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LINE DIGRAPH ITERATIONS AND
DIAMETER VULNERABILITY∗

Feng Cao, Ding-Zhu Du, Shitou Han, Dongsoo Kim, Ting Yu

Abstract. Many interconnection networks can be constructed with line
digraph iterations. In this paper, we will establish a general theorem on
diameter vulnerability based on the line digraph iteration which improves
and generalizes several existing results in the literature.

1. Introduction

Many interconnection networks can be constructed with line digraph it-
erations, such as de Bruijn digraphs [2], Kautz digraphs [12], generalized de
Bruijn digraphs [5, 13], Imase-Itoh digraphs [10], large bipartite digraphs [15],
and large generalized cycles [7]. One may study the properties of those net-
works by taking advantage of line digraph iterations. However, this should be
done with caution. In fact, some argument that works for line graph iteration
may not work for line digraph iteration. For example, the line graph of a
graph which has d edge-disjoint paths of length at most ` between any two
vertices must have d vertex-disjoint paths of length at most `+ 1 between any
two vertices. The proof is quite simple. For any two different vertices u and v
in the line graph L(G), consider the corresponding edges (xu, yu) and (xv, yv)
in the original graph G. We must have xu 6= xv or yu 6= yv. Without loss of
generality, assume xu 6= xv. From d edge-disjoint paths of length at most `
between xu and xv, it is easy to construct d vertex-disjoint paths of length at
most ` + 1 between u and v in L(G). However, this argument doesn’t work
so simply for line digraph iteration. For two different vertices u and v in the
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line digraph L(G) of a digraph G, consider the corresponding edges (xu, yu)
and (xv, yv) in G. In order to construct d vertex-disjoint paths from u to v,
we need to find d edge-disjoint paths from yu to xv. When yu = xv, those
edge-disjoint paths are actually cycles whose existences do not follow easily
from the assumption on G.

Many researchers [1, 14, 8, 6] have noticed this trouble in dealing with line
digraph iterations and tried to add additional conditions on the seed digraph
to overcome the trouble [6, 14, 15]. In this paper, we want to make one more
contribution in this direction. We will propose a set of conditions on seed
digraphs and show that with such conditions, every digraph obtained from the
seed digraph through line digraph iterations has certain diameter vulnerability.
This will improve and generalize several existing results.

2. Seed Digraphs

An internal vertex of a path in a digraph is a vertex on the path other
than endpoints. Note that a vertex can be both an endpoint and an internal
vertex in a path. However, this would not occur in a simple path. A simple
path has no repeated vertex. An edge-simple path has no repeated edge. Two
paths are edge-disjoint if they do not have any edge in common. There are
three concepts about vertex-disjointness.

Two paths are weakly vertex-disjoint if they do not have an internal vertex
in common. Two paths are vertex-disjoint if they are edge-disjoint and weakly
vertex-disjoint. Two paths are strongly vertex-disjoint if no internal vertex
on one path is on the other path. (u, v) and (u, v, w, v) are weakly vertex-
disjoint, but not vertex-disjoint. (u,w′, v) and (u, v, w, v) for w 6= w′ are
vertex-disjoint but not strongly vertex-disjoint. Thus, these three concepts
are different. However, for two simple paths between the same endpoints,
these three concepts are equivalent. Note that vertex-disjoint simple paths
can be obtained from vertex-disjoint paths by deleting some cycles.

Let 1 ≤ `1 ≤ `2 ≤ · · · ≤ `c. An (`1, `2, · · · , `c)-seed is a digraph satisfying
the following conditions:

(a) For any two vertices u and v, there exist c vertex-disjoint simple paths
from u to v, of lengths at most `1, `2, · · · , `c, respectively.

(b) For any two edges (u, u′) and (v′, v), there are c − 1 vertex-disjoint
paths from u to v, of lengths at most `2, `3, · · · , `c, respectively, satisfying one
of the following conditions:

(b1) These c−1 paths are simple paths of length at least one, none involving
edges (u, u′) and (v′, v).

(b2) These c− 1 paths are edge-simple paths of length at least two, none
starting with edge (u, u′) and ending at edge (v′, v).
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The following are examples.

