TAIWANESE JOURNAL OF MATHEMATICS
Vol. 3, No. 3, pp. 303-310, September 1999

BIPARTITE STEINHAUS GRAPHS*

Yueh-Shin Lee and G. J. Chang

Abstract

A Steinhaus matrix is a symmetric 0-1 matrix $\left[a_{i, j}\right]_{n \times n}$ such that $a_{i, i}=0$ for $0 \leq i \leq n-1$ and $a_{i, j} \equiv\left(a_{i-1, j-1}+a_{i-1, j}\right)(\bmod 2)$ for $1 \leq i<j \leq n-1$. A Steinhaus graph is a graph whose adjacency matrix is a Steinhaus matrix. In this paper, we present a new characterization of bipartite Steinhaus graphs.

1. Introduction

A Steinhaus matrix is a symmetric 0-1 matrix $\left[a_{i, j}\right]_{n \times n}$ such that $a_{i, i}=$ 0 for $0 \leq i \leq n-1$ and $a_{i, j} \equiv\left(a_{i-1, j-1}+a_{i-1, j}\right)(\bmod 2)$ for $1 \leq i<$ $j \leq n-1$. A Steinhaus triangle is the upper triangular part of a Steinhaus matrix. Note that a Steinhaus matrix and a Steinhaus triangle determine each other. A Steinhaus graph is a graph whose adjacency matrix is a Steinhaus matrix. Fig. 1 shows a Steinhaus matrix and its corresponding graph. Note that a binary string $a_{0,0} a_{0,1} \ldots a_{0, n-1}$ (with $a_{0,0}=0$) completely determines a Steinhaus matrix (graph). It is often said that the binary string generates the Steinhaus matrix (graph).

The concept of Steinhaus triangles was first introduced by Steinhaus [16]. Harborth [12, 13], Wang [17], and Chang [5] studied the number of ones in Steinhaus triangles. Molluzzo [15] introduced the concept of Steinhaus graphs. This class of graphs was then extensively studied by Dymàček $[7,8,9]$ (also see $[1,2,3,4]$). Recently, Dymàček and Whaley [11] characterized all binary strings that generate bipartite Steinhaus graphs, and gave a recursive formula for the number $b(n)$ of bipartite Steinhaus graphs of order n. For a good survey, see [10].

[^0]FIG. 1. A Steinhaus matrix and its corresponding graph.
In this paper, we give a new characterization of bipartite Steinhaus graphs, which is also proved in [6] alternatively and used to give a solution of $b(n)$ in terms of the binary representation of $n-2$ (also see [14]).

For any Steinhaus graph G with adjacency matrix $\left[a_{i, j}\right]_{n \times n}$, the Steinhaus graph generated by $a_{r, r} a_{r, r+1} \ldots a_{r, s}$, where $0 \leq r \leq s \leq n-1$, is precisely the subgraph of G induced by the vertex subset $\{r, r+1, \ldots, s\}$. Denote by $\operatorname{Adj}(i)$ the set of all vertices adjacent to i and $\operatorname{Adj}^{+}(i)$ the set of all vertices $j>i$ adjacent to i. Note that $\operatorname{Adj}(0)$ completely determines a Steinhaus graph. For instance, the Steinhaus graph with $\operatorname{Adj}(0)=\{1\}$ (respectively, $\{n-1\}$, \emptyset) is a path (respectively, a star, $\overline{K_{n}}$). It is also the case that a Steinhaus graph is completely determined by $v \equiv \min \operatorname{Adj}(0)$ and $\operatorname{Adj}^{+}(v)$. Note that $v \equiv \min \operatorname{Adj}(0)$ gives that $a_{i, j}=0$ and $a_{i, v}=1$ for all $0 \leq i<j<v$. This together with $\operatorname{Adj}^{+}(v)$ determines $\operatorname{Adj}^{+}(v-1)$, and then $\operatorname{Adj}^{+}(v-2), \ldots$ etc.

2. Characterizations of Bipartite Steinhaus Graphs

This section gives a new characterization of bipartite Steinhaus graphs (see Theorem 7).

