TAIWANESE JOURNAL OF MATHEMATICS Vol. 3, No. 3, pp. 357-366, September 1999

CO-SEMISIMPLE MODULES AND GENERALIZED INJECTIVITY

Liu Zhongkui and Javed Ahsan

Abstract. Let \mathcal{F} be a left Gabriel topology on a ring R and \mathcal{X} be a special class of left R-modules (for example, the class of all quasicontinuous left R-modules in $\sigma[M]$, etc.). Suppose that all left R-modules in \mathcal{X} are \mathcal{F} -injective. Then, it is proved in this paper that a left R-module M is \mathcal{F} -co-semisimple (that is, every \mathcal{F} -cocritical left R-module C in $\sigma[M]$ is dense in its M-injective hull) if and only if every \mathcal{F} -torsionfree \mathcal{F} -finitely cogenerated left R-module N in $\sigma[M]$ is dense in its some essential extensions which are in \mathcal{X} . As a corollary we show that a left R-module M is co-semisimple if and only if every finitely cogenerated left R-module in $\sigma[M]$ is continuous (or quasi-continuous, or direct-injective, etc.)

1. INTRODUCTION

Let R be a ring with identity and M a left R-module. A left R-module U is called M-injective if for every submodule N of M and homomorphism $\phi : N \longrightarrow U$, ϕ can be lifted to a homomorphism $\psi : M \longrightarrow U$. A left R-module M is called a co-semisimple module by Fuller [2] (and is called a V-module by Ramamurthi [11] and Tominaga [12]) provided every submodule of M is an intersection of maximal submodules. Fuller [2, Proposition 3.1] and Hirano [4, Proposition 3.1] or Dung, Huynh, Smith and Wisbauer [1] proved that M is co-semisimple if and only if every simple left R-module is M-injective. Wisbauer [14] proved that M is co-semisimple if and only if every finitely cogenerated left R-module in $\sigma[M]$ is M-injective. In this paper, we characterize co-semisimple left R-modules via generalized injectivity of some modules.

Received December 17, 1996.

Communicated by P.-H. Lee.

¹⁹⁹¹ Mathematics Subject Classification: 16D70, 16D80.

Key words and phrases: Co-semisimple module, I-class, \mathcal{F} -finitely cogenerated module.

Let \mathcal{F} be a left Gabriel topology on R and M a left R-module. We call M a \mathcal{F} -co-semisimple module if every \mathcal{F} -cocritical left R-module C in $\sigma[M]$ is dense in its M-injective hull I(C). Let \mathcal{X} be a special class of left R-modules (for example, the class of all quasi-continuous left R-modules in $\sigma[M]$, or, the class of all quasi-injective left R-modules in $\sigma[M]$, etc.). We show that if the left Gabriel topology \mathcal{F} is such that all left R-modules in \mathcal{X} are \mathcal{F} -injective, then M is \mathcal{F} -co-semisimple if and only if every \mathcal{F} -torsionfree \mathcal{F} -finitely cogenerated left R-module N in $\sigma[M]$ is dense in its some essential extensions which are in \mathcal{X} .

As a corollary we show that a left R-module M is a co-semisimple module if and only if every finitely cogenerated left R-module in $\sigma[M]$ is continuous if and only if every finitely cogenerated left R-module in $\sigma[M]$ is quasi-continuous if and only if every finitely cogenerated left R-module in $\sigma[M]$ is direct-injective.

Page and Yousif in [10] proved that a finitely generated left R-module M is a noetherian co-semisimple module if and only if every semisimple left R-module is M-injective. In this paper we also show that a left R-module M is a locally noetherian co-semisimple module if and only if every semisimple left R-module (in $\sigma[M]$) is M-injective if and only if every semisimple left R-module (in $\sigma[M]$) is the direct sum of a finitely cogenerated module and an M-injective module if and only if every essential extension in $\sigma[M]$ of every semisimple left R-module in $\sigma[M]$ is an \mathcal{X} -module, where \mathcal{X} is a specified class of left R-modules.

