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SOME UNIFORM ESTIMATES IN PRODUCTS
OF RANDOM MATRICES

Jhishen Tsay∗

Abstract. For each product of random matrices, there associated an
invariant measure on the projective space. The convergence to the in-
variant measure is exponentially fast. In this paper we give uniform
estimates on the exponential convergence when the distribution of the
random matrices depends on a compact set of parameters.

1. Introduction

The limit theory of products of random matrices, initiated by Bellman, was
fully developed by many mathematicians. The subject matter is to understand
the asymptotic behavior of norms and matrix elements of the random prod-
ucts. For each random product there is an associated Lyapunov exponent
which gives a measure of the exponential growth rate of the matrix norm.
However, unlike the usual situation, the Lyapunov exponent cannot be cal-
culated directly from the distribution of the random matrices in most of the
cases. The formula for the Lyapunov exponent involves an invariant measure
on the projective space. Le Page [9] shows that the convergence to the invari-
ant measure is exponentially fast. The exponent depends on the distribution
of the random matrices. It is important to have uniform estimates when the
distribution of the random matrices depends on a set of parameters. The uni-
form estimates will be useful when one studies the scattering problem for the
discrete random Schrödinger wave equations. In this paper we derive uniform
estimates for the exponential convergence to the invariant measure and for the
large deviation of matrix elements.
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2. Random Matrices

Let {An, n ≥ 1} be a sequence of i.i.d. random d × d invertible matrices
with common distribution µ. We are interested in the asymptotic behavior
of products An · · ·A1. We assume that µ has support in SL(d,R), set of real
d × d matrices with determinant one. Let Sn = An · · ·A1. Suppose that a
usual vector norm and a usual matrix norm in Rd have been chosen. Let
log+ x = max{log x, 0}.

Definition 1. Suppose that E[log+ ‖A1‖] <∞. The Lyapunov exponent
γ associated with µ is defined by

γ = lim
n→∞

1
n
E[log ‖An · · ·A1‖].

The existence of the Lyapunov exponent can be easily proved by consider-
ing the subadditive sequence E[log ‖An · · ·A1‖]. It is proved by Furstenberg
and Kesten [4], and is an easy consequence of Kingman’s subadditive ergodic
theorem [7], that under same hypothesis we have, with probability one,

γ = lim
n→∞

1
n

log ‖An · · ·A1‖.

Unlike the classical law of large numbers the Lyapunov exponent cannot be
calculated directly from µ in most of the cases. The formula for γ involves an
auxiliary measure on the projective space P (Rd of Rd [3].

Let x be a unit vector in Rd. Let u1 = x, and for n = 2, 3, · · ·,

un =
An−1 · · ·A1x

‖An−1 · · ·A1x‖
.

It is clear that the process {(An, un), n ≥ 1} is a Markov chain on the phase
space SL(d,R)× Sd−1, where Sd−1 is the unit sphere in Rd, and that

log ‖An · · ·A1x‖ =
n∑
k=1

log ‖Akuk‖.

Thus if the process is ergodic then one expects that the limit

β(x) = lim
n→∞

1
n

log ‖An · · ·A1x‖

exists almost surely, and can be expressed as an average with respect to an
invariant measure on the phase space. This leads to the consideration of the
invariant measure on the projective space P (Rd). The limit β(x) is closely
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related to the Lyapunov exponent. A full account of the discussion of the
relationship between γ and β(x) can be found in [10].

For two non-zero vectors x, y ∈ Rd, we say x ∼ y if x = cy for some c ∈ R.
The projective space P (Rd) is the quotient space Rd\{0}/ ∼. For x ∈ Rd\{0},
x denotes its equivalent class in P (Rd). For M ∈ SL(d,Rd), we set M ·x = Mx.
For ū, v̄ ∈ P (Rd), define

δ(ū, v̄) =

[
1−

∣∣∣∣〈 u

‖u‖
,
v

‖v‖

〉∣∣∣∣2
] 1

2

= | sin θ|,

where θ is the angle between ū and v̄. It is not hard to check that δ(ū, v̄)
is a metric on P (Rd), and is equal to ‖u ∧ v‖/(‖u‖ · ‖v‖), where ‖u ∧ v‖ is
the norm of the exterior product of u, v. Let µ be a probability measure on
SL(d,Rd), and ν be a probability measure on P (Rd).

Definition 2. µ ∗ ν is the probability measure on P (Rd) which satisfies∫
f(x)dµ ∗ ν(x) =

∫ ∫
f(M · x)dµ(M)dν(x)

for all bounded Borel function f on P (Rd).
We say that ν is µ-invariant if µ ∗ ν = ν. The following theorem [5] shows

the relationship between the invariant measures and the Lyapunov exponent.

