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CONVERGENCE RESULTS FOR A FAST ITERATIVE
METHOD IN LINEAR SPACES

Ioannis K. Argyros

Abstract. We provide convergence theorems for a fast iterative method
to solve nonlinear operator equations in a Banach space. The same
method under stronger conditions was found to be of order four, under
standard Newton-Kantorovich type assumptions. The monotone con-
vergence of this method in a partially ordered topological space is also
examined here.

1. Introduction

In this study we are concerned with the problem of approximating a locally
unique solution x∗ of the nonlinear equation

F (x) = 0.(1)

In the first section, F is a nonlinear operator defined on some convex
subset D of a Banach space E1 with values in a Banach space E2. In the
second section, E1 and E2 are assumed to be partially ordered topological
spaces [4, 6, 10, 11].

We recently introduced the method given by

yn = xn − F ′(xn)−1F (xn),(2)

H(xn, yn) = F ′(xn)−1
(
F ′
(
xn +

2
3

(yn − xn)
)
− F ′(xn)

)
,(3)
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324 Ioannis K. Argyros

xn+1 = yn −
3
4
H(xn, yn)

(
I − 3

2
H(xnyn)

)
(yn − xn)(4)

for all n ≥ 0, and for some x0 ∈ D. Here F ′(xn) denotes a linear operator
which is the Fréchet-derivative of the operator F evaluated at x = xn. We
showed that under standard Newton-Kantorovich hypotheses, the order of
convergence of the iteration {xn} (n ≥ 0) to a locally unique solution x∗ of
equation (1) is four [5, 6]. We used Lipschitz-type hypotheses on the second
Fréchet-derivative of F as well as a hypothesis on an upper bound of the same
derivative. Despite the fact that these results can apply to solve multilinear
operator equations [1], and in other special cases, in general, it is difficult to
verify these conditions. That is why, here we relax these conditions in the first
section using only Lipschitz-hypotheses on the first Fréchet-derivative only.

These results can easily be extended under weaker Hölder continuity as-
sumptions or to include nondifferentiable operators (see for example [2] and
[3] respectively for Newton’s method).

In the second section we examine the monotone convergence of the same
method in a partially ordered topological space setting [4, 6, 10, 11].

For a background on two step iterative methods, we refer the reader to
[5, 6], and the references there. Note that all previous methods mentioned
above are slower than our method.

2. Convergence Analysis

We will need to introduce the constants

t0 = 0, s0 ≥ ‖y0 − x0‖, β ≥ ‖F ′(x0)−1‖ for some x0 ∈ D,(1.1)

a = 1− βMR1,(1.2)

a0 =1− βM
(
R1 +R

2

)
for fixed R1 and R with 0 ≤ R1 ≤ R,

and some M > 0,
(1.3)

the sequences

ān = 1− βM‖xn − x0‖,(1.4)

an = 1− βMtn,(1.5)

h̄n+1 =
M

2

[
‖xn+1 − yn‖2 + 2‖xn − yn‖2

(
1 +

2βM‖yn − xn‖
3(1− βM‖xn − x0‖

)]
,(1.6)
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hn+1 =
M

2

[
(tn+1 − sn)2 + 2(sn − tn)

(
1 +

2βM(sn − tn)
3(1− βMtn)

)]
,(1.7)

b̄n =
βM‖yn − xn‖

2(1− βM‖xn − x0‖)

(
1 +

βM‖yn − xn‖
1− βM‖xn − x0‖

)
‖yn − xn‖,(1.8)

bn =
βM(sn − tn)
2(1− βMtn)

(
1 +

βM(sn − tn)
1− βMtn

)
(sn − tn),(1.9)

sn+1 = tn+1 +
βhn+1

an+1
,(1.10)

tn+1 = sn + bn,(1.11)

en+1 = β

[
1− βM

2
(‖x∗ − x0‖+ ‖xn+1 − x0‖)

]−1
(1.12)

and the function

T (r) = s0 +
Mr

2(1− βMr)

[
r + 2 +

4βMr

3(1− βMr)
+

βMr2

1− βMr

]
(1.13)

on [0, R].
We can now state and prove the result:

Theorem 1.1. Let F : D ⊆ E1 → E2 be a nonlinear operator whose
Fréchet-derivative satisfies the Lipschitz condition

‖F ′(x)− F ′(y)‖ ≤M‖x− y‖ for all x, y ∈ D and some M > 0.(1.14)