Suppose $A=\left[a_{i, j}\right]$ is an $n \times n$ Steinhaus matrix. Denote by $M_{1}(A)$ the $2 n \times 2 n$ Steinhaus matrix $\left[a_{i, j}^{\prime}\right]$ generated by $a_{0,0}^{\prime} a_{0,1}^{\prime} \ldots a_{0,2 n-1}^{\prime}$, where $a_{0,2 j}^{\prime}=$ $a_{0, j}$ and $a_{0,2 j+1}^{\prime}=0$ for $0 \leq j \leq n-1$. For $k \geq 2$, recursively define $M_{k}(A)=$ $M_{1}\left(M_{k-1}(A)\right)$. Note that $M_{k}(A)$ is precisely the $2^{k} n \times 2^{k} n$ Steinhaus matrix $\left[a_{i, j}^{\prime \prime}\right]$ generated by $a_{0,0}^{\prime \prime} a_{0,1}^{\prime \prime} \ldots a_{0,2^{k} n-1}^{\prime \prime}$, where $a_{0,2^{k} j}^{\prime \prime}=a_{0, j}$ for $0 \leq j \leq n-1$ and all other $a_{0, j}^{\prime \prime}=0$.

Lemma 1. For any $n \times n$ Steinhaus matrix $A=\left[a_{i, j}\right]$ with $M_{1}(A)=\left[a_{i, j}^{\prime}\right]$, we have $a_{2 i, 2 j}^{\prime}=a_{2 i+1,2 j}^{\prime}=a_{2 i+1,2 j+1}^{\prime}=a_{i, j}$ and $a_{2 i, 2 j+1}^{\prime}=0$ for $0 \leq i \leq j \leq$ $n-1$.

Proof. We shall prove the lemma by induction on i. Suppose $i=0$. By the definition of $M_{1}(A)$, we have $a_{2 i, 2 j}^{\prime}=a_{0,2 j}^{\prime}=a_{0, j}=a_{i, j}$ and $a_{2 i, 2 j+1}^{\prime}=$ $a_{0,2 j+1}^{\prime}=0$. For $j=i(=0)$,

$$
a_{2 i+1,2 j}^{\prime}=a_{2 j, 2 i+1}^{\prime}=0=a_{i, j} \quad \text { and } a_{2 i+1,2 j+1}^{\prime}=0=a_{i, j} .
$$

For $j>i(=0)$,

$$
\begin{gathered}
a_{2 i+1,2 j}^{\prime}=\left(a_{2 i, 2 j-1}^{\prime}+a_{2 i, 2 j}^{\prime}\right) \bmod 2=\left(0+a_{i, j}\right) \bmod 2=a_{i, j} \text { and } \\
a_{2 i+1,2 j+1}^{\prime}=\left(a_{2 i, 2 j}^{\prime}+a_{2 i, 2 j+1}^{\prime}\right) \bmod 2=\left(a_{i, j}+0\right) \bmod 2=a_{i, j} .
\end{gathered}
$$

Therefore, the lemma holds for $i=0$. Suppose the lemma is true for any $i^{\prime}<i$. Consider the case with $i \geq 1$. For any $j \geq i(\geq 1)$,

$$
a_{2 i, 2 j+1}^{\prime}=\left(a_{2(i-1)+1,2 j}^{\prime}+a_{2(i-1)+1,2 j+1}^{\prime}\right) \bmod 2 .
$$

By the induction hypothesis, $a_{2(i-1)+1,2 j}^{\prime}=a_{2(i-1)+1,2 j+1}^{\prime}=a_{i-1, j}$. Therefore, $a_{2 i, 2 j+1}^{\prime}=0$. For $j=i(\geq 1)$, since $a_{2 i+1,2 j}^{\prime}=a_{2 j, 2 i+1}^{\prime}=0$,

$$
a_{2 i, 2 j}^{\prime}=a_{2 i+1,2 j}^{\prime}=a_{2 i+1,2 j+1}^{\prime}=0=a_{i, j} .
$$

For $j>i(\geq 1)$, by the induction hypothesis, we also have

$$
\begin{gathered}
a_{2 i, 2 j}^{\prime}=\left(a_{2(i-1)+1,2(j-1)+1}^{\prime}+a_{2(i-1)+1,2 j}^{\prime}\right) \bmod 2 \\
=\left(a_{i-1, j-1}^{\prime}+a_{i-1, j}\right) \bmod 2=a_{i, j}, \\
a_{2 i+1,2 j}^{\prime}=\left(a_{2 i, 2(j-1)+1}^{\prime}+a_{2 i, 2 j}^{\prime}\right) \bmod 2=\left(0+a_{i, j}\right) \bmod 2=a_{i, j}, \quad \text { and } \\
a_{2 i+1,2 j+1}^{\prime}=\left(a_{2 i, 2 j}^{\prime}+a_{2 i, 2 j+1}^{\prime}\right) \bmod 2=\left(a_{i, j}+0\right) \bmod 2=a_{i, j} .
\end{gathered}
$$