Theorem 1. Let {An, n ≥ 1} be a sequence of i.i.d. random matrices
with common distribution µ. Suppose that µ has support in SL(d,R), and that
E[log+ ‖A1‖] <∞. Then, with probability one,

γ = lim
n→∞

1
n

log ‖An · · ·A1‖

and
γ = sup

∫ ∫
log
‖Mx‖
‖x‖

dµ(M)dν(x),

where the sup is taken over all µ-invariant measures.

In the situation that there is only one µ-invariant measure ν on P (Rd), we
have a simple expression for γ. But this does not mean we can calculate γ
easily. Since in most of the cases, the µ-invariant measures are not available.

Let Tµ be the smallest closed semigroup which contains the support of µ.
Let l(M) = max(log+ ‖M‖, log+ ‖M−1‖) for M ∈ SL(d,R). A distribution µ
on SL(d,R) is said to have a finite exponential moment if

∫
eτl(M)dµ(M) is

finite for some τ > 0. We assume throughout this paper that all the distribu-
tions in our discussion have finite exponential moments.
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Definition 3. A subset S of SL(d,R) is said to be irreducible if there is
no proper linear subspace V of Rd such that M(V ) = V for all M ∈ S. S is
said to be strongly irreducible if there does not exist a finite union of proper
linear subspaces of Rd which is invariant under the action of the elements of S.
S is said to be contracting if there is a sequence {Mn, n ≥ 0} in S for which
‖Mn‖−1

Mn converges to a rank-one matrix.

The importance of being strongly irreducible and contracting is indicated
by the fact that if Tµ is strongly irreducible and contracting, then there exists
a unique µ-invariant distribution on P (Rd) and γ > 0 [6]. The uniqueness of
the invariant distribution plays an extremely important role in the theory of
products of random matrices.

Let φ be a continuous function on P (Rd) and α > 0. We define

‖φ‖α = sup
ū∈P (Rd)

|φ(ū)|+ sup
ū 6=v̄

|φ(ū)− φ(v̄)|
δ(ū, v̄)α

,

Pφ(ū) =
∫
φ(M · ū)dµ(M),

Qφ(ū) =
∫
φ(v̄)dν(v̄).

With these notations, we have

E[φ(Sn · ū)] =
∫
φ(M · ū)dµn(M) = P nφ(ū),

where µn is the nth convolution power of µ. Let C(α) be the set of continuous
functions φ on P (Rd) for which ‖φ‖α is finite. Note that ‖φ‖α ≤ ‖φ‖α′ if
α ≤ α′. The following proposition is due to Le Page [9]. It shows that the
distribution of Sn · ū converges to the µ-invariant distribution ν exponentially
fast.

Proposition 1. If Tµ is strongly irreducible and contracting, then there
exist α0, c1 > 0, 0 < ρ1 < 1 such that for 0 < α ≤ α0 , the operators P and Q
defined on C(α) are bounded and satisfy

‖P n −Q‖α ≤ c1ρ
n
1 .

The next proposition is from Guivarc’h and Raugi [6]. It tells about the
regularity of the invariant distribution.

Proposition 2. If Tµ is strongly irreducible and contracting, then there
exists β > 0 such that

sup
‖v‖=1

∫ [ ‖u‖
|〈u, v〉|

]β
dν(ū) <∞.
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We know that the Lyapunov exponent gives the growth rate of the vectors
and matrix elements. A large deviation result for vectors has been proved by
Le Page [9].

Proposition 3. If Tµ is strongly irreducible and contracting, then for each
ε > 0 there exists a > 0 such that for all unit vectors u ∈ Rd,

Pr

{
| 1
n

log ‖Snu‖ − γ| ≥ ε
}
≤ e−an

for large n.

We now prove a large deviation result for matrix elements.

Theorem 2. If Tµ is strongly irreducible and contracting, then for all
ε > 0 there exists a > 0 such that for all unit vectors u, v ∈ Rd,

Pr

{
| 1
n

log |〈Snu, v〉| − γ| ≥ ε
}
≤ e−an

for large n.

Proof.

Pr{|〈Snu, v〉| ≤ e(γ−ε)n}

≤ Pr{‖Snu‖ ≤ e(γ− ε2 )n}+ Pr{|〈Snu, v〉| ≤ e−
ε
2n‖Snu‖}.