Moreover, assume:

( i ) there exists a minimum nonnegative number R1 such that

T (R1) ≤ R1;(1.15)

(ii) the numbers R, R1, with R1 ≤ R, are such that the constants, a and a0,
given by (1.2) and (1.3) respectively, are positive and R is such that

U(x0, R) = {x ∈ E1 | ‖x− x0‖ ≤ R} ⊆ D.(1.16)

Then

(a) the scalar sequences {tn} (n ≥ 0) generated by (1.10) and (1.11) is mono-
tonically increasing and bounded above by its limit, which is number R1;
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(b) the sequence {xn} (n ≥ 0) generated by (2)–(4) is well-defined, remains
in U(x0, R1) for all n ≥ 0, and converges to a solution x∗ of the equation
F (x) = 0, which is unique in U(x0, R).

Moreover, the following estimates are true for all n ≥ 0,

‖yn − xn‖ ≤ sn − tn,(1.17)

‖xn+1 − yn‖ ≤ tn+1 − sn,(1.18)

‖x∗ − xn‖ ≤ R1 − tn,(1.19)

‖x∗ − xn‖ ≤ R1 − sn,(1.20)

‖F (xn+1)‖ ≤ h̄n+1 ≤ hn+1,(1.21)

‖x∗ − xn+1‖ ≤ en+1h̄n+1 ≤ R1 − tn+1(1.22)

and
‖yn − xn‖ ≤ ‖x∗ − xn‖+

βM

2ān
‖xn − x∗‖2.(1.23)

Proof. (a) By (1.1), (1.10) and (1.11), we deduce that the sequence {tn}
(n ≥ 0) is monotonically increasing and nonnegative. By the same relations,
we can easily get t0 ≤ s0 ≤ t1 ≤ s1 ≤ R1. Let us assume that tk ≤ sk ≤
tk+1 ≤ sk+1 ≤ R1 for k = 0, 1, 2, . . . , n. Then by relations (1.10) and (1.11),
we can have in turn

tk+2 = tk+1 +
Mβ

2(1− βMtk+1)

[
(tk+1 − sn)2 + 2(sk − tk)

(
1 +

2βM(sk − tk)
3(1− βMtk)

)]
+
βM(sk+1 − tk+1)
2(1− βMtk+1)

(
1 +

βM(sk+1 − tk+1)
1− βMtk+1

)
(sk+1 − tk+1)

≤ tk+1 +
Mβ

2(1− βMR1)

[
(tk+1 − sk)2 + 2(sk − tk) +

4βM(sk − tk)2

3(1− βMR1)

+(sk+1 − tk+1)2 +
βM(sk+1 − tk+1)3

1− βMR1

]

≤ · · · ≤ s0 +
Mβ

2(1− βMR1)

[
R2

1 + 2R1 +
4βMR2

1
3(1− βMR1)

+
βMR3

1
1− βMR1

]
= T (R1) ≤ R1,

by (1.15) (we have used the fact that (tk+1− sk)2 + (sk+1− tk+1)2 ≤ r(ss+1−
sk)).
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Hence, the scalar sequences {xn} (n ≥ 0) is bounded above by R1.
By hypothesis (1.15), R1 is the minimum positive zero of the equation

T (r)− r = 0 in [0, R1] and from the above R1 = limn→∞ tn.
(b) Using (2), (3), (4) and (1.1), we get x1, y0 ∈ U(x0, R1), and that

estimates (1.17) and (1.18) are true for n = 0. Let us assume that they are
true for k = 0, 1, 2, . . . , n− 1. In fact, by the induction hypothesis

‖xk+1 − x0‖≤ ‖xk+1 − y0‖+ ‖y0 − x0‖ ≤ ‖xk+1 − yk‖+ ‖yk − y0‖+ ‖y0 − x0‖

≤ · · · ≤ (tk+1 − sk) + (sk − s0) + s0 ≤ tk+1 ≤ R1,

and

‖yk+1 − x0‖≤ ‖yk+1 − y0‖+ ‖y0 − x0‖
≤ ‖yk+1 − xk+1‖+ ‖xk+1 − yk‖+ ‖yk − y0‖+ ‖y0 − x0‖
≤ · · · ≤ (sk+1 − tk+1) + (tk+1 − sk) + (sk − s0) + s0 ≤ sk+1 ≤ R1.