2. Preliminaries

Let M be a left R-module. We say that a left R-module N is subgenerated by M, or that M is a subgenerator for N, if N is isomorphic to a submodule of an M-generated module. Following [14], we denote by $\sigma[M]$ the full subcategory of R - Mod whose objects are all R-modules subgenerated by M. By [14, 17.9], every module N in $\sigma[M]$ has an injective hull I(N) in $\sigma[M]$, which is also called an M-injective hull of N. It is known that the M-injective hulls of a left R-module in $\sigma[M]$ are unique up to isomorphism. In the following, we always denote by I(N) the M-injective hull of N for any left R-module $N \in \sigma[M]$.

Let \mathcal{X} be a class of left *R*-modules such that if $M \in \mathcal{X}$ then any left *R*-module isomorphic to *M* belongs to \mathcal{X} . Any member of \mathcal{X} is called an \mathcal{X} -module.

Definition 2.1. Let M be a left R-module and \mathcal{X} a class of left R-modules in $\sigma[M]$. We call \mathcal{X} an I-class in the category $\sigma[M]$ if it contains all M-injective left R-modules in $\sigma[M]$ and for any $N \in \sigma[M]$, if there exists an M-injective left *R*-module *L* in $\sigma[M]$ such that $N \leq L$ and $N \oplus L$ is in \mathcal{X} , then *N* is *L*-injective.

If M = R, then any I-class in the category $\sigma[M]$ is called an I-class of left R-modules.

Following [19], we call \mathcal{X} an injectivity class in the category $\sigma[M]$ if it is closed under direct summands, contains all quasi-injective left R-modules in $\sigma[M]$ and $N \oplus I(N) \in \mathcal{X}$ implies that N is M-injective. We claim that every injectivity class in the category $\sigma[M]$ is an I-class. In fact, if \mathcal{X} is an injectivity class, then \mathcal{X} contains all M-injective left R-modules in the category $\sigma[M]$. Suppose that N is in $\sigma[M]$ and L an M-injective left R-module in $\sigma[M]$ such that $N \leq L$ and $N \oplus L \in \mathcal{X}$. Then L is an injective object of the category $\sigma[M]$. Thus there exists a homomorphism $g: I(N) \longrightarrow L$ such that $g|_N = \tau$, the natural inclusion map $N \longrightarrow L$. Now it follows that $g: I(N) \longrightarrow L$ is a monomorphism since N is essential in I(N). Thus we have $L = I(N) \oplus P$ for a left R-module P. Therefore $N \oplus L = N \oplus I(N) \oplus P \in \mathcal{X}$. Since \mathcal{X} is closed under direct summands, we obtain that $N \oplus I(N) \in \mathcal{X}$. Now it follows that N is M-injective.

The following proposition gives some examples of I-classes.

Proposition 2.2. The class of all quasi-injective (respectively, continuous, quasi-continuous, direct-injective, NCI, SQC, E-injective) left R-modules in $\sigma[M]$ is an I-class.

Proof. It follows from [5, 9, 15, 17, 18] and [19].

Let \mathcal{F} be a left Gabriel topology on R. The quotient category $(R, \mathcal{F})-Mod$, associated with \mathcal{F} , is the full subcategory of R - Mod whose objects are the \mathcal{F} -closed (i.e., \mathcal{F} -torsionfree and \mathcal{F} -injective) left R-modules, and it is a Grothendieck category. The inclusion functor $i : (R, \mathcal{F}) - Mod \longrightarrow R - Mod$ has a left adjoint $a : R - Mod \longrightarrow (R, \mathcal{F}) - Mod$ which is exact and assigns to each $M \in R - Mod$ its module of quotients $M_{\mathcal{F}}$.

3. \mathcal{F} -CO-SEMISIMPLE MODULES

Definition 3.1. Let \mathcal{F} be a left Gabriel topology on R, M a left R-module and N in $\sigma[M]$.