(1)

The first term in (1) is bounded by e−a1n for some a1 > 0 by Proposition 3.
To find an upper bound for the second term in (1), we shall use Propositions
1 and 2. Define fn : [0, 1]→ R by

fn(t) =


1 if 0 ≤ t ≤ e− ε2n,
2− te ε2n if e− ε2n,≤ t ≤ 2e− ε2n,
0 otherwise.

Note that 0 ≤ fn(t) ≤ 1. It is easy to see that for all t, t′ ∈ [0, 1]

|fn(t)− fn(t′)| ≤ |t− t′|e ε2n.

Therefore if we define φn : P (Rd)→ R by φn(ū) = fn( |〈u,v〉|‖u‖ ), we have ‖φn‖α ≤
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e
ε
2n + 1 for α ≤ 1. Then

Pr{|〈Snu, v〉| ≤ e−
ε
2n‖Snu‖}

= Pr

{ |〈Snu, v〉|
‖Snu‖

≤ e− ε2n
}

≤ E
[
fn

( |〈Snu, v〉|
‖Snu‖

)]
≤ |E

[
fn

( |〈Snu, v〉|
‖Snu‖

)]
−
∫
fn

( |〈u, v〉|
‖u‖

)
dν(ū)|

+
∫
fn

( |〈u, v〉|
‖u‖

)
dν(ū)

≤ ‖P n −Q‖α‖φn‖α + Eν

[
fn

( |〈u, v〉|
‖u‖

)]
.

(2)

From Proposition 1 we know that ‖P n−Q‖α ≤ e−bn for some b > 0. The first
term in (2) is bounded by e−(b− ε2 )n + e−bn. For the second term in (2), since
0 ≤ fn(t) ≤ 1 , we have

Eν

[
fn

( |〈u, v〉|
‖u‖

)]
≤ Pr

{ |〈u, v〉|
‖u‖

≤ 2e−
ε
2n

}

= Pr

{[ ‖u‖
|〈u, v〉|

]β
≥ 2−βe

βε
2 n

}

≤ 2βe−
βε
2 nE

[[ ‖u‖
|〈u, v〉|

]β]
.

The large deviation result follows by making ε small and by using Proposition
2. The other case is a direct consequence of Proposition 3.

Since the metric δ is related to the exterior power of vectors, we will apply
the theory of products of random matrices to subspaces of ∧rRd (1 ≤ r ≤
d) instead of Rd. Let ∧rRd (the exterior power of Rd) denote the space of
alternating r-linear forms on the dual space (Rd)? of Rd. For v1, v2, . . . , vr ∈ Rd
and f1, f2, . . . , fr ∈ (Rd)?, we set

(v1 ∧ v2 ∧ · · · ∧ vr)(f1, f2, . . . , fr) = det[{fi(vj)}i,j].

The linear space ∧rRd is a Cd
r -dimensional vector space (Cn

m is the binomial
coefficient). If {e1, e2, . . . , ed} is the standard basis of Rd, then {ei1 ∧ei2 ∧· · ·∧
eir , 1 ≤ i1 < i2 < · · · < ir ≤ d} is an orthonormal basis of ∧rRd [2, Chap. II].



Random Matrix 297

We define an inner product on ∧rRd by

〈u1 ∧ u2 ∧ · · · ∧ ur, v1 ∧ v2 ∧ · · · ∧ vr〉 = det[{〈ui, vj〉}i,j],

where 〈·, ·〉 is the usual inner product in Rd. For M ∈ SL(d,R), we define a
linear mapping ∧rM in ∧rRd by

∧rM(v1 ∧ v2 ∧ · · · ∧ vr) = Mv1 ∧Mv2 ∧ · · · ∧Mvr.

Note that ∧r(AB) = (∧rA)(∧rB). We now define the rth Lyapunov exponent
γr for r = 1, . . . , d inductively by

r∑
i=1

γi = lim
n→∞

1
n
E[log ‖ ∧r Sn‖].

In other words,
∑r
i=1 γi is the Lyapunov exponent associated with the matrices

∧rSn acting on ∧rRd. Obviously, γ1 ≥ γ2 ≥ · · · ≥ γd. The set {γi} also
describes the exponential growth of the moduli of the eigenvalues of Sn as n
becomes large.

In our application the random matrices are symplectic. A 2d× 2d matrix
M is said to be symplectic if it satisfies the equation M tJM = J , where

J =

[
0 I
−I 0

]
,

and I is the d× d identity matrix. The Lyapunov exponents associated with
symplectic matrices satisfy the equation γ2d+1−i = −γi for i = 1, 2, . . . , d.
This can be seen by the fact that the products of symplectic matrices are also
symplectic and if λ is an eigenvalue of a symplectic matrix M , then so is λ−1:

det{M − λ−1I} = det{MJ − λ−1MJM t} = det{MJ} det{I − λ−1M t} = 0.