That is, xn, yn ∈ U(x0, R1) for all n ≥ 0.
Using hypothesis (1.14), we have

‖F ′(x0)−1‖ ‖F ′(xk)− F ′(x0)‖ ≤ βM‖xk − x0‖ ≤ βMtk ≤ βMR1 < 1,

since a > 0. It now follows from the Banach lemma on invertible operators
that F ′(xk) is invertible, and

‖F ′(xn)−1‖ ≤ β

ān
≤ β

an
.(1.24)

By (2)–(4), we can easily obtain the approximation

F (xn+1)=
∫ 1

0
[F ′(yn + t(xn+1 − yn))− F ′(yn)](xn+1 − xn) dt

+
∫ 1

0
[F ′(xn + t(yn − xn))− F ′(xn)](yn − xn) dt

−3
4

(
F ′
(
xn + 2yn

3

)
− F ′(xn)

)
(yn − xn)

−1
2

{
(F ′(yn)− F ′(xn))

−3
2

(
F ′
(
xn + 2yn

3

)
− F ′(xn)

)}
H(xn, yn)(yn − xn).

(1.25)
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By the induction hypotheses, (1.14) and (1.25), we can have in turn

‖F (xn+1)‖≤ M

2
‖xn+1 − yn‖2 +

M

2
‖xn − yn‖2 +

M

2
‖yn − xn‖2

+
M

2
‖yn − xn‖2

2βM‖yn − xn‖
1− βM‖xn − x0‖

+
M

2
‖yn − xn‖2

2βM‖yn − xn‖
1− βM‖xn − x0‖

= h̄n+1 ≤ hn+1,

by (1.6) and (1.7).
By relations (2), (1.6), (1.7) and (1.24), we get

‖yn+1−xn+1‖ ≤ ‖F ′(xn+1)−1‖ ·‖F (xn+1)‖ ≤ βh̄n+1

ān+1
≤ βhn+1

an+1
= sn+1−xn+1,

by (1.10), which shows (1.17) for all n ≥ 0.
Similarly from (3), (4) and the above

‖xn+1 − yn‖≤
3
4
‖H(xn, yn)‖

(
1 +

3
2
‖H(xn, yn)‖

)
‖yn − xn‖

≤ b̄n ≤ bn = tn+1 − sn

which shows (1.18) for all n ≥ 0.
It now follows from estimates (1.17) and (1.18) that the sequence {xn}

(n ≥ 0) is Cauchy in a Banach space E1 and as such, it converges to some
x∗ ∈ U(x0, R1) with F (x∗) = 0 (by (2)).

To show uniqueness, we assume that there exists another solution y∗ of
equation (1) in U(x0, R).

Then from hypothesis (1.14), we get

‖F ′(x0)−1‖
∫ 1

0
‖F ′(x∗ + t(y∗ − x∗))− F ′(x0)‖ dt

≤ βM
∫ 1

0
‖x∗ + t(y∗ − x∗)− x0‖ dt

≤ βM
∫ 1

0
[(1− t)‖x∗ − x0‖+ t‖y∗ − x0‖] dt

≤ βM
(
R1 +R2

2

)
< 1, since a0 > 0.

It now follows that the linear operator
∫ 1
0 F

′(x∗ + t(y∗ − x∗)) dt is invertible,
and from the approximation

F (y∗)− F (x∗) =
∫ 1

0
F ′(x∗ + t(y∗ − x∗)) dt(y∗ − x∗),
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it follows that x∗ = y∗.
Estimates (1.19) and (1.20) follow easily from estimates (1.17) and (1.18).
Finally using the triangle inequality, and the approximations

xn+1 − x∗= B−1
n+1F (xn+1),

Bn+1 =
∫ 1

0
F ′(x∗ + t(xn+1 − x∗)) dt,

yn − xn= x∗ − xn + F ′(xn)−1

{∫ 1

0
[F ′(xn + t(x∗ − xn))− F ′(xn)] · (x∗ − xn)

}
dt

and the estimate

‖F ′(x0)−1‖
∫ 1

0
‖F ′(x∗ + t(xn+1 − x∗))− F ′(x0)‖ dt

≤ βM
∫ 1

0
‖x∗ + t(xn+1 − x∗)− x0‖ dt

≤ βM
∫ 1
0 [(1− t)‖x∗ − x0‖+ t‖xn+1 − x0‖] dt

≤ βMR1 < 1 since a > 0,

and
‖B−1

n+1‖ ≤ en+1,

where en+1 is given by (1.12), we can immediately obtain estimates (1.22) and
(1.23).

