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BIPARTITE STEINHAUS GRAPHS∗

Yueh-Shin Lee and G. J. Chang

Abstract. A Steinhaus matrix is a symmetric 0-1 matrix [ai,j ]n×n such
that ai,i = 0 for 0 ≤ i ≤ n− 1 and ai,j ≡ (ai−1,j−1 + ai−1,j) (mod 2) for
1 ≤ i < j ≤ n−1. A Steinhaus graph is a graph whose adjacency matrix
is a Steinhaus matrix. In this paper, we present a new characterization
of bipartite Steinhaus graphs.

1. Introduction

A Steinhaus matrix is a symmetric 0-1 matrix [ai,j]n×n such that ai,i =
0 for 0 ≤ i ≤ n − 1 and ai,j ≡ (ai−1,j−1 + ai−1,j) (mod 2) for 1 ≤ i <
j ≤ n − 1. A Steinhaus triangle is the upper triangular part of a Steinhaus
matrix. Note that a Steinhaus matrix and a Steinhaus triangle determine each
other. A Steinhaus graph is a graph whose adjacency matrix is a Steinhaus
matrix. Fig. 1 shows a Steinhaus matrix and its corresponding graph. Note
that a binary string a0,0a0,1 . . . a0,n−1 (with a0,0 = 0) completely determines a
Steinhaus matrix (graph). It is often said that the binary string generates the
Steinhaus matrix (graph).

The concept of Steinhaus triangles was first introduced by Steinhaus [16].
Harborth [12, 13], Wang [17], and Chang [5] studied the number of ones in
Steinhaus triangles. Molluzzo [15] introduced the concept of Steinhaus graphs.
This class of graphs was then extensively studied by Dymàček [7, 8, 9] (also
see [1, 2, 3, 4]). Recently, Dymàček and Whaley [11] characterized all binary
strings that generate bipartite Steinhaus graphs, and gave a recursive formula
for the number b(n) of bipartite Steinhaus graphs of order n. For a good
survey, see [10].
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FIG. 1. A Steinhaus matrix and its corresponding graph.

In this paper, we give a new characterization of bipartite Steinhaus graphs,
which is also proved in [6] alternatively and used to give a solution of b(n) in
terms of the binary representation of n− 2 (also see [14]).

For any Steinhaus graph G with adjacency matrix [ai,j ]n×n, the Steinhaus
graph generated by ar,rar,r+1 . . . ar,s, where 0 ≤ r ≤ s ≤ n− 1, is precisely the
subgraph of G induced by the vertex subset {r, r+1, . . . , s}. Denote by Adj(i)
the set of all vertices adjacent to i and Adj+(i) the set of all vertices j > i
adjacent to i. Note that Adj(0) completely determines a Steinhaus graph.
For instance, the Steinhaus graph with Adj(0) = {1} (respectively, {n − 1},
∅) is a path (respectively, a star, Kn). It is also the case that a Steinhaus
graph is completely determined by v ≡ min Adj(0) and Adj+(v). Note that
v ≡ min Adj(0) gives that ai,j = 0 and ai,v = 1 for all 0 ≤ i < j < v. This
together with Adj+(v) determines Adj+(v− 1), and then Adj+(v− 2), . . . etc.

2. Characterizations of Bipartite Steinhaus Graphs

This section gives a new characterization of bipartite Steinhaus graphs (see
Theorem 7).

Suppose A = [ai,j] is an n × n Steinhaus matrix. Denote by M1(A) the
2n× 2n Steinhaus matrix [a′i,j] generated by a′0,0a

′
0,1 . . . a

′
0,2n−1, where a′0,2j =

a0,j and a′0,2j+1 = 0 for 0 ≤ j ≤ n− 1. For k ≥ 2, recursively define Mk(A) =
M1(Mk−1(A)). Note that Mk(A) is precisely the 2kn× 2kn Steinhaus matrix
[a′′i,j] generated by a′′0,0a

′′
0,1 . . . a

′′
0,2kn−1, where a′′0,2kj = a0,j for 0 ≤ j ≤ n − 1

and all other a′′0,j = 0.

