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THE DENSITY OF QUOTIENTS FROM
TWO DIFFERENT MÜNTZ SYSTEMS

S. P. Zhou

Abstract. The present paper discusses the density of quotients from two
different Müntz systems. An interesting and nontrivial generalization of
a result of Somorjai is established.

1. Introduction

From Müntz theorem (cf. [2]), it is well known that the set of combinations
of {xλn} for

0 = λ0 < λ1 < λ2 < · · ·

is dense in the space of all continuous functions on [0, 1] (which is denoted by
C[0,1]) if and only if

∞∑
n=1

1
λn

=∞.

For Müntz rational approximation, the story is different. Somorjai [6]
showed that the rational combinations of {xλn} always form a dense set in
C[0,1] for any increasing sequence of nonnegative distinct numbers {λn}. Bak
and Newman [1] further generalized this surprising result to include sequences
of nonnegative distinct numbers {λn}. Other related materials could be found
in [3, 4] and [9].

On the other hand, approximation by quotients from two different Müntz
systems is always an interesting but hard topic. Turán in his well-known
“problem paper” [8] repeated an open problem which was initially raised by
Newman:
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Problem LXXXIII (Turán [8]). Find conditions on two sequences {λj}
and {λ∗j} which assure that every continuous function can be approximated
arbitrarily close by rational functions having in their numerators only powers
belonging to {λj} and in their denominators only powers belonging to {λ∗j}1.

Somorjai [7] constructed an example to show that the set of quotients of
two different Müntz systems is not always dense in C[0,1]. Explicitly he proved
the following result:

Theorem 1. Assume that for an integer j0, {λj}j>j0 and {λ∗j}j>j0 are dis-
joint sets and their union (as a monotone increasing sequence) has Hadamard
gaps2. Then the set of quotients R(Λ∗/Λ) is not dense in C[0,1].

On the other hand, Somorjai [7] pointed out that the condition |λj−λ∗j | =
O(1) for j = 1, 2, · · · is sufficient (under the condition that {λj} ∩ {λ∗j} 6= ∅)
for the density of R(Λ∗/Λ) in C[0,1].

There has been no further progress on this topic since then.
The intention of the present paper is to give a nontrivial generalization of

the result of Somorjai by employing some new ideas. As particular examples,
we include the following applications:

Corollary 1. Let Λ = {nγ}∞n=0, γ ≥ 2, Λ∗ = {nγ ± nρ}∞n=0, 0 ≤ ρ < 1.
Then R(Λ∗/Λ) is dense in C[0,1].

Corollary 2. Let Λ = {qn}∞n=0, q > 1, Λ∗ = {qn ± nρ}∞n=0, 0 ≤ ρ < 1.
Then R(Λ∗/Λ) is dense in C[0,1].

We give the proof of Corollary 1 here. Since (n+ 1)γ − nγ ≥ γnγ−1 ≥ γn,
and dγn = ±nρ, 0 ≤ ρ < 1, condition (2) of Theorem 2 is satisfied. Then
R(Λ∗/Λ) is dense in C[0,1] by Theorem 2.

2. Main Result

We are given two sequences of nonnegative distinct increasing numbers
{λj}∞j=1 and {λ∗j}∞j=1. If Λ ∩ Λ∗ 6= ∅, select λNα1 to be the smallest common
element λN0 of these two sets and let dα1 = 0. Otherwise choose λNα1 = λ1, and

|dα1 | := min
j≥1
{|λ∗j − λ1|}.

01 We denote such a class of rational functions by R(Λ∗/Λ).
02 We say a nonnegative increasing sequence {an} has Hadamard gaps if there is a number

q > 1 such that an+1/an ≥ q for all n = 1, 2, · · ·.
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Assume the above minimum is achieved at some j = j1, and write dα1 = λ∗j1−λ1.
After λNα

k
and dαk , k = 1, 2, · · ·, are selected, choose

λNα
k+1

= min{λn : λn − λNα
k
≥ αk, n > Nα

k }(1)

for some α > 0, and
|dαk+1| := min

j≥1
{|λ∗j − λNαk+1

|}.

