but any homomorphism
f : I → G satisfies f(a) 6= f(b) (for otherwise we get a contradiction with
H 6→ G). Now let F be any graph satisfying χ(F ) > |V (G)| and let F ′ be any
orientation of F . Consider the arrow construction F ′ ? (I, a, b) and define the
graph K by K = (F ′ ? (I, a, b)) ∪G.

We prove that K has the properties claimed by Undirected Graph Density.
Clearly, G→ K. We also have K → H as the mapping f defined by f([e, x]) =
x for x ∈ V (H) and e ∈ E(F ′) and f([e, b]) = a is a homomorphism K →
H (we preserve the above notation concerning the arrow construction F ′ ?
(I, a, b)). Further, by Lemma 2, K 6→ G (as χ(F ) > |V (G)|). Thus it remains
to be shown that H 6→ K. Suppose the contrary and let g : H → F ? (I, a, b)
be a homomorphism. Then f ◦ g : H → H, where f is the above-defined
homomorphism F ?(I, a, b)→ H. As H is a core, f◦g is a homomorphism. Put
h = (f ◦g)−1. Then f ◦g ◦h(x) = x for every x ∈ V (H). Put g ◦h(a) = [(e, a)]
with e = (u, v). Then the image g ◦ h(H) of H is a connected subgraph of
F ? (I, a, b), which is (by the injectivity of the mapping f ◦ g ◦ h) contained
in the set of all [(e′, x)], where e′ is incident with u and x ∈ V (I) (this set is
the “star” induced by those edges of F ′ which are incident with the vertex u).
But then the edge {[g ◦ h(a)], [g ◦ h(a′)]} is a cut edge in the graph g ◦ h(G),
which is the final contradiction as a, a′ were contained in a cycle of H.
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Proof of Theorem 3.15. Let G,H satisfy the assumption of the theorem.
Let H be a core and let (a, a′) ∈ E(H) belong to a cycle in H. Put I =
H − (a, a′) + (b, a′), where b 6∈ V (H) (i.e., we first delete arc (a, a′) and then
add a new vertex b together with the arc (b, a′)). Let F be an oriented graph
with χ(F ) > |V (G)| and consider the arrow construction F ? (I, a, b). Put
K = G ∪ (F ? (I, a, b)). Then we have:

G→ K (by the inclusion map);
K → H (by the same mapping as in the above proof);
K 6→ G (by the chromatic number assumption);
H 6→ K (as in the proof for undirected graphs).
Thus the graph K has the desired properties.

3.5. Final View

Our approach to H-coloring problem may be put in various contexts. We
list in these closing remarks three such approaches.

3.5.1. Good Characterizations

Finitary good characterizations are examples of Good Characterizations in
the sense of Edmonds [12]: Given a finitary duality

F 6→=→ H,(6)

we can prove easily that a given graph G is not H-colorable. We simply
check which graph F of the finite set F permits a homomorphism F → G.
This obviously takes polynomially many steps (and in fact one can do so
in O(nkω/3) steps, where ω is the fast matrix multiplication constant and
k = max{|V (F )|;F ∈ F}; see [50]). On the other side, the existence of an
H-coloring is easy to verify.

In Theorem 3.13, we characterized all finitary dualities for coloring prob-
lems for graphs. Note that the main result may be extended to relational
systems and even to the relational structures of a given type (i.e., to finite
models of a given type).

Despite this generality, we see that Theorem 3.13 is very special (as one can
“forbid” relational trees only). This is in a sharp contrast with the abundance
of finitary dualities if other “morphisms” are allowed. For example, (as follows
from Robertson - Seymour - Thomas project) every minor closed property has
“finitary duality” (with morphisms being minors). However, note that most
of these results are related to undirected graphs only. Other examples for
matroids are given in [32, 33].
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3.5.2. hom - Universal Graphs

One of the fundamental results of P. Erdös [11] can be formulated as fol-
lows:

Theorem 3.16. For a finite graph F , the following two statements are
equivalent:

(1) There exists a k = k(F ) such that any graph G with χ(G) ≥ k contains
F as a subgraph.

(2) F is a forest.

This can be expressed also as a weaker form of homomorphism duality:
For a finite graph F , the following two statements are equivalent:

(1′) There exists a graph H such that {G;F 6⊂ G} ⊂ {G;G→ H}.

(2′) F is a forest.

If condition (1′) is valid, then we say that the graph H is hom-universal
for the class of all F -free graphs.

In this setting, Theorem 3.12 presents an extension of the Erdös result to
forbidden homomorphisms: In the case of a tree F , the class {G;F 6→ G} has
not only an universal graph but it can be defined by homomorphisms into a
fixed graph. More precisely, there exists a graph HF such that

F 6→= {G;F 6→ G} = {G;G→ H} =→ H.

(Let us stress at this moment that this holds in the full generality for finite
structures. It is perhaps a bit surprising that by forbidding homomorphisms,
i.e., by forbidding a graph F together with all its homomorphic images, we get
so much more structure.)

3.5.3. Bounded Degree Graphs

Universal graphs obviously exist for bounded degree graphs: If ∆(G) ≤ k,
then G→ Kk+1. It has been proved by R. Häggkvist and P. Hell in [19] that
for any graph F , there exists a graph UF,k, F 6→ UF,k, such that G→ UF,k for
any graph G with ∆(G) ≤ k and F 6→ G.

This has been extended recently [9] as follows:

Theorem 3.17. For every choice of graphs F,H, F 6→ H, there exists a
graph UF,k,H such that

1) F 6→ UF,k,H and UF,k,H → H, and
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2) if G is a graph with ∆(G) ≤ k, F 6→ G, and G→ H, then G→ UF,k,H .

Particularly, there exists a 3-chromatic triangle free graph U such that
G→ U for every traingle free, cubic, 3-chromatic graph G.

The universal graphs for cubic graphs are related to several interesting
problems. The following one attracted recently some attention.

Problem 10 (Pentagon Problem). Is it true that there exists a constant
k such that for any cubic graph with girth ≥ k there is a homomorphism
G→ C2k+1?

In this context, one should note that this problem has a negative solution
for homomorphisms into C11 (instead of C5) as showed in [39] and also for
graphs with maximal degree 4 as showed in [35].

The Pentagon Problem is motivated both by some complexity consider-
ations [16] and by attempts to solve the Density Problem for cubic graphs.
Particularly, even the following seems to be presently open:

Given a cubic graph G, C5 < G, prove that there exists a cubic graph H
such that C5 < H < G.

From the negative solution of the Pentagon Problem follows the existence
of H easily (along the lines of the Second Proof of Density of Undirected
Graphs).

Let us finish this survey by the following recent problem raised in [9]:

Problem 11. Does there exist a triangle free graph U such that any
triangle free planar graph G is homomorphic to U : G→ U?
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58. J. Nešetřil and X. Zhu, Path homomorphisms, Math. Proc. Cambridge Philos.
Soc. 120 (1996), 207-220.
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