(1) We say N is \mathcal{F} -cocyclic in $\sigma[M]$ if there exists an \mathcal{F} -cocritical left R-module $C \in \sigma[M]$ such that

$$0 \longrightarrow N_{\mathcal{F}} \longrightarrow I(C)_{\mathcal{F}}$$

is exact. N is called $\sigma - \mathcal{F}$ -cocyclic in $\sigma[M]$ if it is a finite direct sum of \mathcal{F} -cocyclic left R-modules in $\sigma[M]$.

(2) N is called \mathcal{F} -finitely cogenerated in $\sigma[M]$ if there exist \mathcal{F} -cocritical left R-modules C_1, \ldots, C_n in $\sigma[M]$ such that the sequence

$$0 \longrightarrow N_{\mathcal{F}} \longrightarrow \bigoplus_{i=1}^{n} I(C_i)_{\mathcal{F}}$$

is exact.

If M = R and $\mathcal{F} = \{R\}$, then \mathcal{F} -cocyclic modules in $\sigma[M]$ (resp. \mathcal{F} -finitely cogenerated modules in $\sigma[M]$) are precisely cocyclic (resp. finitely cogenerated) modules in the usual sense (see [14] and [7]).

Definition 3.2. Let M be a left R-module and \mathcal{F} a left Gabriel topology on R. We call M an \mathcal{F} -co-semisimple module if every \mathcal{F} -cocritical left Rmodule C in $\sigma[M]$ is dense in its M-injective hull I(C).

Note that if $\mathcal{F} = \{R\}$, then the \mathcal{F} -co-semisimple left R-modules are precisely the co-semisimple left R-modules. On the other hand, if \mathcal{F} is a perfect Gabriel topology, then the inclusion functor $j : (R, \mathcal{F}) - Mod \longrightarrow R_{\mathcal{F}} - Mod$ is an equivalence; hence, for every left R-module M, M is \mathcal{F} -co-semisimple if and only if $M_{\mathcal{F}}$ is co-semisimple. If \mathcal{F} is a left Gabriel topology on R such that for every left R-module N in $\sigma[M]$, $N_{\mathcal{F}}$ is an injective object of $(R, \mathcal{F}) - Mod$, then M is an \mathcal{F} -co-semisimple module. In particular, If \mathcal{F} is a left Gabriel topology on R such that $(R, \mathcal{F}) - Mod$ is a spectral category (that is, every object is injective), then clearly every left R-module M is \mathcal{F} -co-semisimple. Thus, if \mathcal{G} denotes the left Goldie topology, then every left R-module M is \mathcal{G} -co-semisimple.

Theorem 3.3. Let M be a left R-module and \mathcal{F} a left Gabriel topology on R. If \mathcal{X} is an I-class in the category $\sigma[M]$ such that every \mathcal{X} -module is \mathcal{F} -injective, then the following conditions are equivalent.

- (1) M is \mathcal{F} -co-semisimple.
- (2) Every \mathcal{F} -torsionfree and \mathcal{F} -finitely cogenerated left R-module in $\sigma[M]$ is dense in its some essential extensions which are \mathcal{X} -modules.
- (3) Every \mathcal{F} -torsionfree and $\sigma \mathcal{F}$ -cocyclic left R-module in $\sigma[M]$ is dense in its some essential extensions which are \mathcal{X} -modules.
- (4) For every \mathcal{F} -torsionfree and \mathcal{F} -finitely cogenerated left R-module N in $\sigma[M]$, there exists an \mathcal{X} -module L with essential submodule N such that $\operatorname{Rad}_{\mathcal{F}}(L) = 0$.

(5) For every \mathcal{F} -torsionfree and $\sigma - \mathcal{F}$ -cocyclic left R-module N in $\sigma[M]$, there exists an \mathcal{X} -module L with essential submodule N such that $\operatorname{Rad}_{\mathcal{F}}(L) = 0$.