Corollary 2. Suppose $A=\left[a_{i, j}\right]$ is an $n \times n$ Steinhaus matrix and $M_{k}(A)=\left[a_{i, j}^{\prime \prime}\right]$. For $0 \leq i \leq j \leq n-1$, we have $a_{i^{\prime}, 2^{k} j}^{\prime \prime}=a_{i, j}$ for $2^{k} i \leq$ $i^{\prime}<2^{k}(i+1)$ and $a_{2^{k} i, j^{\prime}}^{\prime \prime}=0$ for $2^{k} j<j^{\prime}<2^{k}(j+1)$.

Proof. The corollary follows from Lemma 1 and an induction on k.
Corollary 3. Suppose G and H are Steinhaus graphs corresponding to Steinhaus matrices A and $M_{k}(A)$, respectively. Then G is isomorphic to the subgraph of H induced by $\left\{2^{k} i: 0 \leq i \leq n-1\right\}$.

Proof. The corollary follows from $a_{2^{k} i, 2^{k} j}^{\prime}=a_{i, j}$ for $0 \leq i \leq j \leq n-1$.

Lemma 4. Suppose G and H are Steinhaus graphs corresponding to Steinhaus matrices A and $M_{1}(A)$, respectively. Then G is bipartite if and only if H is bipartite.

Proof. The necessity follows from Corollary 3 . Suppose G is a bipartite graph with a bipartition (X, Y). Consider the partition of $V(H)$ into $\left(X^{\prime}, Y^{\prime}\right)$ where $X^{\prime}=\{2 i, 2 i+1: i \in X\}$ and $Y^{\prime}=\{2 j, 2 j+1: j \in Y\}$. H has no edge of the form $\{2 i, 2 j+1\}$ with $i \leq j$ since $a_{2 i, 2 j+1}^{\prime}=0$ by Lemma 1 . Also, for $i<j$ in X (or Y), $a_{i, j}=0$ implies $a_{2 i, 2 j}^{\prime}=a_{2 i+1,2 j}^{\prime}=a_{2 i+1,2 j+1}^{\prime}=a_{i, j}=0$. So (X^{\prime}, Y^{\prime}) is a bipartition for H.

Theorem 5. Suppose G and H are Steinhaus graphs corresponding to Steinhaus matrices A and $M_{k}(A)$, respectively. Then G is bipartite if and only if H is bipartite.

Now consider the function f from positive integers \mathbb{Z}^{+}to $\mathbb{Z}^{+} \cup\{\infty\}$ defined by

$$
f(w)= \begin{cases}\infty & \text { if } w=2^{k} \text { for some integer } k, \\ 2^{k} & \text { if } w=2^{k} x, \text { where } x \text { is an odd integer greater than } 2 .\end{cases}
$$

Note that $w=2^{k} x$ with x an odd integer greater than 2 if and only if the binary representation of w has at least two 1 's.

Lemma 6. If G is a Steinhaus graph of n vertices with $\operatorname{Adj}(0)=\{w\}$, then the following statements are equivalent:
(1) G is bipartite,
(2) G has no triangles,
(3) $f(w) \geq n-w$.

Proof. (1) $\Longrightarrow(2)$ is clear.
$(2) \Longrightarrow(3)$. Suppose G has no triangles but $f(w)<n-w$. In this case, $f(w)=2^{k}$ and $w=2^{k} x$ for some odd integer greater than 2 . Now

$$
\left\lceil\frac{n}{2^{k}}\right\rceil=\left\lceil\frac{w}{2^{k}}+\frac{n-w}{2^{k}}\right\rceil>x+1 .
$$