Example 1. Kautz digraph K(d, 1) is the complete digraph on d + 1
vertices without loop [12]. We claim that K(d, 1) is a (1, 2, · · · , 2︸ ︷︷ ︸

d−2

, 3)-seed. For

any two vertices u and v, there are d paths from u to v, edge (u, v) and paths
(u,w, v) for w 6= u, v, meeting condition (a). To verify condition (b), consider
two edges (u, u′) and (v′, v). If u 6= v′ and u′ 6= v, then we first consider
paths (u,w, v) for w 6= u, v′, u′, v. When u′ = v′ and u = v, they are d − 1
simple paths meeting condition (b1). When (u 6= v and u′ = v′) or (u = v
and u′ 6= v′), they are d − 2 simple paths together with (u, v) or (u, v′, u′, v)
meeting condition (b1). When u 6= v and u′ 6= v′, they are d− 3 simple paths
together with (u, v) and (u, v′, u′, v) meeting condition (b1). If u = v′ and
u′ 6= v, then consider d− 2 paths (u,w, v) for w 6= u, v, u′ together with path
(u, v′, u′, v). Note that u = v or u′ = v′ implies u 6= v′ and u′ 6= v since no
loop exists. Thus, we have u 6= v and u′ 6= v′. Hence, these d− 1 paths meet
condition (b2). Similarly, we can deal with the case that u 6= v′ and u′ = v.
Finally, if u = v′ and u′ = v, then d− 1 paths (u,w, v) for w 6= u, v′, u′, v meet
condition (b1).

Example 2. De Bruijn digraph B(d, 1) is the complete digraph on d
vertices with all loops. From Example 1, it is easy to see that B(d, 1) is a
(1, 2, · · · , 2︸ ︷︷ ︸

d−3

, 3)-seed.

Example 3. The complete bipartite digraph on a pair of vertex sets each
of cardinality d (d ≥ 3) is a (2, 3, · · · , 3︸ ︷︷ ︸

d−2

, 4)-seed. For any two vertices u and v in

the same part, there are d vertex-disjoint paths (u,w, v) for w in the other part.
For any two vertices u and v in different parts, consider a perfect matching
(u, v) = (u1, v1), (u2, v2), · · ·, (ud, vd) such that all ui’s are in one part and
all vi’s are in the other part. There are d vertex-disjoint simple paths (u, v),
(u, vi, ui, v) for i = 2, · · · , d, meeting condition (a). For two different edges
(u, u′) and (v′, v) with u and v in the same part, consider vertex-disjoint paths
(u,w, v) for w 6= u′, v′. If u′ = v′, then they are d − 1 simple paths meeting
condition (b1). If u′ 6= v′, then these d− 2 simple paths together with a path
(u, v′, v, u′, v) meet condition (b2). For two different edges (u, u′) and (v′, v)
with u and v in the same part. If u 6= v′ and u′ 6= v, consider a perfect matching
(u, u′), (w1, w

′
1), · · ·, (wd−2, w

′
d−2), (v, v) in G. (u,w′i, wi, v) for i = 1, 2, · · · , d−

2 and (u, v) form d − 1 paths meeting condition (b1). If u = v′ and u′ 6=
v, then consider a perfect matching (u, u′), (u1, u

′
1), · · · , (ud−2, u

′
d−2), (w, v).

Then (u, u′i, ui, v) for i = 1, 2, · · · , d − 2 and (u, v′, w, v) are d − 1 vertex-
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disjoint paths meeting condition (b2). If u 6= v′ and u′ = v, then we can verify
condition (b2) similarly. If u = v′ and u′ = v, then consider a perfect matching
(u, u′), (w1, w

′
1), · · ·, (wd−1, w

′
d−1) in G. (u,w′i, wi, v) for i = 1, 2, · · · , d− 1 are

d− 1 paths meeting condition (b1).

Example 4. Fiol and Yebra [8] defined a family of bipartite digraphs
BD(d, n) as follows: The vertex set is Z2 × Zn = {(α, i) | α ∈ Z2, i ∈ Zn}.
There is an edge from (α, i) to (1−α, (−1)αd(i+α)+t) for every t = 0, 1, · · · , d−
1. This family of digraphs has the property BD(d, dn) = L(BD(d, n)). It
is easy to see that BD(d, d) is the complete bipartite digraph and hence a
(2, 3, · · · , 3︸ ︷︷ ︸

d−2

, 4)-seed. We next show that BD(d, d2 + 1) is a (3, 4, · · · , 4︸ ︷︷ ︸
d−2

, 5)-seed.

