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ANALYTIC SEMIGROUPS ON Lpw(0, 1) AND ON
Lp(0, 1) GENERATED BY SOME CLASSES OF

SECOND ORDER DIFFERENTIAL OPERATORS

Angelo Favini, Jerome A. Goldstein, and Silvia Romanelli

Abstract. Of concern are singular ordinary differential operators de-
fined on an interval for which the coefficient of ellipticity degenerates
at the boundary of the interval. Thus, for instance, of concern is the
operator A defined by Au := αu′′ + βu′ on the interval (0, 1) where
α ∈ C[0, 1], α > 0 in (0, 1) and α(0) = 0 = α(1). We show that, in many
cases, A (with suitable boundary conditions) generates a C0-semigroup
on various (weighted or not) Lp spaces on (0, 1) which is analytic. It is
the analyticity that is the focal point.

Introduction

Given α ∈ C[0, 1] with α > 0 in (0, 1), α(0) = 0 = α(1), and β a real-valued
function in L∞(0, 1), we consider the degenerate differential operator

Au := αu′′ + βu′

and show that under additional regularity (and compatibility) assumptions
on the coefficients α and β the operator A, when restricted to suitable do-
mains, generates an analytic semigroup on the space with weight Lpw(0, 1) or
on Lp(0, 1), where 1 < p <∞.
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Here the weight function w is assumed to be in C[0, 1] and w(x) > 0 on
(0,1), while

Lpw(0, 1) := {u : (0, 1)→ C |umeasurable on (0, 1) and∫
(0,1)
|u(x)|pw(x) dx < +∞}

and functions coinciding a.e. are identified. After the classical paper by Feller
[13], a wide literature appeared on operators like A where α and β are poly-
nomials, according to many concrete applications. We quote the article [24]
by Vespri for several remarkable results and a considerable list of references
on the subject, embracing the case of domains in Rn, n ≥ 1, too.

For our purposes, the most interesting result concerning the operator A,
whose domain includes elements u with the so-called Wentzell boundary con-
ditions (i.e. lim

x→0+,x→1−
Au(x) = 0), is due to Clément and Timmermans in [6].

In that paper the authors gave necessary and sufficient conditions on α and β
in order that (A,D(A)) with

D(A) := {u ∈ C[0, 1] ∩ C2(0, 1)| lim
x→0+,x→1−

Au(x) = 0}

does generate a Co-semigroup on C[0, 1]. Although under general conditions
on α and β, the analyticity of the semigroup generated by (A,D(A)) is still an
open problem, in recent years this property has been established for suitable
α and β both in C[0, 1] (or particular closed subspaces) and in Lp spaces (with
or without weight), provided that the domain of A is correspondingly defined.

For instance, Favini and Romanelli in [11] have recently proved that this
holds in C[0, 1] if

√
α ∈ C1[0, 1] and hence

√
α is R- admissible (i.e.∫ 1

2

0
(α(x))−

1
2 dx = +∞ =

∫ 1

1
2

(α(x))−
1
2 dx),

and
β√
α
∈ C[0, 1], β(0) = 0 = β(1).

This last condition is basic in order to transform the resolvent equation (λ−
A)u = f into an equivalent problem in

C0(R) := {v ∈ C(R)| lim
|t|→∞

v(t) = 0},

where some results presented by Lunardi in the monograph [17] can be applied.
Notice that the functions

α(x) := xm(1− x)m, m ∈ N,
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are R-admissible if and only if m ≥ 2, so that the most important case given
by m = 1 cannot be treated in this way, but very recently this case was studied
in [4].

Neverthless, in [10] we showed that A1u := x(1 − x)u′′ with domain
D(A1) := {u ∈ H1(0, 1)|αu′′ ∈ Ho(0, 1)}, does generate a holomorphic semi-
group on H1(0, 1).