Consider the Steinhaus graph H of order $\left\lceil\frac{n}{2^{k}}\right\rceil$ with $\operatorname{Adj}(0)=\{x\}$ and adjacency matrix $A=\left[a_{i, j}\right]$. Then, $a_{i, x}=1$ for $0 \leq i<x$. Also $a_{2 i, x+1}=0$ and $a_{2 i+1, x+1}=1$ for $0 \leq 2 i<2 i+1 \leq x$. In particular, $a_{1, x}=a_{1, x+1}=a_{x, x+1}=1$. Consider the Steinhaus graph $G^{\prime \prime}$ corresponding to $M_{k}(A)=\left[a_{i, j}^{\prime \prime}\right]$. By Corollary $2, \operatorname{Adj}(0)=\left\{2^{k} x\right\}=\{w\}$ in $G^{\prime \prime}$. So G is a subgraph of $G^{\prime \prime}$ induced by
$\{0,1, \ldots, n-1\}$. By Corollary $2, a_{2^{k}, w}^{\prime \prime}=a_{1, x}=1$ and $a_{2^{k}, w+2^{k}}^{\prime \prime}=a_{1, x+1}=1$ and $a_{w, w+2^{k}}^{\prime \prime}=a_{x, x+1}=1$. So, $\left\{2^{k}, w, w+2^{k}\right\}$ induces a triangle T in $G^{\prime \prime}$. However, $2^{k}=f(w) \leq n-w-1$; i.e., $w+2^{k} \leq n-1$, and so G contains the triangle T, which is impossible.
$(3) \Longrightarrow(1)$. Suppose $f(w) \geq n-w$. There are two cases. For the first case, $f(w)=\infty$, we have $w=2^{k}$ for some integer k. Consider the Steinhaus graph P of order $\left\lceil\frac{n}{w}\right\rceil$ with $\operatorname{Adj}(0)=\{1\}$. P is a path and so is bipartite. If A is the adjacency matrix of P, then the graph H corresponding to $M_{k}(A)$ is bipartite by Theorem 5 . Since G is the subgraph of H induced by $\{0,1, \ldots, n-1\}, G$ is also bipartite.

Next, consider the case with $f(w)=2^{k}$ and $w=2^{k} x$ where x is an odd integer greater than 2 . Since $2^{k} \geq n-w \geq 1$, we have $\left\lceil\frac{n}{2^{k}}\right\rceil=\left\lceil\frac{w}{2^{k}}+\frac{n-w}{2^{k}}\right\rceil=$ $x+1$. Consider the Steinhaus graph S of order $x+1$ with $\operatorname{Adj}(0)=\{x\}$. Now S is a star and so is bipartite. If A is the adjacency matrix of S, then the Steinhaus graph H corresponding to $M_{k}(A)$ is bipartite by Theorem 5 , and H is of order $w+2^{k} \geq n$ with $\operatorname{Adj}(0)=\{w\}$. Since G is the subgraph of H induced by $\{0,1, \ldots, n-1\}, G$ is also bipartite.

Theorem 7. If G is a Steinhaus graph of order n with $v=\min \operatorname{Adj}(0)$, then the following statements are equivalent:
(1) G is bipartite,
(2) G has no triangles,
(3) $\operatorname{Adj}^{+}(v)=\emptyset$ or $\operatorname{Adj}^{+}(v)=\{v+w\}$ with $f(w) \geq \max \{n-v-w, v\}$.

Proof. $(1) \Longrightarrow(2)$ is clear.
(2) $\Longrightarrow(3)$. Let $A=\left[a_{i, j}\right]_{n \times n}$ be the adjacency matrix of G. Suppose $\left|\operatorname{Adj}^{+}(v)\right| \geq 2$. Choose the smallest vertex x and the second smallest vertex y of $\operatorname{Adj}^{+}(v)$. By the Steinhaus property, $a_{v-1, v}=1$. For all $v<z<x$, since $a_{v, z}=0$, we have $a_{v-1, z}=1$. Since $a_{v-1, x-1}=a_{v, x}=1$, we have $a_{v-1, x}=0$. For all $x<z<y$, since $a_{v, z}=0$, we have $a_{v-1, z}=0$. Since $a_{v-1, y-1}=0$ and $a_{v, y}=1, a_{v-1, y}=1$. Thus $\{v-1, v, y\}$ induces a triangle in G, which is impossible.

Assume $\operatorname{Adj}^{+}(v)=\{v+w\}$ for some positive integer w. Since G has no triangles, the subgraph H of G induced by $\{v, v+1, \ldots, n-1\}$ has no triangles. Note that H is isomorphic to the Steinhaus graph of order $n-v$ with $\operatorname{Adj}(0)=\{w\}$. By Lemma $6, f(w) \geq n-v-w$.