Proof. (1) \implies (2). Let left *R*-module $N \in \sigma[M]$ be \mathcal{F} -torsionfree and \mathcal{F} -finitely cogenerated in $\sigma[M]$. Then there exist \mathcal{F} -cocritical left *R*-modules $C_1, \ldots, C_m \in \sigma[M]$ such that

$$0 \longrightarrow N_{\mathcal{F}} \xrightarrow{g} \oplus_{i=1}^{m} I(C_i)_{\mathcal{F}}.$$

Consider the following diagram

$$\begin{array}{ccc} N_{\mathcal{F}} & \stackrel{\tau}{\longrightarrow} I(N)_{\mathcal{F}} \\ g \downarrow \\ \oplus_{i=1}^{m} I(C_{i})_{\mathcal{F}} \end{array}$$

It is clear that $\bigoplus_{i=1}^{m} I(C_i) \in \sigma[M]$ is *M*-injective. Thus $\bigoplus_{i=1}^{m} I(C_i)$ is an \mathcal{X} -module since \mathcal{X} is an I-class in the category $\sigma[M]$, and so is \mathcal{F} -injective by assumption. It is easy to see that $\bigoplus_{i=1}^{m} I(C_i)$ is \mathcal{F} -torsionfree. Thus $\bigoplus_{i=1}^{m} I(C_i)$ is \mathcal{F} -closed. This implies that $i((\bigoplus_{i=1}^{m} I(C_i))_{\mathcal{F}}) \simeq \bigoplus_{i=1}^{m} I(C_i)$. Thus $i((\bigoplus_{i=1}^{m} I(C_i))_{\mathcal{F}})$ is *M*-injective. Similar argument gives that $i(I(N)_{\mathcal{F}}) \simeq I(N) \in \sigma[M]$. Thus $i(N_{\mathcal{F}}) \in \sigma[M]$. Now, by [14, 16.3], there exists a homomorphism $f: i(I(N)_{\mathcal{F}}) \longrightarrow i((\bigoplus_{i=1}^{m} I(C_i))_{\mathcal{F}})$ such that $i(g) = fi(\tau)$. Thus we have $g = a(f)\tau$. Since *N* is essential in I(N) and *N* is \mathcal{F} -torsionfree, by [3, Lemma 0.1], it follows that $N_{\mathcal{F}}$ is an essential subobject of $I(N)_{\mathcal{F}}$. Thus $a(f): I(N)_{\mathcal{F}} \longrightarrow \bigoplus_{i=1}^{m} I(C_i)_{\mathcal{F}}$ is a monomorphism. Since *M* is \mathcal{F} -co-semisimple, we have $(C_i)_{\mathcal{F}} = I(C_i)_{\mathcal{F}}$, $i = 1, \ldots, m$. Thus $I(N)_{\mathcal{F}}$ is isomorphic to a subobject of semisimple object $\bigoplus_{i=1}^{m} (C_i)_{\mathcal{F}}$ of $(R, \mathcal{F}) - Mod$. Hence $I(N)_{\mathcal{F}}$ is semisimple. This implies that $N_{\mathcal{F}} = I(N)_{\mathcal{F}}$. Clearly I(N) is an \mathcal{X} -module since it is *M*-injective.

(2) \Longrightarrow (3). Let N be an \mathcal{F} -torsionfree and $\sigma - \mathcal{F}$ -cocyclic left R-module in $\sigma[M]$. Then $N = \bigoplus_{i=1}^{n} N_i$, where N_1, \ldots, N_n are \mathcal{F} -cocyclic left R-modules in $\sigma[M]$. Thus there exist \mathcal{F} -cocritical left R-modules $C_1, \ldots, C_n \in \sigma[M]$ such that the sequence

$$0 \longrightarrow N_{\mathcal{F}} \longrightarrow \bigoplus_{i=1}^{n} I(C_i)_{\mathcal{F}}$$

is exact. Thus N is \mathcal{F} -finitely cogenerated in $\sigma[M]$.

