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COMPACT AND WEAKLY COMPACT DERIVATIONS
OF CERTAIN CSL ALGEBRAS

Li Jiankui

Abstract. In this paper, we investigate weakly compact and compact
derivations of certain CSL algebras. These algebras contain finite tensor
product algebras of nest algebras and some nest subalgebras of a von
Neumann algebra.

1. Introduction

In [10], Peligrad determines the structure of all weakly compact derivations
of a nest algebra and also obtains necessary and sufficient conditions in order
that a nest algebra admit a nonzero compact derivation. For a nest algebra A,
by [3, 7], we have Hn(A,B) = 0 for any positive integer n and all ultraweakly
closed subalgebras B of L(H) containing A. In [4], it was shown that H1(A,A)
need not be trivial even when A is the intersection of two nest algebras. Thus
for a reflexive algebra, even a CSL algebra, it is difficult to determine the
structure of all compact and weakly compact derivations of the algebra. In
this note, we prove that some of Peligrad’s results can be achieved for some
reflexive algebras. These algebras include finite tensor product algebras of
nest algebras and some nest subalgebras of a von Neumann algebra.

Throughout the paper, H denotes a complex separable Hilbert space. Let
L(H) denote the set of all operators on H, and let K(H) denote the set of
compact operators on H. For e, f in H, we denote by e⊗f , the operator x 7→
〈x, e〉f . A subspace lattice which consists of mutually commuting projections
is called a commutative subspace lattice; the associated reflexive algebra is
called a CSL algebra. A totally ordered subspace lattice is called a nest and
the associated reflexive algebra is called a nest algebra. When there is no
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confusion we identify the subspace and the orthogonal projection on it. For
any subalgebra A of L(H) and any subspace S ⊆ L(H) which is a 2-sided
A-module, let C(A,S) denote the set

{X ∈ L(H) : AX −XA ∈ S for all A ∈ A},

that is, C(A,S) is the commutant of A modulo S.
A derivation of an algebra A into a (2-sided) A-module S is a linear map

δ such that δ(ab) = aδ(b) + δ(a)b. A derivation of the form δx(a) = xa − ax
with x in S is said to be inner. In [1], Christensen proves that all derivations
from a CSL algebra A into itself are norm continuous.

2. Some Results

If L is a subspace lattice, for M ∈ L, let

M− = ∨{N ∈ L : M 6⊆ N}.

Let JL denote the subset of L defined by {L ∈ L : L 6= 0 and L− 6= I}. Define
A∗ = {A∗ : A ∈ A} and L⊥ = {I − P : P ∈ L}. For completely distributive
lattices, we need not be concerned with the actual definition here. For our
purpose it is enough to know the following result.

Lemma 1[8]. Suppose that L is a commutative subspace lattice. Then the
following statements are equivalent :

(1) L is completely distributive.

(2) The collection of finite sums of rank-one operators in alg L is ultraweakly
dense in alg L.

In the following, let A be a CSL algebra, let K(A) = A∩K(H), and let δ
be a derivation from A into itself.

Using the above Lemma 1, it is easy to prove the following result.

Lemma 2. If lat A is completely distributive, then K(A)∗∗ = A.

Theorem 3. Let δ be a derivation from A into itself, and lat A be com-
pletely distributive such that H1(A, A) = 0 and C(A,K(A)) ⊆ A′ + K(H).
Then the following statements are equivalent :

(1) δ is weakly compact.

(2) δ(A) ⊆ K(A).

(3) δ = δx for some x ∈ K(A).
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Proof. We only prove that (2) implies (3). The rest is left to the reader.
Since H1(A, A) = 0, we have that δ = δT with T in A. By δ(A) ⊆ K(A), it
follows that for A in A, AT −TA ∈ K(A). For C(A,K(A)) ⊆ A′+K(H), we
have T = m+ x,m ∈ A′ ⊆ L′ ⊆ A and x ∈ K(A). Hence δT = δx.

Remark 1. Suppose that L = N1 ⊗ · · · ⊗ Nn, where Ni is a nest act-
ing on Hi. Using Proposition 2.7, Theorem 3.1 and Remark 3.3 [4], respec-
tively, we have that L is completely distributive, H1(alg L, alg L) = 0, and
C(alg L, K(alg L)) ⊆ A′ +K(H).

Let B be a von Neumann algebra contained in L(H) and let N be a nest
contained in B. Let A = B ∩ alg N . The algebra A is called (nsva) the nest
subalgebra of the von Neumann algebra B relative to the nest N .

Remark 2. If A is a nsva of a von Neumann algebra B, by Theorem 6 [3],
then H1(A, L(H)) = 0. As in [1, 4], this implies that H1(A, B) = 0 for any
ultraweakly closed subalgebra of L(H) containing A. Hence H1(A, A) = 0.
By Theorem 6.4 [5], we have that

C(A,K(H)) = C(B,K(H)).