Assume the above minimum is achieved at some j = jk+1, and write dαk+1 =
λ∗jk+1

− λNα
k+1

. By this way we have defined inductively the sequences {λNα
k
}

and {dαk}.

Theorem 2. Let Λ = {λj}∞j=1, Λ∗ = {λ∗j}∞j=1 be two sequences of nonneg-
ative distinct increasing numbers. Assume for some α > 0,

lim
n→∞

dαn
n

= 0.(2)

Then R(Λ∗/Λ) forms a dense set in C[0,1] if and only if

Λ∗ ∩ Λ 6= ∅.

Proof. The necessity part is obvious. For if Λ∗ ∩Λ = φ, then any rational
function r(x) ∈ R(Λ∗/Λ) which is continuous on [0, 1] must have3

r(0) = 0.

This means, R(Λ∗/Λ) is not dense in C[0,1].
Now suppose Λ∗ ∩Λ is not empty and is finite, otherwise the conclusion is

trivial. Then dαk 6= 0 for sufficiently large k. Without loss of generality, assume
dαk 6= 0 for k > 1. Let λN0 be the smallest one among those common elements
of Λ∗ ∩ Λ, so λNα1 = λN0 . And for some α > 0 (2) holds. For convenience, we
write {Nj} instead of {Nα

j }, {dj} instead of {dαj }, and so on. Fix a sufficiently
large N . Set

xj := xNj =
j

N
, j = 1, 2, · · · , N,

Qj(x) = xλNM1+jx
−(λNM1+M−λN1 )
M

j∏
i=M+1

x
−(λNM1+i−λNM1+i−1 )
i , j > M,

QM(x) = Q∗M(x) = xλN1 ,

03 Note that if Λ∗ ∩Λ = ∅, any rational function r(x) ∈ R(Λ∗/Λ) satisfies either r(0) = 0
or r(0) =∞.
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and

Q∗j (x) =
(
x

xj

)dNM1+j

Qj(x), j > M,

where
M = [

√
N ], M1 = [M

√
εM
−1] + 1,

and

εn = max
j≥n

{ |dj|
j

}
.

Then clearly we have Qj(x) ∈ span{xλj}, and Q∗j (x) ∈ span{xλ∗j }. For conve-
nience, with the above notations, we divide the proof into some lemmas.

Lemma 1. (i) For xk ≤ x < xk+1, k = M,M + 1, · · · , N − 1 and j ∈
{M,M + 1, · · · , N − 1} \ {k, k + 1}, we have

0 ≤ Qj(x)
Qk(x)

≤ C1e
−C2|j−k|.(3)

(ii) For x ∈ [0, xM), j > M , we have

0 ≤ Qj(x)
QM(x)

≤
j∏

i=M+1

e−α(i−M)(M1+i−1)/i ≤ C1 exp

(
− C2√

εM
(j −M)

)
,(4)

where here and in the sequel, we always use Ci, i = 1, 2, · · ·, to indicate absolute
positive constants.

Proof. (i) Suppose xk ≤ x < xk+1, M ≤ k ≤ N − 1 and M ≤ j < k. We
check that for M < j < k,

0 ≤ Qj(x)
Qk(x)

=
k∏

i=j+1

(
xi
x

)λNM1+i−λNM1+i−1

≤
k∏

i=j+1

(
xi
xk

)λNM1+i−λNM1+i−1

≤
k∏

i=j+1

(
1− k − i

k

)λNM1+i−λNM1+i−1

.

By (1) and the estimate

1− x ≤ e−x for x ≥ 0,

it follows that for M ≤ i < k,(
1− k − i

k

)λNM1+i−λNM1+i−1

≤ e−α(k−i)(M1+i−1)/k ≤ e−α(k−i)(i−1)/k ≤ e−C3 .
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Therefore
Qj(x)
Qk(x)

≤ C4e
−C5(k−j).