(3) \implies (1). Let N be an \mathcal{F} -cocritical left R-module in $\sigma[M]$. Then N is \mathcal{F} -torsionfree and $N_{\mathcal{F}}$ is a simple object of $(R, \mathcal{F}) - Mod$. Since I(N) is M-injective, it is easy to see that I(N) is \mathcal{F} -closed. Thus $i(I(N)_{\mathcal{F}}) \simeq I(N) \in$

 $\sigma[M]$; and hence $i(N_{\mathcal{F}})$, a submodule of $i(I(N)_{\mathcal{F}})$, is in $\sigma[M]$. Since the sequence

$$0 \longrightarrow (i(N_{\mathcal{F}}))_{\mathcal{F}} \longrightarrow (i(I(N)_{\mathcal{F}}))_{\mathcal{F}}$$

is exact, and $(i(I(N)_{\mathcal{F}}))_{\mathcal{F}} \simeq I(N)_{\mathcal{F}}$, we see that $i(N_{\mathcal{F}})$ is \mathcal{F} -cocyclic in $\sigma[M]$. It is easy to see that $i(I(N)_{\mathcal{F}}) \in \sigma[M]$ is \mathcal{F} -cocyclic, too. Thus $i(N_{\mathcal{F}}) \oplus i(I(N)_{\mathcal{F}})$ is $\sigma - \mathcal{F}$ -cocyclic. Clearly $i(N_{\mathcal{F}}) \oplus i(I(N)_{\mathcal{F}})$ is \mathcal{F} -torsionfree. Thus, by condition (3), there exists an \mathcal{X} -module L such that $i(N_{\mathcal{F}}) \oplus i(I(N)_{\mathcal{F}})$ is an essential submodule of L and $(i(N_{\mathcal{F}}) \oplus i(I(N)_{\mathcal{F}}))_{\mathcal{F}} = L_{\mathcal{F}}$. Thus we get

$$L_{\mathcal{F}} \simeq N_{\mathcal{F}} \oplus I(N)_{\mathcal{F}}.$$

Clearly L is \mathcal{F} -closed since it is \mathcal{F} -torsionfree and \mathcal{F} -injective. Thus

$$i(N_{\mathcal{F}}) \oplus i(I(N)_{\mathcal{F}}) \simeq i(L_{\mathcal{F}}) \simeq L.$$

This implies that $i(N_{\mathcal{F}}) \oplus i(I(N)_{\mathcal{F}})$ is an \mathcal{X} -module. From the definition of I-classes it follows that $i(N_{\mathcal{F}})$ is $i(I(N)_{\mathcal{F}})$ -injective. Thus there exists a homomorphism $f : i(I(N)_{\mathcal{F}}) \longrightarrow i(N_{\mathcal{F}})$ such that $f|_{i(N_{\mathcal{F}})} = 1$. This implies that there exists a left *R*-module *H* such that $i(I(N)_{\mathcal{F}}) = i(N_{\mathcal{F}}) \oplus H$. Thus $I(N)_{\mathcal{F}} = N_{\mathcal{F}} \oplus a(H)$. But $N_{\mathcal{F}}$ is essential in $I(N)_{\mathcal{F}}$ since *N* is essential in I(N). Thus $N_{\mathcal{F}} = I(N)_{\mathcal{F}}$ and we are done.

(2) \implies (4). Let the left *R*-module $N \in \sigma[M]$ be \mathcal{F} -torsionfree and \mathcal{F} -finitely cogenerated in $\sigma[M]$. By (2), there exists an essential extension *L* of *N* such that *L* is an \mathcal{X} -module and *N* is dense in *L*. By [3, Proposition 1.2], we have

$$(\operatorname{Rad}_{\mathcal{F}}(L))_{\mathcal{F}} = \operatorname{Rad}(L_{\mathcal{F}}) = \operatorname{Rad}(N_{\mathcal{F}}).$$