For any vertex u, denote by Vu the set of all vertices which receive an
edge from u. Suppose Vu = x1, x2, · · · , xd. It is an important property that
{u}∪Vx1 ∪Vx2 ∪· · ·∪Vxd is a partition of {0}×Zn or {1}×Zn. A consequence
of this property is that every vertex in the part containing u receives an edge
from Vu except u. Consider another vertex v. Suppose v is in the part not
containing u. If v 6∈ Vu, then, for every Vxi , v receives an edge (yi, v) from it.
Thus, d paths (u, xi, yi, v) for i = 1, 2, · · · , d satisfy (a). If v ∈ Vu, say v = x1,
then v receives an edge (yi, v) from each Vxi for i = 2, 3, · · · , d. Thus, d paths
(u, v), (u, xi, yi, v) for i = 2, 3, · · · , d satisfy (a). Now, suppose v is in the part
containing u (of course u 6= v). Clearly, v receives edges from d vertices, say,
z1, z2, · · · , zd. Then, exactly one of them belongs to Vu, say, z1 = x1 ∈ Vu.
Note that each Vxi for i = 2, 3, · · · , d has a vertex yi such that edge (yi, zi)
exists. Therefore (u, x1, v), (u, xi, yi, zi, v) for i = 2, 3, · · · , d satisfy (b1).

To verify (b), consider two edges (u, u′) and (v′, v). In the previous d paths
from u to v, if only one path contains either edge (u, u′) or (v′, v), then the
remaining d− 1 paths satisfy (b1). Therefore, we may assume that there are
two paths which contain either edge (u, u′) or (v′, v). First, suppose u and v
are in different parts. If u′ = xi and v′ = yj with i 6= j, then we can add a
new path (u, xj , y′j , xi, yi, v) to the remaining d − 2 paths, where y′j ∈ Vxj . If
u′ = v and v′ = yj with yj 6= u, then the remaining d− 2 paths together with
a new path (u, xj , yj , w, u, v) for some w ∈ Vyj satisfy (b2). Next, suppose u
and v are in the same part. Assume u′ = xi. If v′ = zj with i 6= j and j ≥ 2,
then the remaining d− 2 paths together with a new path (u, xj , w, xi, yi, zi, v)
(i > 1) or (u, xj , w, xi, v) (i = 1) for some w ∈ Vxj satisfy (b2). If v′ = x1,
then the remaining d− 2 paths together with a new path (u, x1, w, xi, yi, zi, v)
for some w ∈ Vx1 satisfy (b2).

Example 5. Ferrero and Padró [7] studied two families of digraphs:
BGC(p, d, n) = Cp ⊗ B(d, n) and KGC(p, d, n) = Cp ⊗ K(d, n), where Cp
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is a directed cycle of length p and operation ⊗ is defined as follows: Let
G = (V,E) and G′ = (V ′, E′). Then G⊗G′ has vertex set V ×V ′ and edge set
{((u, u′), (v, v′)) | (u, v) ∈ E, (u′, v′) ∈ E′}. By a similar argument as above,
we can verify that BGC(p, d, d) for p ≥ 2 is a (p, p+ 1, · · · , p+ 1︸ ︷︷ ︸

d−2

, p + 2)-seed

and KGC(p, d, dp + 1) is a (2p− 1, 2p, · · · , 2p︸ ︷︷ ︸
d−2

, 2p+ 1)-seed.

3. Main Results

Our main theorem is as follows.

Theorem 1. Suppose G is an (`1, `2, · · · , `c)-seed. Then for any two
vertices u and v in Lk(G), there are c vertex-disjoint simple paths from u to
v, of lengths at most k + `1, k + `2, · · ·, k + `c, respectively.