That completes the proof of the theorem.

Note that estimates (1.22) and (1.23) can be solved for ‖xn − x∗‖ for all
n ≥ 0.

We can show that under the hypotheses a > 0, a0 > 0 in the above theorem
the sequences {sn}, {tn} (n ≥ 0) and the function T can be replaced by

‖yn − xn‖ ≤ vn − wn(1.26)

and

‖xn+1 − yn‖ ≤ wn+1 − vn,(1.27)

where

wn+1 = vn +
15βM

8(1− βMwn)
(vn − wn)2, w0 = t0 = 0,(1.28)

vn+1 = wn+1 +
Mβ

2(1− βMwn+1)
((wn+1 − vn)2 + 4(vn − wn)2),(1.29)
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and

T1(r) = s0 +
4Mβr2

2(1− βMr)
+

15Mβr2

8(1− βMr)
.(1.30)

It can then easily be seen that under the hypotheses of the theorem

‖yn − xn‖≤ sn − tn ≤ vn − wn,
‖xn+1 − yn‖≤ tn+1 − sn ≤ wn+1 − vn,

and

‖xn − x∗‖ ≤ R1 − tn ≤ R∗ − vn, for all n ≥ 0 (provided that R∗ ≤ R),

where R∗ is the minimum nonnegative zero of the equation T1(r) − r = 0 on
[0, R∗].

Let us now introduce the scalar function

g(t) =
k

2
t2 − 1

β
t+

η

β

for some fixed numbers k, β, η, with k, β > 0 and η ≥ 0, the constants

r1 =
1−
√

1− 2h
h

η, r2 =
1 +
√

1− 2h
h

η, η =
r1

r2
,

k1 =
(
M2 +

N

6β

)1/2
, h1 = .46568 . . . ,

and the iterations for all n ≥ 0,

pn= qn −
g(gn)
g′(qn)

, q0 = 0,

qn+1 = pn −
3
4
Hn

(
1− 3

2
Hn

)
(pn − qn),

Hn= g′(qn)−1
(
g′
(
pn +

2
3

(pn − qn)
)
− g′(pn)

)
,

and

αn =
(1− θ2)η

1− 1
3
√

5
(3
√

5θ)4n
(3
√

5θ)4n−1.

In [5] and [6], we showed that if

‖F ′′(x)‖ ≤M, ‖F ′′(x)− F ′′(y)‖ ≤ N‖x− y‖,
‖F ′(x̄0)−1‖ ≤ β, ‖ȳ0 − x̄0‖ ≤ η
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and
h ≥ h1, k ≥ k1,

then
‖x̄n − x̄∗‖ ≤ r1 − gn≤ αn, F (x̄∗) = 0,

‖x̄n+1 − ȳn‖≤ qn+1 − pn
and

‖ȳn − x̄n‖ ≤ pn − qn,

where
ȳn= x̄n − F ′(x̄n)−1F (x̄n),

x̄n+1 = ȳn − 3
4H̄n

(
I − 3

2H̄n

)
(ȳn − x̄n)

and

H̄n = F ′(x̄n)−1
[
F ′
(
x̄n +

2
3

(ȳn − x̄n)
)
− F ′(x̄n)

]
for all n ≥ 0.

Hence the order of convergence of iteration (2)–(4) under the hypotheses of
Theorem 1.1 is almost four.

3. Monotone Convergence

In this section we will assume that the reader is familiar with the meaning
of a divided difference of order one and the notion of a partially ordered
topological space, POTL-space [4, 6, 10, 11]. From now on we assume that E1
and E2 are POTL-spaces.

We introduce the iterations

F (vn) + [xn, xn](wn − vn) = 0,(2.1)

F (xn) + [xn, xn](yn − xn) = 0,(2.2)

− Ln(wn − vn) + [xn, xn](vn+1 − wn) = 0,(2.3)

and

− Ln(yn − xn) + [xn, xn](xn+1 − yn) = 0,(2.4)

where

Ln =
3
8

[[
xn +

2
3

(yn − xn), xn +
2
3

(yn − xn)
]
− [xn, xn]

]
Bn

·
[
3
[
xn +

2
3

(yn − xn), xn +
2
3

(yn − xn)
]
− 5[xn, xn]

]
for all n ≥ 0.