Since N is \mathcal{F} -finitely cogenerated in $\sigma[M]$, there exist \mathcal{F} -cocritical left R-modules C_1, \ldots, C_n in $\sigma[M]$ such that the following sequence is exact:

$$0 \longrightarrow N_{\mathcal{F}} \longrightarrow \bigoplus_{i=1}^{n} I(C_i)_{\mathcal{F}}.$$

By the results proved above, M is \mathcal{F} -co-semisimple when condition (2) holds. Therefore every \mathcal{F} -cocritical left R-module in $\sigma[M]$ is dense in its M-injective hull. It follows that $I(C_i)_{\mathcal{F}} = (C_i)_{\mathcal{F}}, i = 1, \ldots, n$. Thus we have

$$\operatorname{Rad}(\oplus_{i=1}^{n} I(C_i)_{\mathcal{F}}) = \oplus_{i=1}^{n} \operatorname{Rad}(I(C_i)_{\mathcal{F}}) = 0,$$

which implies that $\operatorname{Rad}(N_{\mathcal{F}}) = 0$. Thus $\operatorname{Rad}_{\mathcal{F}}(L) = t(\operatorname{Rad}_{\mathcal{F}}(L))$, where t is a left exact radical corresponding to the Gabriel topology \mathcal{F} . This means that $\operatorname{Rad}_{\mathcal{F}}(L)$ is an \mathcal{F} -torsion module. On the other hand, $\operatorname{Rad}_{\mathcal{F}}(L)$ is an \mathcal{F} -saturated submodule of L, and so is \mathcal{F} -torsionfree. Therefore we get $\operatorname{Rad}_{\mathcal{F}}(L) = 0$, as required.

 $(4) \Longrightarrow (5)$. It is similar to the implication $(2) \Longrightarrow (3)$.

 $(5) \Longrightarrow (3)$. Let N be an \mathcal{F} -torsionfree and $\sigma - \mathcal{F}$ -cocyclic left R-module in $\sigma[M]$. Then there exists an essential extension L of N such that L is an \mathcal{X} -module and $\operatorname{Rad}_{\mathcal{F}}(L) = 0$. It is enough to show that N is dense in L. By [3, Proposition 1.3], it follows that L is cogenerated by the class of \mathcal{F} -cocritical left R-modules. Since N is $\sigma - \mathcal{F}$ -cocyclic in $\sigma[M]$, as the implication $(2) \Longrightarrow (3)$, we see N is \mathcal{F} -finitely cogenerated in $\sigma[M]$. Thus there exist \mathcal{F} -cocritical left R-modules C_1, \ldots, C_n such that the sequence

$$0 \longrightarrow N_{\mathcal{F}} \longrightarrow \bigoplus_{i=1}^{n} I(C_i)_{\mathcal{F}}$$

is exact. By analogy with the implication $(1) \Longrightarrow (2)$, we obtain that $I(N)_{\mathcal{F}}$ is isomorphic to a subobject of $\bigoplus_{i=1}^{n} I(C_i)_{\mathcal{F}}$. By [14, 17.10], it follows that $I(N) \simeq I(L)$ since N is essential in L. Thus $I(N)_{\mathcal{F}} \simeq I(L)_{\mathcal{F}}$, which implies that $L_{\mathcal{F}}$ can be embedded to $\bigoplus_{i=1}^{n} I(C_i)_{\mathcal{F}}$. This means that L is \mathcal{F} -finitely cogenerated in $\sigma[M]$. Thus clearly L is \mathcal{F} -finitely cogenerated in R-Mod. By [3, Proposition 1.7], every family of \mathcal{F} -torsionfree modules which cogenerates L does cogenerate it finitely. Thus there exist finite \mathcal{F} -cocritical left R-modules D_1, \ldots, D_k such that the sequence $0 \longrightarrow L \longrightarrow \bigoplus_{i=1}^k D_i$ is exact, which implies that the sequence $0 \longrightarrow L_{\mathcal{F}} \longrightarrow \bigoplus_{i=1}^k (D_i)_{\mathcal{F}}$ is exact. This means that $L_{\mathcal{F}}$ is a semisimple object of $(R, \mathcal{F}) - Mod$. On the other hand, N is an essential submodule of L and so $N_{\mathcal{F}}$ is essential in $L_{\mathcal{F}}$ by [3, Lemma 0.1]. It is then easy to see that $N_{\mathcal{F}} = L_{\mathcal{F}}$; in other words, N is dense in L and we are done.