Proof. We prove it by induction on k. For k = 0, it is true due to
condition (a) in the definition of (`1, `2, · · · , `c)-seed. Next, consider k ≥ 1.
Suppose u and v are two different vertices in Lk(G) and (xu, yu) and (xv, yv) are
corresponding edges in Lk−1(G). If yu 6= xv, then by the induction hypothesis,
there exist c vertex-disjoint paths from yu to xv, of length at most k− 1 + `1,
k − 1 + `2, · · ·, k − 1 + `c, respectively. From those c paths, it is easy to
construct c vertex-disjoint paths from u to v, of lengths at most k+ `1, k+ `2,
· · ·, k + `c, respectively.

Next, we assume yu = xv, i.e., the edge (u, v) exists in Lk(G). For each
vertex w in Lk(G), find a corresponding edge (x, y) in Lk−1(G) and then
find path (a, b, c) in Lk−1(G) corresponding to vertices x and y, .... In this
way, we can find a path (z1, z2, · · · , zk+1) in G corresponding to vertex w in
Lk(G). Conversely, for each path (z1, z2, · · · , zk+1) in G, we can also find a
corresponding vertex w in Lk(G). In fact, there exists a bijective mapping
between vertices in Lk(G) and paths of length k + 1 in G. Thus, we may
denote each vertex in Lk(G) by a path of length k + 1 in G. Consequently,
a path of length ` + k in G, (x1, x2, · · · , x`+k), represents a path of length `
in Lk(G), ((x1, · · · , xk+1), (x2, · · · , xk+2), · · · , (x`, · · · , x`+k)). Since yu = xv, u
and v can be represented by (α, x1, · · · , xk) and (x1, · · · , xk, β).

Consider two edges (xk, β) and (α, x1). By condition (b) in the defini-
tion of (`1, `2, · · · , `c)-seed, there exist c− 1 vertex-disjoint edge-simple paths
p1, p2, · · · , pc−1 from xk to x1, of lengths at most `2, · · ·, `c, respectively. They
satisfy either condition (b1) or (b2). Note that (α, x1, · · · , xk−1, pi, x2, · · · , xk, β)
for i = 1, 2, · · · , c− 1 represent c− 1 paths in Lk(G), of lengths at most k+ `2,
· · ·, k + `c. The condition (b1) or (b2) guarantees that none of these c − 1
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paths contains edge (u, v). The vertex-disjointness of these c−1 paths follows
from the following two lemmas.

Lemma 1. If pi and pj are two vertex-disjoint paths of length at least two
from xk to x1, then (α, x1, · · · , xk−1, pi, x2, · · · , xk, β) and (α, x1, · · ·, xk−1,
pj, x2, · · ·, xk, β) represent two vertex-disjoint paths in Lk(G).

Proof. Let pi = (xk, y1, · · ·, ys, x1) and pj = (xk, z1, · · · , zt, x1), s ≥
1 and t ≥ 1. Assume the contrary that the two paths (α, x1, · · ·, xk,
y1, · · ·, ys, x1, · · ·, xk, β) and (α, x1, · · · , xk, z1, · · ·, zt, x1, · · · , xk, β) are not
vertex-disjoint in Lk(G). Then an internal vertex in the first path will be
identical to an internal vertex of the second path. Note that each inter-
nal vertex in the first path has three possible forms (xi′ , · · · , xk, y1, · · · , yi′),
(xi′ , · · · , xk, y1, · · · , ys, x1, · · · , xi′−s), and (yi′ , · · · , ys, x1, · · · , xk+1−s), and so
does each vertex in the secod path. Thus, there are nine possible cases. How-
ever, a contradiction can be found by essentially the same argument. Without
loss of generality, let us consider only one such case: (xi′ , · · · , xk, y1, · · · , yi′) =
(zt−j′ , · · · , zt, x1, · · · , xk−j′), where i′ ≥ 1 and j′ ≤ t. Note that pi and pj are
vertex-disjoint paths. Thus, the y’s part cannot overlap with the z’s part. It
follows that

y1 = xk−j′−i′+1, · · · , yi′ = xk−j′

and
zt−j′ = xi′ , · · · , zt = xi′+j′ .