(2.5)
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Here [x, y] denotes a divided difference of order one, and Bn denotes con-
tinuous, nonnegative left subinverses of the linear operator An = [xn, xn] for
all n ≥ 0. Note that the operator Ln can also be written as

Ln =
1
2

[[xn, yn] + [yn − xn] + 2[yn, yn]] Bn

· [[xn, yn] + [yn, xn] + 2[yn, yn]− 2[xn, xn]] for all n ≥ 0.
(2.6)

We can now prove the main result:

Theorem 2.1. Let F be a nonlinear operator defined on a convex subset
D of a regular POTL-space E1 with values in another POTL-space E2. Let v0
and x0 be two points of D such that

v0 ≤ x0 and F (v0) ≤ 0 ≤ F (x0).(2.7)

Suppose that F has a divided difference of order one on D0 = 〈v0, x0〉 = {x ∈
E1 | v0 ≤ x ≤ x0} ⊆ D satisfying

A0 = [x0, x0] has a continuous nonnegative left subinverse B0,(2.8)

[x0, y] ≥ 0 for all v0 ≤ y ≤ x0,(2.9)

[x, v] ≤ [x, y] if v ≤ y,(2.10)

[x, y] + [y, x] + 2[y, y]− 2[x, x] ≥ 0 if y ≤ x,(2.11)

there exists a positive number c such that

[x, y] + [y, x] + 2[y, y]− (c+ 2)[x, x] ≤ 0,
c

2
[[x, y] + [y, x] + 2[y, y]] + [z, x] ≤ [p, q]

(2.12)

for all v ≤ y ≤ p ≤ q ≤ x.
Then there exist two sequences {vn}, {xn} (n ≥ 0) satisfying the approxi-

mations (2.1)–(2.4),

v0 ≤ w0 ≤ v1 ≤ · · · ≤ wn ≤ vn+1 ≤ xn+1 ≤ yn ≤ · · · ≤ x1 ≤ y0 ≤ x0,

and
lim
n→∞

vn = v∗ ≤ x∗ = lim
n→∞

xn with x∗, v∗ ∈ D0.

Moreover, if the operator An is inverse nonnegative, then any solution u
of the equation F (x) = 0 in D0 belongs to 〈v∗, x∗〉.
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Proof. Let us define the operator

P1 : 〈0, x0 − v0〉 → E1, P1(x) = x−B0(F (v0) +A0(x)).

This operator is isotone and continuous. We can have in turn

P1(0)= −B0F (v0) ≥ 0, by (2.7),
P1(x0 − v0)= x0 − v0 −B0F (x0) +B0(F (x0)− F (v0)−A0(x0 − v0))

≤ x0 − v0 +B0([x0, v0]− [x0, x0])(x0 − v0) by (2.7)
≤ x0 − v0,

since [x0, v0] ≤ [x0, x0] by (2.10).
By Kantorovich’s theorem [6, 10], the operator P1 has a fixed point z1 ∈

〈0, x0 − v0〉: P1(z1) = z1. Set w0 = v0 + z1, and we have the estimates

F (v0) +A0(w0 − v0) = 0,
F (w0) =F (w0)− F (v0)−A0(w0 − v0) ≤ 0

and
v0 ≤ w0 ≤ x0.

We define the operator

P2 : 〈0, x0 − w0〉 → E1, P2(x) = x+B0(F (x0)−A0(x)).

This operator is isotone and continuous. We can have in turn

P2(0)= B0F (x0) ≥ 0, by (2.7),
P2(x0 − w0)= x0 − w0 +B0F (w0) +B0(F (x0)− F (w0)−A0(x0 − w0))

≤ x0 − w0 +B0([x0, w0]− [x0, x0])(x0 − w0) by (2.7)
≤ x0 − w0,

since [x0, w0] ≤ [x0, x0] by (2.10).
By Kantorovich’s theorem, there exists z2 ∈ 〈0, x0−w0〉 such that P2(z2) =

z2. Set y0 = x0 − z1, and we have the estimates

F (x0) +A0(y0 − x0) = 0,
F (y0) =F (y0)− F (x0)−A0(y0 − x0) ≥ 0

and
v0 ≤ w0 ≤ y0 ≤ x0.