Lemma 1. For any n×n Steinhaus matrix A = [ai,j ] with M1(A) = [a′i,j],
we have a′2i,2j = a′2i+1,2j = a′2i+1,2j+1 = ai,j and a′2i,2j+1 = 0 for 0 ≤ i ≤ j ≤
n− 1.
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Proof. We shall prove the lemma by induction on i. Suppose i = 0. By
the definition of M1(A), we have a′2i,2j = a′0,2j = a0,j = ai,j and a′2i,2j+1 =
a′0,2j+1 = 0. For j = i (= 0),

a′2i+1,2j = a′2j,2i+1 = 0 = ai,j and a′2i+1,2j+1 = 0 = ai,j .

For j > i (= 0),

a′2i+1,2j = (a′2i,2j−1 + a′2i,2j) mod 2 = (0 + ai,j) mod 2 = ai,j and

a′2i+1,2j+1 = (a′2i,2j + a′2i,2j+1) mod 2 = (ai,j + 0) mod 2 = ai,j.

Therefore, the lemma holds for i = 0. Suppose the lemma is true for any
i′ < i. Consider the case with i ≥ 1. For any j ≥ i (≥ 1),

a′2i,2j+1 = (a′2(i−1)+1,2j + a′2(i−1)+1,2j+1) mod 2.

By the induction hypothesis, a′2(i−1)+1,2j = a′2(i−1)+1,2j+1 = ai−1,j. Therefore,
a′2i,2j+1 = 0. For j = i (≥ 1), since a′2i+1,2j = a′2j,2i+1 = 0,

a′2i,2j = a′2i+1,2j = a′2i+1,2j+1 = 0 = ai,j.

For j > i (≥ 1), by the induction hypothesis, we also have

a′2i,2j = (a′2(i−1)+1,2(j−1)+1 + a′2(i−1)+1,2j) mod 2

= (ai−1,j−1 + ai−1,j) mod 2 = ai,j,

a′2i+1,2j = (a′2i,2(j−1)+1 + a′2i,2j) mod 2 = (0 + ai,j) mod 2 = ai,j , and

a′2i+1,2j+1 = (a′2i,2j + a′2i,2j+1) mod 2 = (ai,j + 0) mod 2 = ai,j .

Corollary 2. Suppose A = [ai,j] is an n × n Steinhaus matrix and
Mk(A) = [a′′i,j ]. For 0 ≤ i ≤ j ≤ n − 1, we have a′′i′,2kj = ai,j for 2ki ≤
i′ < 2k(i+ 1) and a′′2ki,j′ = 0 for 2kj < j′ < 2k(j + 1).

Proof. The corollary follows from Lemma 1 and an induction on k.

Corollary 3. Suppose G and H are Steinhaus graphs corresponding to
Steinhaus matrices A and Mk(A), respectively. Then G is isomorphic to the
subgraph of H induced by {2ki : 0 ≤ i ≤ n− 1}.

Proof. The corollary follows from a′2ki,2kj = ai,j for 0 ≤ i ≤ j ≤ n− 1.
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Lemma 4. Suppose G and H are Steinhaus graphs corresponding to Stein-
haus matrices A and M1(A), respectively. Then G is bipartite if and only if
H is bipartite.

Proof. The necessity follows from Corollary 3. Suppose G is a bipartite
graph with a bipartition (X,Y ). Consider the partition of V (H) into (X ′, Y ′)
where X ′ = {2i, 2i+ 1 : i ∈ X} and Y ′ = {2j, 2j + 1 : j ∈ Y }. H has no edge
of the form {2i, 2j + 1} with i ≤ j since a′2i,2j+1 = 0 by Lemma 1. Also, for
i < j in X (or Y ), ai,j = 0 implies a′2i,2j = a′2i+1,2j = a′2i+1,2j+1 = ai,j = 0. So
(X ′, Y ′) is a bipartition for H.