The argument of the above inequality, apart from constants, is similar for
j = M .

In case xk ≤ x < xk+1, M ≤ k ≤ N −1 and k+ 1 < j ≤ N −1, in a similar
way we calculate that

0 ≤ Qj(x)
Qk(x)

=
j∏

i=k+1

(
x

xi

)λNM1+i−λNM1+i−1

≤
j∏

i=k+1

(
1− i− k − 1

i

)λNM1+i−λNM1+i−1

≤
j∏

i=k+1

e−α(i−k−1)(M1+i−1)/i ≤ C6e
−C7(j−k).

Altogether for xk ≤ x < xk+1, k = M,M + 1, · · · , N − 1 and j ∈ {M,M +
1, · · · , N − 1} \ {k, k + 1}, we have

0 ≤ Qj(x)
Qk(x)

≤ C1e
−C2|j−k|.

(ii) When x ∈ [0, xM), j > M , noticing that

M1

M
≥ 1
√
εM

,

we apply a similar argument to obtain that

0 ≤ Qj(x)
QM(x)

≤
j∏

i=M+1

e−α(i−M)(M1+i−1)/i ≤ C1 exp

(
− C2√

εM
(j −M)

)
.

Lemma 1 is proved.

Lemma 2. Assume xk ≤ x < xk+1, M ≤ k ≤ N−1, and M < j ≤ N−1.
Then

|Qj(x)−Q∗j (x)|
Qk(x)

≤
{
C8
√
εM , if j = k, k + 1,

C8e
−C9(k−j)(k − j)√εM , otherwise.

Proof. We see that for k > M ,

Qk(x)−Q∗k(x) = Qk(x)
(
1− (x/xk)dM1+k

)
.
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When x ∈ [xk, xk+1), k = M,M + 1, · · · , N − 1, by the mean-value theorem
(k = M is a trivial case since Qk(x) = Q∗k(x), so we suppose M < k ≤ N − 1),

1− (x/xk)dM1+k = dM1+kξ
dM1+k−1
k (1− x/xk) ,

where ξk ∈ (1, x/xk). We have the following inequality: for k ≥M + 1,

|dM1+k|
k

≤ C10
√
εM .(5)

In fact, since |dM1+k|/(M1 + k) ≤ εM , we have

|dM1+k|
k

=
|dM1+k|
M1 + k

M1 + k

k
≤ C11εM

√
εM
−1 ≤ C11

√
εM .

Together with

1 ≤ x

xk
≤ xk+1

xk
= 1 +

1
k
,

we get

ξ
dM1+k−1
k ≤

(
1 +

1
k

)|dM1+k|

≤ e|dM1+k|/k ≤ C12.

Meanwhile, ∣∣∣∣1− x

xk

∣∣∣∣ ≤ xk+1

xk
− 1 =

1
k
.

Altogether, with (5), we have

|Qk(x)−Q∗k(x)|
Qk(x)

≤ C12
|dM1+k|
k

≤ C13
√
εM .(6)

The proof of the following inequality is exactly the same: for x ∈ [xk, xk+1),
k = M,M + 1, · · · , N − 1,∣∣Qk+1(x)−Q∗k+1(x)

∣∣
Qk+1(x)

≤ |dM1+k+1|
k + 1

≤ C14
√
εM .(7)

Assume xk ≤ x < xk+1, k = M,M + 1, · · · , N − 1 and M < j < k. By a
similar argument,

|Qj(x)−Q∗j (x)| =Qj(x)
∣∣1− (x/xj)dM1+j

∣∣
≤ Qj(x)|dM1+j|ξ

dM1+j−1
j (xk+1/xj − 1) ,

where ξj ∈ (1, x/xj) ⊂ (1, xk+1/xj), so that

ξ
dM1+j−1
j ≤

(
k + 1
j

)|dM1+j |

=
(
1 + k−j+1

j

)|dM1+j |

≤ exp
( |dM1+j|

j
(k − j + 1)

)
.