We now define the operator

P3 : 〈0, x0 − v0〉 → E1, P3(x) = x−B0(L0B0F (v0) +A0(x)).
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where L0 = [x0, x0]− [x0, y0].
This operator is isotone and continuous. We have in turn

P3(0)= −B0L0B0F (v0) ≥ 0 by (2.7),
P3(x0 − v0)= x0 − v0 −B0L0B0F (x0) +B0(L0B0(F (x0)− F (v0))

−[x0, x0](x0 − v0)).

But, by (2.5), (2.6), and (2.10), we can have

L0B0(F (x0)− F (v0))− [x0, x0](x0 − v0)
= (L0B0[x0, v0]− [x0, x0])(x0 − v0) ≤ (L0 − [x0, x0])(x0 − v0) ≤ 0.

Therefore, we have
P3(x0 − v0) ≤ x0 − v0.

By Kantorovich’s theorem, there exists z3 ∈ 〈0, x0−v0〉 such that P3(z3) =
z3. Set v1 = w0 + z3, and we have the estimates

−L0(w0 − v0) +A0(v1 − w0) = 0

and
L0(w0 − v0) ≥ 0.

Furthermore, we can define the operator

P4 : 〈0, x0 − v0〉 → E1, P4(x) = x+B0(L0B0F (x0)−A0(x)).

This operator is isotone and continuous. We have in turn

P4(0)= B0L0B0F (x0) ≥ 0 by (2.7),
P4(x0 − v0)= x0 − v0 +B0L0B0F (v0)

+B0(L0B0(F (x0)− F (v0))−A0(x0 − v0)) ≤ x0 − v0

(by using the same approach as for P3). By Kantorovich’s theorem, there
exists z4 ∈ 〈0, x0 − v0〉 such that P4(z4) = z4. Set x1 = y0 − z4, and we have
the estimates

−L0(y0 − x0) +A0(x1 − y0) = 0

and
L0(y0 − x0) ≤ 0.

From the approximation (2.3), we now have

v1 − w0 = w0 +B0L0(w0 − v0)− w0 = B0L0(w0 − v0) ≥ 0.

Hence, we obtain w0 ≤ v1. Moreover, from the approximation (2.4), we have

x1 − y0 = y0 +B0L0(y0 − x0)− y0 = B0L0(y0 − x0) ≤ 0.
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That is, we get x1 ≤ y0. Furthermore, we can obtain in turn

v1 − x1 = w0 +B0L0(w0 − v0)− (y0 −B0L0(y0 − x0))
= w0 − y0 +B0L0(w0 − v0 + x0 − y0)
= v0 −B0L0F (v0)− (x0 −B0F (x0)) +B0L0(v0 −B0F (v0))
−B0L0(v0) +B0L0(x0)−B0L0(x0 −B0F (x0))

= v0 − x0 −B0(F (v0)− F (x0))−B0L0B0(F (v0)− F (x0))
= (I −B0[v0, x0]−B0L0B0[v0, x0])(v0 − x0).

But, using hypotheses (2.11) and (2.12), we have

B0L0B0[v0, x0]+B0[v0, x0] ≤ B0L0B0A0 +B0[v0, x0]
≤ B0L0 +B0[v0, x0] ≤ B0(L0 + [v0, x0])
≤ B0[p, q] ≤ B0A0 ≤ I.

We now obtain v1 ≤ x1. From all the above, we now have that

v0 ≤ w0 ≤ v1 ≤ x1 ≤ y0 ≤ x0.

By hypothesis (2.10), it follows that the operator An has a continuous
nonnegative left subinverse Bn for all n ≥ 0. Proceeding by induction, we can
show that there exist two sequences {vn}, {xn} (n ≥ 0) satisfying (2.1)–(2.4)
in a regular space E1 and as such, they converge to some v∗, x∗ ∈ D0. That
is, we have

lim
n→∞

vn = v∗ ≤ x∗ = lim
n→∞

xn.

If v0 ≤ u ≤ x0 and F (u) = 0, then we can obtain

A0(y0 − u)= A0(x0 −B0F (x0))−A0u = A0(x0 − u)−A0B0(F (x0)− F (u))
= A0(I −B0[x0, u])(x0 − u) ≥ 0, since B0[x0, u] ≤ B0A0 ≤ I.

Similarly, we show A0(w0 − u) ≤ 0.
If the operator A0 is inverse nonnegative, then it follows from the above

that w0 ≤ u ≤ y0. Proceeding by induction, we deduce that wn ≤ u ≤ yn,
from which it follows that wn ≤ vn ≤ wn+1 ≤ u ≤ yn+1 ≤ xn ≤ yn for all
n ≥ 0. That is, we have vn ≤ u ≤ xn for all n ≥ 0. Hence, we get v∗ ≤ u ≤ x∗.