Suppose $f(w)<v$. Let $w=2^{k} x$, where x is an odd integer greater than 2. Then, $2^{k}<v$ and so $u \equiv\left\lceil\frac{v}{2^{k}}\right\rceil \geq 2$. Consider the Steinhaus graph H of order $\left\lceil\frac{n}{2^{k}}\right\rceil$ with $u=\min \operatorname{Adj}(0)$ and $\operatorname{Adj}^{+}(u)=\{u+x\}$. Let $A=\left[a_{i, j}\right]$ be the adjacency matrix of H. Since $\operatorname{Adj}^{+}(u)=\{u+x\}, a_{u, j}=0$ for $u<j<u+x$
and $a_{u, u+x}=1$. These together with $a_{u-1, u}=1$ imply that $a_{u-1, j}=1$ for $u<j<u+x$ and $a_{u-1, u+x}=0$. These new values together with $a_{u-2, u}=1$ imply $a_{u-2, j} \equiv(j-u-1)(\bmod 2)$ for $u<j<u+x$ and $a_{u-2, u+x}=1$. Let $G^{\prime \prime}$ be the Steinhaus graph whose adjacency matrix is $M_{k}(A)=\left[a_{i, j}^{\prime \prime}\right]$. By Corollary $2, \min \operatorname{Adj}(0)=2^{k} u \geq v$ and $\operatorname{Adj}^{+}\left(2^{k} u\right)=\left\{2^{k}(u+x)\right\}=\left\{2^{k} u+w\right\}$ in $G^{\prime \prime}$. Then, the subgraph of $G^{\prime \prime}$ induced by $\left\{2^{k} u-v, 2^{k} u-v+1, \ldots, 2^{k} u-v+\right.$ $n-1\}$ is precisely the Steinhaus graph of n vertices in which $\min \operatorname{Adj}(0)=v$ and $\operatorname{Adj}^{+}(v)=\{v+w\}$, which is just G. Note that $a_{u-2, u}=a_{u-2, u+x}=$ $a_{u, u+x}=1$. By Corollary 2, $a_{2^{k} u-2^{k}-1,2^{k} u}^{\prime \prime}=a_{2^{k} u-2^{k}-1,2^{k} u+w}^{\prime \prime}=a_{2^{k} u, 2^{k} u+w}^{\prime \prime}=1$; i.e., $\left\{2^{k} u-2^{k}-1,2^{k} u, 2^{k} u+w\right\}$ induces a triangle in $G^{\prime \prime}$. But, $2^{k} u-v \leq$ $2^{k} u-2^{k}-1<2^{k} u<2^{k} u+w \leq 2^{k} u-v+n-1$. So, this triangle is also a triangle in G, a contradiction. Thus, $f(w) \geq v$.
$(3) \Longrightarrow(1)$. For the case of $\operatorname{Adj}^{+}(v)=\emptyset, V(G)$ can be partitioned into $X=\{0,1, \ldots, v-1\}$ and $Y=\{v, v+1, \ldots, n-1\}$ such that every edge of G has one vertex in X and the other vertex in Y. So, we may assume that $\operatorname{Adj}^{+}(v)=\{v+w\}$ with $f(w) \geq \max \{n-v-w, v\}$. Let $w=2^{k} x$, where x is a positive odd integer. Let H be the Steinhaus graph of order $\left\lceil\frac{n-v}{\left.2^{k}\right\rceil}\right\rceil+1$ with $1=\min \operatorname{Adj}(0)$ and $\operatorname{Adj}^{+}(1)=\{1+x\}$. $H-0$ is precisely the Steinhaus graph of order $\left\lceil\frac{n-v}{2^{k}}\right\rceil$ with $\operatorname{Adj}(0)=\{x\}$. Also,

$$
f(x)=f\left(\frac{w}{2^{k}}\right)=\frac{f(w)}{2^{k}} \geq \frac{n-v-w}{2^{k}}=\frac{n-v}{2^{k}}-x
$$