The following corollary generalizes a corresponding result of [7].

Corollary 3.4. Let \mathcal{F} be a left Gabriel topology on R. If \mathcal{X} is an I-class of left R-modules such that every \mathcal{X} -module is \mathcal{F} -injective, then the following conditions are equivalent.

- (1) R is an \mathcal{F} -V-ring.
- (2) Every \mathcal{F} -torsionfree and \mathcal{F} -finitely cogenerated left R-module is dense in its some essential extensions which are \mathcal{X} -modules.
- (3) Every \mathcal{F} -torsionfree and $\sigma \mathcal{F}$ -cocyclic left R-module is dense in its some essential extensions which are \mathcal{X} -modules.
- (4) For every \mathcal{F} -torsionfree and \mathcal{F} -finitely cogenerated left R-module M, there exists an \mathcal{X} -module L with essential submodule M such that $\operatorname{Rad}_{\mathcal{F}}(L) = 0.$
- (5) For every \mathcal{F} -torsionfree and $\sigma \mathcal{F}$ -cocyclic left R-module M, there exists an \mathcal{X} -module L with essential submodule M such that $\operatorname{Rad}_{\mathcal{F}}(L) = 0$.

Corollary 3.5. Let M be a left R-module and \mathcal{X} an I-class in the category $\sigma[M]$. Then the following assertions are equivalent.

- (1) M is co-semisimple.
- (2) Every finitely cogenerated left R-module in $\sigma[M]$ is an \mathcal{X} -module.
- (3) Every σ -cocyclic left R-module in $\sigma[M]$ is an \mathcal{X} -module.

For M = R, Corollary 3.5 gives characterizations of left V-rings by generalized injectivity.

Page and Yousif in [10] proved that a finitely generated left R-module M is a noetherian co-semisimple module if and only if every semisimple left R-module is M-injective. Recall that a left R-module M is locally noetherian if every finitely generated submodule of M is noetherian. We have

Proposition 3.6. Let M be a left R-module and \mathcal{X} an I-class in the category $\sigma[M]$. Then the following conditions are equivalent.

- (1) M is a locally noetherian co-semisimple left R-module.
- (2) Every semisimple left R-module (in $\sigma[M]$) is M-injective.
- (3) Every semisimple left R-module (in $\sigma[M]$) is the direct sum of a finitely cogenerated left R-module and an M-injective module.
- (4) For every semisimple left R-module N in σ[M], every essential extension in σ[M] of N is an X-module.
- (5) For every semisimple left R-module N in $\sigma[M]$, every submodule of an essential extension in $\sigma[M]$ of N is an \mathcal{X} -module.

If \mathcal{X} is closed under direct summands, then the following are also equivalent.

- (6) For every semisimple left R-module N in σ[M], every essential extension in σ[M] of N is the direct sum of a finitely cogenerated module and an X-module.
- (7) For every semisimple left R-module N in $\sigma[M]$, every submodule of an essential extension in $\sigma[M]$ of N is the direct sum of a finitely cogenerated module and an \mathcal{X} -module.

Proof. The equivalence of (1), (2) and (3) is proved in [8].

(4) \implies (2). Let N be a semisimple left R-module in $\sigma[M]$. Then $N \oplus I(N)$ is an essential extension of $N \oplus N$. Thus $N \oplus I(N)$ is an \mathcal{X} -module by condition (4), which implies that N is I(N)-injective by the definition of I-class. Now it is easy to see that N = I(N) is M-injective.