That completes the proof of the theorem.

In what follows, we shall give some natural conditions under which the
points v∗ and x∗ are solutions of the equation F (x) = 0.

Theorem 2.2. Under the hypotheses of Theorem 2.1, suppose that F is
continuous at v∗ and x∗. If one of the following conditions is satisfied
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(a) x∗ = y∗;

(b) E1 is normal and there exists an operator Q : E1 → E2 (Q(0) = 0) which
has an isotone inverse continuous at the origin and such that An ≤ T
for sufficiently large n;

(c) E2 is normal and there exists an operator R : E1 → E2 (R(0) = 0)
continuous at the origin and such that An ≤ R for sufficiently large n;

(d) the operators An are equicontinuous for all n ≥ 0; and

(e) E2 is normal and [u, v] ≤ [x, y] if u ≤ x and v ≤ y.
Then, we have

F (v∗) = F (x∗) = 0.

Proof.

(a) Using the continuity of F and F (vn) ≤ 0 ≤ F (xn) we get F (v∗) ≤ v∗ ≤
F (v∗). That is, we obtain F (x∗) = F (v∗) = 0.

(b) By (2.1) and (2.2), we get

0 ≥ F (vn) = An(vn − wn) ≥ Q(vn − wn),
0 ≤ F (xn) = An(xn − yn) ≤ Q(xn − yn).

Hence, we get

0 ≥ Q−1F (vn) ≥ vn − wn, 0 ≤ Q−1F (xn) ≤ xn − yn.

Since E1 is normal and limn→∞(vn − wn) = limn→∞(xn − yn) = 0, we
have limn→∞Q

−1F (vn) = limn→∞Q
−1F (xn) = 0. Hence, by continuity,

we get F (v∗) = F (x∗) = 0.

(c) As above, we get

0 ≥ F (vn) ≥ R(vn − wn), 0 ≤ F (xn) ≤ R(xn − yn).

Using the normality of E2 and the continuity of F and R, we get F (v∗) =
F (x∗) = 0.

(d) From the equicontinuity of the operator An, we have limn→∞An(vn −
wn) = limn→∞An(xn − yn) = 0. Hence, by (2.1) and (2.2), F (v∗) =
F (x∗) = 0.

(e) Using hypotheses (2.9)–(2.12), we get in turn

0 ≤ F (yn)= F (yn)− F (xn)−An(yn − xn)
= (An − [yn, xn])(xn − yn) ≤ ([x0, x0]− [x∗, x∗])(xn − yn).
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Since E2 is normal and limn→∞(xn−yn) = 0, we get limn→∞ F (xn) = 0.
Moreover, from hypothesis (2.10)

[x∗, x∗](xn−x∗) ≤ [x∗, xn](xn−x∗) = F (xn)−F (x∗) ≤ [x0, x0](xn−x∗)

and by the normality of E2, F (x∗) = limn→∞ F (xn). Hence, we get
F (x∗) = 0. The result F (v∗) = 0 can be obtained similarly.

The proof of the theorem is complete.

As in Theorems 2.1 and 2.2, we can prove the following result (see also
[4, 6, 10]):

Theorem 2.3. Assume that the hypotheses of Theorem 2.1 are true. Then
the approximations

yn = xn −BnF (xn),
xn+1 = yn +BnLn(yn − xn), Ln = [xn, xn]− [xn, yn],
wn = vn −BnF (vn)

and
vn+1 = wn +BnLn(wn − vn),

where the operators Bn are nonnegative subinverses of An, generate two se-
quences {vn} and {xn} satisfying approximations (2.1)–(2.4). Moreover, for
any solution u ∈ 〈v0, x0〉 of the equation F (x) = 0 we have

u ∈ 〈vn, xn〉, n ≥ 0.

Furthermore, assume that the following are true:

(a) E2 is a POTL-space and E1 is a normal POTL-space;

(b) limn→∞ xn = x∗ and limn→∞ vn = v∗;

(c) F is continuous at v∗ and x∗; and

(d) there exists a continuous nonsingular nonnegative operator T such that
Bn ≥ T for sufficiently large n.
Then

F (v∗) = F (x∗) = 0.
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