By Theorem I [11] and Theorem 2.5 [5], it follows that C(B,K(H)) = B′ +
K(H) and A′ = B′. Hence C(A,K(A)) ⊆ A′ + K(H). Clearly, by Remarks
1, 2 and Theorem 3, we have the following result.

Corollary 4. Suppose that A is a nsva such that lat A is completely
distributive or that A = alg N1 ⊗ · · · ⊗ alg Nn, where Ni is a nest acting on
Hi. Then the following statements are equivalent :

(1) δ is weakly compact.

(2) δ(A) ⊆ K(A).

(3) δ = δx for some x ∈ K(A).

Lemma 5. Let A be as in Theorem 3. If dim PH =∞ for any P in JL,
then A has no nonzero compact derivation.

Proof. Suppose that A has a nonzero compact derivation δ. By Theorem
3, we have that δ = δT with T ∈ K(A). We consider the following two cases.

(i) If there is an element P in JL and e0 ∈ (I − P−)H, ‖e0‖ = 1, such
that 〈Te0, e0〉 6= 0. Let Te0 = λe0 + y0, where y0⊥e0. Since Te0 = λe0 + y0,
it follows λ 6= 0. Let {fi}∞i=1 be an orthogonal family in PH. By Lemma 3
[9], we have e0 ⊗ fi ∈ A. Since δ is compact and ‖e0 ⊗ fi‖ = 1, it follows
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that {δ(e0 ⊗ fi)} contains a convergent subsequence. We may assume that
{δ(e0 ⊗ fi)} converges. Since

δ(e0 ⊗ fi)e0 = T (e0 ⊗ fi)e0 − (e0 ⊗ fi)Te0 = Tfi − 〈Te0, e0〉fi = Tfi − λfi

and T is compact, it follows that {fi} has a convergent subsequence. Since
{fi} is an orthogonal family, clearly this is impossible.

(ii) If for any P in JL and for all e ∈ (I − P−)H we have < Te, e >= 0,
then

(I − P−)T (I − P−) = (I − P−)T = 0.

Since L is completely distributive, we have that ∧{P− : P ∈ JL} = 0. Hence
T = 0. Since δ = δT 6= 0, we have a contradiction. Hence A has no nonzero
compact derivation.

Remark 3. Let A be as in Theorem 3. Since lat A∗ = {I−P : P ∈ lat A}
and alg L⊥ = A∗, it follows that A∗ is a CSL algebra and lat A∗ is completely
distributive. It is easy to prove that H1(A∗,A∗) = 0, and C(A∗,K(A∗)) ⊆
A∗′ +K(A∗) if and only if H1(A, A) = 0 and C(A,K(A)) ⊆ A′ +K(A).

By the above Remark and Lemma 5, we can prove the following result.

Lemma 6. Let A be as in Theorem 3. If dim PH =∞, for any P ∈ JL⊥,
then A has no nonzero compact derivation.

Theorem 7. Let A = alg N1 ⊗ · · · ⊗ alg Nn, where Ni is a nest on Hi.
Then the following statements are equivalent :

(1) A has a nonzero compact derivation.
(2) There exist an L in N1⊗· · ·⊗Nn, L 6= 0, with dim LH <∞ and an M

in N1 ⊗ · · · ⊗ Nn, M 6= I with dim (I −M)H <∞.

Proof. By Lemmas 5 and 6, it is obvious that (1) implies (2).
Conversely, suppose that A has no nonzero compact derivation. Let P ∈

N1 ⊗ · · · ⊗ Nn, P 6= 0, and dim PH <∞. By Proposition 2.4 [4], since

P = ∨{P1 ⊗ · · · ⊗ Pn | Pi ∈ Ni, P1 ⊗ · · · ⊗ Pn ⊆ P},

there exists P̃ = P̃1 ⊗ · · · ⊗ P̃n 6= 0 in N1 ⊗ · · · ⊗ Nn such that dim P̃H <∞.
Thus dim P̃iH <∞, i = 1, ..., n.