3. Main Results

In this section we consider that the distribution of the random matrices,
denoted as µE, depends on a parameter E. We will show that the propositions
in section 2 can be extended from a fixed real parameter E to a compact set F
of real numbers. We assume that TµE is strongly irreducible and contracting,
and that µE has a uniform finite exponential moment for E ∈ F . We can show
that there exist τ,K > 0 such that

∫
eτl(M)dµE(M) ≤ K < ∞ for all E ∈ F .

It is shown in [1] that n−1E[log ‖SEn u‖] converges to γ1(E) uniformly in E ∈ F
and u ∈ Rd with ‖u‖ = 1. This implies that the top Lyapunov exponent is
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continuous in E. From the assumption TµE being strongly irreducible and con-
tracting, we know that the top Lyapunov exponent γ1(E) is strictly positive,
and that the top two Lyapunov exponents, γ1(E) and γ2(E), are distinct [6,
Thm 6.1, §III.6, Part A]. The uniform convergence and the continuity of the
Lyapunov exponent will play the central role in our derivations.

Theorem 3. There exist α0, b1 > 0, 0 < r1 < 1 such that for all 0 < α ≤
α0,

‖P n
E −QE‖α < b1r

n
1

for all E ∈ F .

We will need the following lemmas.

Lemma 1. There exist N, c1 > 0 such that for all n > N ,

sup
ū 6=v̄

1
n
E

[
log

δ(SEn ū, S
E
n v̄)

δ(ū, v̄)

]
≤ −c1 < 0

for all E ∈ F .

Proof. From the equation δ(ū, v̄) = ‖u∧ v‖× ‖u‖−1‖v‖−1, we deduce that

lim
n→∞

1
n
E

[
log

δ(SEn ū, S
E
n v̄)

δ(ū, v̄)

]

= lim
n→∞

1
n
E

[
log
‖SEn u ∧ SEn v‖
‖u ∧ v‖

]
− 2 lim

n→∞

1
n
E

[
log
‖SEn u‖
‖u‖

]
=γ2(E)− γ1(E).

Since the top two Lyapunov exponents are distinct, we have γ1(E) > γ2(E).
The proof follows by the uniform convergence to the top Lyapunov exponent.

Lemma 2. There exist α0, c3 > 0, 0 < ρ3 < 1 such that for all 0 < α ≤ α0,

sup
ū 6=v̄

E

[
δ(SEn ū, S

E
n v̄)α

δ(ū, v̄)α

]
≤ c3ρ

n
3

for all E ∈ F .

Proof. Let

an = log

{
sup
ū 6=v̄

E

[
δ(SEn ū, S

E
n v̄)α

δ(ū, v̄)α

]}
.
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It is not hard to check that an is subadditive: an+m ≤ an + am. This implies
that

lim
n→∞

1
n

log

{
sup
ū 6=v̄

E

[
δ(SEn ū, S

E
n v̄)α

δ(ū, v̄)α

]}
= lim

n→∞

an
n

= inf
n

an
n
.

From the inequality ex ≤ 1 + x+ (x2/2)e|x|, we deduce that

sup
ū 6=v̄

E

[
δ(SEn ū, S

E
n v̄)α

δ(ū, v̄)α

]

≤ 1 + α sup
ū 6=v̄

E

[
log

δ(SEn ū, S
E
n v̄)

δ(ū, v̄)

]

+
α2

2
E

(log
δ(SEn ū, S

E
n v̄)

δ(ū, v̄)

)2

exp

{
α| log

δ(SEn ū, S
E
n v̄)

δ(ū, v̄)
|
} .

(3)

Note that | log ‖∧rMu‖| ≤ rl(M)‖u‖ [1]. From the assumption on the moment
of the random potential, the expectation in the last term of (3) is uniformly
bounded. The right-hand side of (3) can be made strictly less than 1 uniformly
by choosing α small and using Lemma 1.

We now prove Theorem 3. For any φ ∈ C(α),

|(P n
E −QE)φ(ū)− (P n

E −QE)φ(v̄)|
δ(ū, v̄)α

=
|P n
Eφ(ū)− P n

Eφ(v̄)|
δ(ū, v̄)α

≤ mα(φ)
∫
δ(Mū,Mv̄)α

δ(ū, v̄)α
dµnE(M)

≤ c3ρ
n
3mα(φ).