Therefore,

{{xi′ , · · · , xk, xk−j′−i′+1, · · · , xk−j′}} = {{(xi′ , · · · , xi′+j′ , x1, · · · , xk−j′}}(1)

and
{xk−j′−i′+1, · · · , xk−j′} ∩ {xi′ , · · · , xi′+j′} = ∅,(2)

where {{· · ·}} denotes a multiset.
Now, we first consider the subscripts of elements in the multiset on the left-

hand side. Since all subscripts are between 1 and k, among k−j′−i′+1, · · · , k−
j′, at least one appears twice in the sequence {i′, · · · , k, k−j′−i′+1, · · · , k−j′}.
Note that each subscript appears at most twice in the sequence. Denote by
Na the subset of subscripts appearing a-times in the sequence. Then |N2| =
|N0|+ 1.

Similarly, denote by N ′a the subset of subscripts appearing a-times in the
sequence {i′, · · · , i′ + j′, 1, · · · , k − j′}, subscripts of elements in the multiset
on the right-hand side of (1). Note that N2 ⊆ {k− j′ − i′ + 1, · · · , k− j′} and
N ′2 ⊆ {i′, · · · , i′ + j′}. It follows from (2) that

{xq | q ∈ N2} ∩ {xr | r ∈ N ′2} = ∅.
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Deleting all xq for q ∈ N1 ∩N ′1 from both sides of (1), we obtain

{{xq | q ∈ N2 ∪ (N1 ∩N ′0)}} = {{xr | r ∈ N ′2 ∪ (N ′1 ∩N0)}}.

Therefore,
{{xq | q ∈ N2}} ⊆ {{xr | r ∈ N ′1 ∩N0}}.

Hence |N2| ≤ |N0|, a contradiction.

Lemma 2. Suppose pi = (xk, x1) and pj is a simple path of length at least
two from xk to x1. Then (α, x1, · · ·, xk−1, pi, x2, · · ·, xk, β) and (α, x1, · · ·,
xk−1, pj, x2, · · ·, xk, β) represent two vertex-disjoint paths in Lk(G).

Proof. Let pj = (xk, z1, · · · , zt, x1). Assume the contrary that the two
paths have an internal vertex in common. Since an internal vertex in the
path (α, x1, · · · , xk−1, pj , x2, · · · , xk, β) has three possible forms, there are three
cases. But, a contradiction can be found by the same argument. Without loss
of generality, we may consider only one case that (xi′ , · · · , xk, x1, · · · , xi′) =
(xk−j′ , · · · , xk, z1, · · · , zt, x1, · · · , xk−j′−t).

Construct a digraph H with vertex set {x1, · · · , xk, z1, · · · , zt} and edge set

{(y1, y
′
1), (y2, y

′
2), · · · , (yk+1, y

′
k+1)},

where
(y1, y2, · · · , yk+1) = (xi′ , · · · , xk, x1, · · · , xi′),

(y′1, y
′
2, · · · , y′k+1) = (xk−j′ , · · · , xk, z1, · · · , zt, x1, · · · , xk−j′−t).

(Keep in mind that each edge represents an equality sign.) Clearly, in H,
xi′ has outdegree 2, every vertex in {xk−j′−t+1, · · · , xk−j′−1} has indegree 0
and outdegree 1, every vertex in {z1, · · · , zt} has indegree 1 and outdegree 0,
and each in the remainder has indegree 1 and outdegree 1. Since the total
number of indegees and the total number of outdegrees should be equal, xi′
has indegree 1. It follows that starting from xi′ , if we always choose a new
edge to go further, then we must end at a vertex with a larger indegree than
outdegree, hence in {z1, · · · , zt}. Thus, xi′ equals one of the zh’s. Similarly,
there also exist t − 1 paths respectively starting from xk−j′−t+1, · · · , xk−j′−1
and ending in {z1, · · · , zt}. These t− 1 paths must be totally vertex-disjoint.
In fact, two paths having a vertex in common would imply the equality of
two zh’s, contradicting the fact that the path pj is simple. For the same
reason, these t − 1 paths would not pass vertices xi′ , xk−j′ , xk−j′−t, xk, and
x1. Note that xk−j′−t+1, · · · , xk−j′−1 is a consecutive run of size t − 1, i.e., a
set of t − 1 elements appearing consecutively in x1, x2, · · · , xk. Thus, edges
from them will reach a consecutive run of size t − 1 in {xk−j′ , · · · , xk−1},
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{z1, · · · , zt} or {x2, · · · , xk−j′−t}. In general, they run parallelly such that at
each time, they reach a consecutive run of size t − 1 in {xk−j′+1, · · · , xk−1},
{z1, · · · , zt} or {x2, · · · , xk−j′−t−1}. This means that these t − 1 paths would
reach either {z1, · · · , zt−1} or {z2, · · · , zt} at the same time. Without loss of
generality, assume that the former occurs. Then xk−j′−t+1 = z1, · · ·, xk−j′−1 =
zt−1. It follows that xi′ = zt. Now, we follow these t − 1 paths and consider
a path p starting from xk−j′−t. When the t − 1 paths reach a consecutive
run {x`, x`+1, · · · , x`+t−1}, path p reaches x`−1. When the t − 1 paths reach
{z1, · · · , zt−1}, path p would reach xk. Therefore, xi′ = xk−j′−t = xk. Hence,
xk = zt, contradicting the fact that pj is a simple path.