Two Different Müntz Systems 231

Therefore with (3), (5), we have

|Qj(x)−Q∗j (x)|
Qk(x)

≤ exp (−C15(k − j) +
√
εM(k − j + 1))

√
εM(k − j + 1).

By noting (2) and j > M , we finally get for sufficiently large N that

|Qj(x)−Q∗j (x)|
Qk(x)

≤ C16e
−C17(k−j)(k − j)

√
εM .(8)

When xk ≤ x < xk+1, k = M,M + 1, · · · , N − 1 and k + 1 < j ≤ N − 1,
the argument is similar. We have

|Qj(x)−Q∗j (x)| ≤ Qj(x)|dM1+j|ξ
dM1+j−1
j (1− xk/xj) ,

where ξj ∈ (xk/xj, 1). The same calculation as the above case leads to

|Qj(x)−Q∗j (x)|
Qk(x)

≤ exp
(
−C18(j − k) +

|dM1+j|
j

) |dM1+j|
j

(j − k)

≤ C19e
−C20(j−k)(j − k)

√
εM .

(9)

Lemma 2 is proved.

For any given f(x) ∈ C[0,1], define

rN(f, x) =
∑N−1
j=M f(xj)Q∗j (x)∑N−1

j=M Qj(x)
.

Write

f(x)− rN(f, x)=
∑N−1
j=M(f(x)− f(xj))Qj(x)∑N−1

j=M Qj(x)

+
∑N−1
j=M+1 f(xj)(Qj(x)−Q∗j (x))∑N−1

j=M Qj(x)

=:
∑

1(x) +
∑

2(x).

By (3), for x ∈ [xk, xk+1), k = M,M + 1, · · · , N − 1, we have

|
∑

1(x)|≤
∑k+1
j=k |f(x)− f(xj)|Qj(x) +

∑
M≤j≤N−1,j 6=k,k+1 |f(x)− f(xj)|Qj(x)∑N−1
j=M Qj(x)

≤ 2ω(f,N−1) +
∑

M≤j≤N−1,j 6=k,k+1

ω

(
f,
|k − j + 1|

N

)
C21e

−C22|k−j|

≤ C23ω(f,N−1)
∞∑
j=0

je−C24j ≤ C25ω(f,N−1).
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Similarly, when x ∈ [0, xM), in view of (4), we have

|Σ1(x)| ≤ C26
(
ω(f,M/N) + ω(f,N−1)

)
≤ C27ω(f,M/N).

Altogether for x ∈ [0, 1], it is deduced that

|Σ1(x)| ≤ C28ω(f,M/N).(10)

At the same time, by applying (6)–(9), for x ∈ [xM , 1], we get

|Σ2(x)| ≤ C29 max
0≤x≤1

|f(x)|
√
εM

∞∑
j=0

je−C30j ≤ C31 max
0≤x≤1

|f(x)|
√
εM .

While for x ∈ [0, xM), it follows from (4) that

|Σ2(x)| ≤ C32 max
0≤x≤1

|f(x)|
∞∑
j=0

e−C33j
√
εM
−1

=: C32σM max
0≤x≤1

|f(x)|.

Combining the above estimates, we have that for x ∈ [0, 1],

|Σ2(x)| ≤ C34 max
0≤x≤1

|f(x)| (
√
εM + σM) .(11)

Because M = [
√
N ], lim

N→∞
M/N = 0. Together with lim

N→∞
εM = 0 (note

lim
N→∞

M = ∞) as well as lim
N→∞

σM = 0, by combining (10)–(11), we get for
x ∈ [0, 1],

lim
N→∞

|f(x)− rN(f, x)| = 0.

Thus Theorem 2 is proved.
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