implies $f(x) \geq\left\lceil\frac{n-v}{\left.2^{k}\right\rceil}\right\rceil x$. By Lemma 6, $H-0$ is bipartite. Note that in $H, \operatorname{Adj}(0)=\{1,2, \ldots, x\}$ and $x+1$ is adjacent to $1,2, \ldots, x$. Then, H is also bipartite. Let A be the adjacency matrix of H, and $G^{\prime \prime}$ the Steinhaus graph whose adjacency matrix is $M_{k}(A)$. By Corollary 2 , in $G^{\prime \prime}$ we have $2^{k}=\min \operatorname{Adj}(0)$ and $\operatorname{Adj}^{+}\left(2^{k}\right)=\left\{2^{k}+2^{k} x\right\}=\left\{2^{k}+w\right\}$. Then the subgraph of $G^{\prime \prime}$ induced by $\left\{2^{k}-v, 2^{k}-v+1, \ldots, 2^{k}-v+n-1\right\}$ is precisely the Steinhaus graph of n vertices in which $\min \operatorname{Adj}(0)=v$ and $\operatorname{Adj}^{+}(v)=\{v+w\}$, which is G. By Theorem 5, $G^{\prime \prime}$ is bipartite and so is G.

We close this paper by noting that the equivalence of (1) and (2) in Theorem 7 was also proved in [9]; and (3) is also proved in [6] in an alternative way and is used to obtain a formula for the number of bipartite Steinhaus graphs of order n in terms of $n-2$ (also see [14]).

Acknowledgments.

The authors thank the referee for many useful suggestions on revising the paper.

References

1. N. Brand, Almost all Steinhaus graphs have diameter 2, J. Graph Theory 16 (1992), 213-219.
2. N. Brand, S. Curran, S. Das and T. Jacob, Probability of diameter two for Steinhaus graphs, Discrete Appl. Math. 41 (1993), 165-171.
3. R. C. Brigham, J. R. Carrington and R. D. Dutton, Embedding in Steinhaus graphs, J. Combin. Inform. System Sci. 17 (1992), 257-270.
4. R. C. Brigham and R. D. Dutton, Distances and diameters in Steinhaus graphs, Congr. Numer. 76 (1990), 7-14.
5. G. J. Chang, Binary triangles, Bull. Inst. Math. Acad. Sinica 11 (1983), 209225.
6. G. J. Chang, B. DasGupta, W. M. Dymàček, M. Fürer, M. Koerlin, Y.-S. Lee and T. Whaley, Characterizations of bipartite Steinhaus graphs, submitted.
7. W. M. Dymàček, Steinhaus graphs, Congr. Numer. 23-24 (1979), 399-412.
8. W. M. Dymàček, Complements of Steinhaus graphs, Discrete Math. 37 (1981), 167-180.
9. W. M. Dymàček, Bipartite Steinhaus graphs, Discrete Math. 59 (1986), 9-20.
10. W. M. Dymàček, M. Koerlin and T. Whaley, A survey of Steinhaus graphs, to appear in the Proceedings of the Eighth International Conference on Graph Theory, Combinatorics, Algorithms and Applications (Kalamazoo, Michigan, 1996).
11. W. M. Dymàček and T. Whaley, Generating strings for bipartite Steinhaus graphs, Discrete Math. 141 (1995), 95-107.
12. H. Harborth, Solution of Steinhaus's problem with plus and minus signs, J. Combin. Theory, Ser. A 12 (1972), 253-259.
13. H. Harborth, Aufgabe 785, Elem. Math. 33 (1978), 49-50; solution by O. P. Lossers.
14. Y.-S. Lee, Counting Bipartite Steinhaus Graphs, Master Thesis, Department of Applied Math., National Chiao Tung University, Hsinchu, Taiwan, 1994.
15. J. C. Molluzzo, Steinhaus graphs, in: Theory and Applications of Graphs, Y. Alavi and D. R. Lick, eds. (Kalamazoo, Michigan, 1976), Lecture Notes in Math., Vol. 642, Springer, Berlin, 1978, pp.394-402.
16. H. Steinhaus, One Hundred Problems in Elementary Mathematics, Dover, New York, 1979. This is a republication of the English translation first published in 1964 by Basic Books, Inc., 10 E. 53rd St., New York, NY 10022.
17. E. T. H. Wang, Problem E 2541, Amer. Math. Monthly 82 (1975), 659-660; solution by M. Joseph in same journal 83 (1976), 660-661.

Department of Applied Mathematics
National Chiao Tung University
Hsinchu 30050, Taiwan
E-mail: gjchang@math.nctu.edu.tw

[^0]: Receieived October 15, 1997; revised February 5, 1998. Communicated by S.-Y. Shaw. 1991 Mathematics Subject Classification: 05C50.
 Key words and phrases: Steinhaus graph, Steinhaus triangle, binary string, adjacency matrix. *Supported in part by the National Science Council under grant NSC83-0208-M009-050.