Theorem 5. Suppose G and H are Steinhaus graphs corresponding to
Steinhaus matrices A and Mk(A), respectively. Then G is bipartite if and
only if H is bipartite.

Now consider the function f from positive integers Z+ to Z+∪{∞} defined
by

f(w) =

{
∞ if w = 2k for some integer k,

2k if w = 2kx, where x is an odd integer greater than 2.

Note that w = 2kx with x an odd integer greater than 2 if and only if the
binary representation of w has at least two 1’s.

Lemma 6. If G is a Steinhaus graph of n vertices with Adj(0) = {w},
then the following statements are equivalent:

(1) G is bipartite,
(2) G has no triangles,
(3) f(w) ≥ n− w.

Proof. (1) =⇒ (2) is clear.

(2) =⇒ (3). Suppose G has no triangles but f(w) < n − w. In this case,
f(w) = 2k and w = 2kx for some odd integer greater than 2. Now

d n
2k
e = dw

2k
+
n− w

2k
e > x+ 1.

Consider the Steinhaus graph H of order d n2k e with Adj(0) = {x} and adja-
cency matrix A = [ai,j]. Then, ai,x = 1 for 0 ≤ i < x. Also a2i,x+1 = 0 and
a2i+1,x+1 = 1 for 0 ≤ 2i < 2i+ 1 ≤ x. In particular, a1,x = a1,x+1 = ax,x+1 = 1.
Consider the Steinhaus graph G′′ corresponding to Mk(A) = [a′′i,j]. By Corol-
lary 2, Adj(0) = {2kx} = {w} in G′′. So G is a subgraph of G′′ induced by
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{0, 1, . . . , n − 1}. By Corollary 2, a′′2k,w = a1,x = 1 and a′′2k,w+2k = a1,x+1 = 1
and a′′w,w+2k = ax,x+1 = 1. So, {2k, w, w + 2k} induces a triangle T in G′′.
However, 2k = f(w) ≤ n− w − 1; i.e., w + 2k ≤ n− 1, and so G contains the
triangle T , which is impossible.

(3) =⇒ (1). Suppose f(w) ≥ n−w. There are two cases. For the first case,
f(w) =∞, we have w = 2k for some integer k. Consider the Steinhaus graph
P of order d n

w
e with Adj(0) = {1}. P is a path and so is bipartite. If A is the

adjacency matrix of P , then the graph H corresponding to Mk(A) is bipartite
by Theorem 5. Since G is the subgraph of H induced by {0, 1, . . . , n− 1}, G
is also bipartite.

Next, consider the case with f(w) = 2k and w = 2kx where x is an odd
integer greater than 2. Since 2k ≥ n − w ≥ 1, we have d n2k e = d w2k + n−w

2k e =
x+ 1. Consider the Steinhaus graph S of order x+ 1 with Adj(0) = {x}. Now
S is a star and so is bipartite. If A is the adjacency matrix of S, then the
Steinhaus graph H corresponding to Mk(A) is bipartite by Theorem 5, and
H is of order w + 2k ≥ n with Adj(0) = {w}. Since G is the subgraph of H
induced by {0, 1, . . . , n− 1}, G is also bipartite.

Theorem 7. If G is a Steinhaus graph of order n with v = min Adj(0),
then the following statements are equivalent:

(1) G is bipartite,

(2) G has no triangles,

(3) Adj+(v) = ∅ or Adj+(v) = {v + w} with f(w) ≥ max{n− v − w, v}.

Proof. (1) =⇒ (2) is clear.

(2) =⇒ (3). Let A = [ai,j ]n×n be the adjacency matrix of G. Suppose
|Adj+(v)| ≥ 2. Choose the smallest vertex x and the second smallest vertex y
of Adj+(v). By the Steinhaus property, av−1,v = 1. For all v < z < x, since
av,z = 0, we have av−1,z = 1. Since av−1,x−1 = av,x = 1, we have av−1,x = 0.
For all x < z < y, since av,z = 0, we have av−1,z = 0. Since av−1,y−1 = 0
and av,y = 1, av−1,y = 1. Thus {v − 1, v, y} induces a triangle in G, which is
impossible.