The above two lemmas guarantee that the c− 1 paths constructed before
are actually vertex-disjoint. This completes the proof of Theorem 1.

Corollary 1 (Du, Hsu, and Lyuu [4]). In Kautz digraph K(d,D) =
LD−1(K(d, 1)), for any two vertices, there are d vertex-disjoint paths from one
to the other, one of length D, d− 2 of length D+ 1, and one of length D+ 2.

Corollary 2 (Imase, Soneoka, and Okada [11]). In de Bruijn digraph
B(d,D)(= LD−1(B(d, 1))), for two vertices, there are d vertex-disjoint paths
from one to the other, one of length D, d−3 of length D+1, and one of length
D + 2.

Corollary 3 (Cao, Du, and Hsu [3]). In bipartite digraph BD(d,
dD−1 + dD−3)(= LD−3(BD(d, d2 + 1))), for any two vertices, there are d
vertex-disjoint paths from one to the other, one of length D, d − 2 of length
D + 1, and one of length D + 2.

This is an improvement of a result in [15].

Corollary 4 (Ferrero and Padró [7]). In bipartite digraph BD(d,
dD−1)(= LD−2(BD(d, d))), for any two vertices, there are d vertex-disjoint
paths from one to the other, one of length D, d− 2 of length D + 1, and one
of length D + 2.

Corollary 5 (Ferrero and Padró [7]). In KGC(p, d, dp+k + dk)(=
Lk(KGC(p, d, dp + 1))), for any two vertices, there are d vertex-disjoint paths
from one to the other, one of length D, d−2 of length D+1, and one of length
D + 2, where D = 2p+ k − 1.

By a similar argument used in the proof of Theorem 1, we can also show
an improvement of the result in Du, Lyuu, and Hsu [6] as follows.
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Theorem 2. In de Bruijn B(d,D) and Kautz digraph K(d,D), for any
vertex u and vertices v1, v2, · · ·, vh (0 < h ≤ d) with h positive integers d1,
d2, · · ·, dh (d1 + d2 + · · ·+ dh = d), there are d1 simple paths from u to v1, d2
simple paths from u to v2, · · ·, dh simple paths from u to vh. These d simple
paths are strongly vertex-disjoint, one of length at most D, d− 2 of length at
most D + 1, and one of length at most D + 2.

4. Discussion

The main contribution of this paper is the proof technique of Lemma 2. In
fact, this is the first time that it appears in a publication. In those previous
results that we cited as corollaries in Section 3, the proof was either incomplete
or misleading. Typically, in a situation which needs Lemma 2, a statement
“this can be proved analogously” appeared. Actually, the proof of Lemma 2
is not analogous to the proof of Lemma 1.

Imase and Itoh [10] proposed a family of digraphs GI(d, n) with vertex
set Zn and edge set {(i,−d(i + 1) + r) | i ∈ Zn, r = 0, 1, · · · , d − 1}. When
n = dD + dD−s for odd s < D, GI(d, n) has diameter D and connectivity d
[9]. Now, we have the following conjecture.

Conjecture 1. If s is an odd natural number less than D, then Imase-Itoh
digraph GI(d, ds + 1) is an (s, s+ 1, · · · , s+ 1︸ ︷︷ ︸

d−2

, s+ 2)-seed.
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