On the other hand, since νE is µE-invariant,

|(P n
E −QE)φ(ū)|= |

∫
φ(Mū)dµnE(M)−

∫
φ(Mv̄)dµnE(M)dνE(v̄)|

≤
∫
|φ(Mū)− φ(Mv̄)|dµnE(M)dνE(v̄)

≤ mα(φ)E

[
δ(SEn ū, S

E
n v̄)α

δ(ū, v̄)α

]
≤ mα(φ)c3ρ

n
3 .

This implies ‖P n
E −QE‖α ≤ 2c3ρ

n
3 .

A proof of the proposition on the regularity of the invariant measure
(Proposition 2) can be found in [1, Thm 2.1, §VI.2, Part A]. Following the
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proof and using Lemma 2, it is not hard to check that the result of Proposi-
tion 2 can be extended from a fixed parameter to a compact set of parameters.
The proof is tedious but straightforward, and is omitted.

Theorem 4. For each ε > 0 there exists an a > 0 such that for all
‖u‖ = 1,

Pr

{
| 1
n

log ‖SEn u‖ − γ1(E)| > ε

}
< e−an

for all E ∈ F .

Proof. Let t be a small positive number. We have

Pr{log ‖SEn u‖ − nγ1(E) > nε} ≤ E[exp{t(log ‖SEn u‖ − n(γ1(E) + ε))}],

and

logPr
{

1
n

log ‖SEn u‖ − γ1(E) > ε

}
≤ −ntε+ logE[‖SEn u‖t]− ntγ1(E).(4)

Again, we use the inequality ex ≤ 1 + x+ (x2/2)e|x| to deduce

E[‖SEn u‖t] ≤ 1 + tE[‖SEn u‖] +
t2

2
E[(log ‖SEn u‖)2 exp{t| log ‖SEn u‖|}].

Let ξ = 1 + (η/(infF γ1(E))), where η is a small positive number. By applying
the Cauchy-Schwarz inequality, the expectation in the last term of the above
inequality can be bounded by a positive number cn depending on F only. From
Lemma 1, we can find n0 such that

E[‖SEn0
u‖t] ≤ 1 + tξn0λ1(E) + t2cn0 .

By iterating the inequality and using the fact that the convergence of the limit
n−1E[log ‖SEn u‖] to the top Lyapunov exponent is uniform in ‖u‖ = 1, we get

E[‖SEn u‖t] ≤ (1 + tξn0γ1(E) + t2cn0)
n
n0

+1.

This implies that

1
n

logE[‖SEn u‖t] ≤ tξγ1(E) +
n0

n
tξγ1(E) +O(t2).

By choosing t, η > 0 small enough, the right-hand side of (4) is strictly negative
(uniformly in E ∈ F ). The other case can be proved in a similar manner.

Following the proof of Theorem 2 and using Theorems 3 and 4 and the gen-
eralization of Proposition 2, we have the following generalization of Theorem
2.
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Theorem 5. For each ε > 0 there exists a > 0 such that for all unit
vectors u, v ∈ Rd,

Pr

{
| 1
n

log |〈SEn u, v〉| − γ| ≥ ε
}
≤ e−an

for all E ∈ F .

4. Application

Let {Vn} be a sequence of i.i.d. real random variables. We assume that
E[|V1|α] <∞ for some α > 0. Let the Hamiltonian operator H be defined on
l2(Z) as

Hun = 2un − un−1 − un+1 + Vnun.

The one-dimensional discrete random Schrödinger wave equation is

i
dψt
dt

= Hψt.

The way to solve the wave equation is to look at the eigenvalue equation

Hu = Eu.

The real number E is considered as the energy parameter. In scattering the-
ory, one is interested in the superposition of waves with different energy pa-
rameters. It would be very helpful to have uniform estimates in the energy
parameters.

The eigenvalue equation can be expressed in vector form as[
un+1

un

]
=

[
Vn + 2− E −1

1 0

] [
un
un−1

]
.

We may rewrite this as
yn+1 = Anyn.

Thus, given the initial condition y1 we can integrate the equation and get the
final result

yn+1 = An · · ·A1y1.

It is clear that the asymptotic behavior of the solution of the eigenvalue
equation is strongly related to the random product An · · ·A1. Denote the
distribution of the random matrices An by µE. It has been proved that if the
support of the distribution of V1 contains an open subset of R, then TµE is
strongly irreducible and contracting [8]. Note that all the matrices An have
determinant one, and are symplectic. The results in the above section apply
to the scattering problem of the discrete random Schrödinger wave equation.
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