Suppose that Q 6= I and Q ∈ N1⊗ · · · ⊗Nn such that dim (I −Q)H <∞.
Let L = N1 ⊗ · · · ⊗ Nn. By Theorem 2.6 [4],

alg L⊥= (alg L)∗ = (alg N1 ⊗ · · · ⊗ alg Nn)∗

= (alg N1)∗ ⊗ · · · ⊗ (alg Nn)∗ = alg(N⊥1 ⊗ · · · ⊗ N⊥n ).
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So L⊥ = N⊥1 ⊗ · · · ⊗ N⊥n . Since I − Q ∈ L⊥ = N⊥1 ⊗ · · · ⊗ N⊥n and dim
(I − Q)H < ∞, similarly, there exists Q̃1 ⊗ · · · ⊗ Q̃n 6= 0 in N⊥1 ⊗ · · · ⊗ N⊥n
with dim Q̃iHi <∞. Since P̃iL(H)Q̃i ⊆ alg Ni, it follows that P̃L(H1⊗· · ·⊗
Hn)Q̃ ⊆ alg L. For any K ∈ P̃L(H1 ⊗ · · · ⊗ Hn)Q̃ and K 6= 0, let δ = δK .
Since dim P̃L(H1 ⊗ · · · ⊗ Hn)Q̃ < ∞ and for any a ∈ alg L, δ(a) = δK(a) ∈
P̃L(H1 ⊗ · · · ⊗ Hn)Q̃, we have δK is compact. By the proof of Theorem 3.2
[4], we have that A′ = CI. Hence δK 6= 0.

Lemma 8. The following statements are equivalent :

(1) A is a nsva of a von Neumann algebra B such that lat A is completely
distributive.

(2) A =
∑
i∈Λ
⊕ alg Ni, where Ni is a nest acting on Hi, and Λ = {1, ..., n}

or all positive integers.

Proof. Suppose that (1) is true. Since lat B ⊆ lat A, by the hypothesis,
it follows that lat B is both commutative and completely distributive. So
lat B is a complete Boolean algebra. By Tarski’s Theorem [6, p.287], we have
that lat B is totally atomic. Hence B′ is an atomic abelian von Neumann
algebra and B′ =

∑
i∈Λ
⊕CIHi , where Λ = {1, ..., n} or all positive integers.

Thus B =
∑
i∈Λ
⊕L(H i). Let Ei be the projection onto Hi for each i ∈ Λ.

Since A = B ∩ (alg N ), letting Ni = (Ei − Ei−1)N (Ei − Ei−1), we have that
A =

∑
i∈Λ
⊕alg Ni.

Conversely, let B =
∑
i∈Λ
⊕L(H i) and let N be the ordinal sum of the Ni.

This is the nest on H =
∑
i∈Λ
⊕Hi consisting of 0 and I together with all

projections of the form IH1 ⊕ · · · ⊕ IHi−1 ⊕ P ⊕ 0 ⊕ 0 ⊕ · · · , P ∈ Ni for
i ∈ Λ. It follows that A = B ∩ alg N and lat A is both commutative and
completely distributive.

Theorem 9. Let A =
∑
i∈Λ
⊕alg Ni, where Ni is a nest acting on Hi,Λ =

{1, ..., n} or all positive integers. The following statements are equivalent :

(1) A has a nonzero compact derivation.

(2) There is a j ∈ Λ such that alg Nj has a nonzero compact derivation.

Proof. Suppose that (2) is true. Let δj be a nonzero compact derivation
of Aj. For any a =

∑
i∈Λ
⊕ai, define δ(a) = δj(aj). Then δ is a nonzero compact

derivation. Hence (2) implies (1).
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Conversely, let δ be a nonzero compact derivation of A. By Corollary 4 and
Lemma 8, we have that δ = δx with x ∈ K(A). Let x =

∑
i∈Λ
⊕xi, xi ∈ K(alg Ni).

For any a =
∑
i∈Λ
⊕ai ∈ A, it follows that

δ(a) = xa− ax =
∑
i∈Λ

⊕(xiai − aixi).(2.1)

Since δ is a nonzero compact derivation, by (2.1) we have that there exists a
j ∈ Λ such that alg Nj has a nonzero compact derivation.

Theorem 10. Let A be as in Theorem 9. Every compact derivation of A
is the norm limit of finite-rank derivations of A.

Proof. Let δ be a nonzero compact derivation of A. By Corollary 4 and
Lemma 8, δ = δx where x =

∑
i∈Λ
⊕xi, xi ∈ K(alg Ni). For any a ∈ alg Ni,

define δ(i)(a) = xia−axi. Then δ(i) = 0 or δ(i) is a nonzero compact derivation
of alg Ni. From Theorem 10 [10], it follows that there exists a sequence {δ(i)

n }
such that every δ(i)

n is a finite-rank derivation of alg Ni and δ(i)
n −→ δ(i). When

Λ = {1, ..., n}, let
δm = δ(1)

m ⊕ · · · ⊕ δ(n)
m .

When Λ is all positive integers, let

δm = δ(1)
m ⊕ · · · ⊕ δ(m)

m ⊕ 0⊕ 0⊕ · · · .

Then we have that δm is a finite-rank compact derivation ofA and lim
m→∞

δm = δ.
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