(2) \implies (5). Let N be a semisimple left R-modules in $\sigma[M]$ and L a submodule of an essential extension D in $\sigma[M]$ of N. Then N is M-injective

by (2). Thus N is D-injective by [14, 16.3]. Now it is easy to see that N = Dand thus D is semisimple and M-injective. Therefore L, a direct summand of D, is M-injective. Since \mathcal{X} contains all M-injective left R-modules in $\sigma[M]$, it follows that every submodule of an essential extension in $\sigma[M]$ of a semisimple left R-module in $\sigma[M]$ is an \mathcal{X} -module.

The implications $(5) \Longrightarrow (4)$, $(7) \Longrightarrow (6)$ and $(5) \Longrightarrow (7)$ are clear.

(6) \implies (4). Note that the class of semisimple left *R*-modules is closed under direct sums. It is easy to see that every direct sum of essential extensions in $\sigma[M]$ of semisimple left *R*-modules in $\sigma[M]$ is essential extension of a semisimple module. Now, by analogy with the proof of the main result of [6], we see that every essential extension in $\sigma[M]$ of a semisimple left *R*-module in $\sigma[M]$ is an \mathcal{X} -module.

References

- 1. N. V. Dung, D. V. Huynh, P. F. Smith and R. Wisbauer, *Extending Modules*, Pitman Research Notes in Math., Ser. 313, Longman Sci. and Tech., 1994.
- K. R. Fuller, Relative projectivity and injectivity classes determined by simple modules, J. London Math. Soc. 5 (1972), 423-431.
- J. L. Garcia Hernandez and J. L. Gomez Pardo, V-rings relative to Gabriel topologies, *Comm. Algebra* 13 (1985), 59-83.
- Y. Hirano, Regular modules and V-modules, *Hiroshima Math. J.* 11 (1981), 125-142.
- A. Koehler, Quasi-projective covers and direct sums, Proc. Amer. Math. Soc. 24 (1970), 655-658.
- Liu Zhongkui, Characterizations of rings by their modules, Comm. Algebra 21 (1993), 3663-3671.
- Liu Zhongkui and J. Ahsan, Characterizations of *F*-V-rings by quasi-continuous modules, Northeast. Math. J. 11 (1995), 1-8.
- 8. Liu Zhongkui and Li Fang, On locally noetherian modules, submitted.
- S. H. Mohamed and B. J. Muller, *Continuous and Discrete Modules*, London Math. Soc. Lecture Note Series 147, Cambridge University Press, 1990.
- S. S. Page and M. F. Yousif, Relative injectivity and chain conditions, *Comm. Algebra* 17 (1989), 899-924.
- 11. V. S. Ramamurthi, A note on regular modules, *Bull. Austral. Math. Soc.* 11 (1974), 359-364.
- 12. H. Tominaga, On s-unital rings, Math. J. Okayama Univ. 18 (1976), 117-134.
- R.Wisbauer, Generalized co-semisimple modules, Comm. Algebra 18 (1990), 4235-4253.

Liu Zhongkui and Javed Ahsan

- R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach Science Publishers, 1991.
- 15. Xue Weimin, Characterization of rings using direct-projective modules and direct-injective modules, J. Pure Appl. Algebra 87 (1993), 99-104.
- R. Yue Chi Ming, On generalizations of self-injective and strongly regular rings, Kyungpook Math. J. 26 (1986), 137-148.
- 17. R. Yue Chi Ming, On von Neumann regular rings, X, Collect. Math. **34** (1983), 81-94.
- R. Yue Chi Ming, On quasi-injectivity and quasi-continuity, Serdica Math. J. 9 (1983), 301-306.
- Wang Dingguo, Rings characterized by injectivity classes, Comm. Algebra 24 (1996), 717-726.

Liu Zhongkui Department of Mathematics, Northwest Normal University Lanzhou, Gansu 730070, China

Javed Ahsan Department of Mathematical Sciences King Fahd University of Petroleum and Minerals Dhahran 31261, Saudi Arabia