Assume Adj+(v) = {v + w} for some positive integer w. Since G has
no triangles, the subgraph H of G induced by {v, v + 1, . . . , n − 1} has no
triangles. Note that H is isomorphic to the Steinhaus graph of order n − v
with Adj(0) = {w}. By Lemma 6, f(w) ≥ n− v − w.

Suppose f(w) < v. Let w = 2kx, where x is an odd integer greater than
2. Then, 2k < v and so u ≡ d v2k e ≥ 2. Consider the Steinhaus graph H of
order d n2k e with u = min Adj(0) and Adj+(u) = {u+ x}. Let A = [ai,j] be the
adjacency matrix of H. Since Adj+(u) = {u+ x}, au,j = 0 for u < j < u+ x
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and au,u+x = 1. These together with au−1,u = 1 imply that au−1,j = 1 for
u < j < u + x and au−1,u+x = 0. These new values together with au−2,u = 1
imply au−2,j ≡ (j − u − 1) (mod 2) for u < j < u + x and au−2,u+x = 1. Let
G′′ be the Steinhaus graph whose adjacency matrix is Mk(A) = [a′′i,j]. By
Corollary 2, min Adj(0) = 2ku ≥ v and Adj+(2ku) = {2k(u+ x)} = {2ku+w}
in G′′. Then, the subgraph of G′′ induced by {2ku−v, 2ku−v+1, . . . , 2ku−v+
n− 1} is precisely the Steinhaus graph of n vertices in which min Adj(0) = v
and Adj+(v) = {v + w}, which is just G. Note that au−2,u = au−2,u+x =
au,u+x = 1. By Corollary 2, a′′2ku−2k−1,2ku = a′′2ku−2k−1,2ku+w = a′′2ku,2ku+w = 1;
i.e., {2ku − 2k − 1, 2ku, 2ku + w} induces a triangle in G′′. But, 2ku − v ≤
2ku − 2k − 1 < 2ku < 2ku + w ≤ 2ku − v + n − 1. So, this triangle is also a
triangle in G, a contradiction. Thus, f(w) ≥ v.

(3) =⇒ (1). For the case of Adj+(v) = ∅, V (G) can be partitioned into
X = {0, 1, . . . , v − 1} and Y = {v, v + 1, . . . , n − 1} such that every edge of
G has one vertex in X and the other vertex in Y . So, we may assume that
Adj+(v) = {v + w} with f(w) ≥ max{n − v − w, v}. Let w = 2kx, where x
is a positive odd integer. Let H be the Steinhaus graph of order dn−v2k e + 1
with 1 = min Adj(0) and Adj+(1) = {1 + x}. H − 0 is precisely the Steinhaus
graph of order dn−v2k e with Adj(0) = {x}. Also,

f(x) = f

(
w

2k

)
=
f(w)

2k
≥ n− v − w

2k
=
n− v

2k
− x

implies f(x) ≥ dn−v2k e − x. By Lemma 6, H − 0 is bipartite. Note that in
H, Adj(0) = {1, 2, . . . , x} and x + 1 is adjacent to 1, 2, . . . , x. Then, H is
also bipartite. Let A be the adjacency matrix of H, and G′′ the Steinhaus
graph whose adjacency matrix is Mk(A). By Corollary 2, in G′′ we have
2k = min Adj(0) and Adj+(2k) = {2k + 2kx} = {2k + w}. Then the subgraph
of G′′ induced by {2k−v, 2k−v+1, . . . , 2k−v+n−1} is precisely the Steinhaus
graph of n vertices in which min Adj(0) = v and Adj+(v) = {v +w}, which is
G. By Theorem 5, G′′ is bipartite and so is G.

We close this paper by noting that the equivalence of (1) and (2) in Theo-
rem 7 was also proved in [9]; and (3) is also proved in [6] in an alternative way
and is used to obtain a formula for the number of bipartite Steinhaus graphs
of order n in terms of n− 2 (also see [14]).
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