The result is obtained by a technique previously applied in [2], exploiting
the well-known Lions method of sesquilinear forms on Hilbert spaces. In [2],
Barbu, Favini and Romanelli studied more precisely generation properties for
the operator α∆ in the setting of the spaces Lpα−1(Ω), where Ω is an open
bounded subset of Rn with smooth boundary, α is continuous on the closure
of Ω, strictly positive on Ω and vanishes on its boundary. The analyticity
results are gotten via a direct approach to the resolvent operator and, when
n ≥ 2, they hold for p depending on n.

On the other hand, Campiti, Metafune and Pallara in [5] studied regularity
of the semigroup generated by A, when α ∈ C1[0, 1] and β := α′, so that Au is

written as
d

dx
(α
du

dx
). In such a case, they prove that the Neumann boundary

conditions αu′(0) = 0 = αu′(1) are the natural ones for A.
In what follows both the methods in [2] and in [11] will be adapted to deal

with the Lp case, with or without weight.
The contents of the paper are organized as follows.
In Section 1, in analogy with the technique applied in [11] for the con-

tinuous case, we establish a preliminary lemma, which allows us to introduce
a suitable lattice isomorphism between Lp

α−
1
2
(0, 1) and Lp(R) (1 < p < ∞),

provided that
√
α belongs to C1[0, 1]. Therefore, in Section 2, Theorem 2.1,

we show that if in addition β√
α
∈ L∞(0, 1), then (A,D(Ap)) generates a holo-

morphic semigroup on Lp
α−

1
2
(0, 1), 1 < p <∞. (Here u ∈ D(Ap) if and only if

u ∈ Lp
α−

1
2
(0, 1) and∫
(0,1)

α
p−1

2 (x)|u′(x)|p dx <∞,
∫

(0,1)
α

2p−1
2 (x)|u′′(x)|p dx <∞,

where the derivatives of u are viewed in the sense of distributions.)
Moreover then

D(Ap) = {u ∈ Lp
α−

1
2
(0, 1)|αu′′ + βu′ ∈ Lp

α−
1
2
(0, 1)},

according to Theorem 2.3.
In order to replace Lp

α−
1
2
(0, 1) by Lp(0, 1), we need some more regularity

on α. In fact, in Theorem 2.4 we see that if, in addition, α ∈ W 2,∞(0, 1) and
α

1
2p ∈ C1[0, 1], then A generates a holomorphic semigroup on Lp(0, 1), 1 <
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p <∞, provided that its domain D′(Ap) consists of all u ∈ Lp(0, 1) such that
both the integrals∫

(0,1)
α
p
2 (x)|u′(x)|p dx,

∫
(0,1)

αp(x)|u′′(x)|p dx

are finite.
In particular, if 1 < p <∞ and

α ∈ C2[0, 1], β ∈ C[0, 1],
β√
α
∈ L∞(0, 1),

then D′(Ap) coincides with

{u ∈ Lp(0, 1)|αu′′ + βu′ ∈ Lp(0, 1)},

as shown in Theorem 2.7. Notice that any u ∈ D′(Ap) satisfies

lim
x→0+,x→1−

(α(x))
1
2pu(x) = 0 = lim

x→0+,x→1−
(α(x))

p+1
2p u′(x)

and hence α(x)u′(x)→ 0 as x→ 0+, x→ 1−.
Since β = α′ is allowed, we see that under last assumptions our opera-

tor (A,D′(Ap)) coincides with that one considered by Campiti, Metafune and
Pallara in [5, Theorem 2.9]. By uniqueness of generators, our slightly more re-
strictive regularity assumptions guarantee better infomation on the behaviour
of u ∈ D′(Ap) at the boundary.

Section 3 contains extensions of [2] to β 6= 0. Indeed, in Theorem 3.2 we
show that if α, β ∈ C[0, 1] with

α(0) = 0 = α(1), α(x) > 0 in (0, 1),
β

α
∈ L1(0, 1)

and the domain D(A) of A is the completion of C∞o (0, 1) with respect to the
norm

‖u‖2D(A) := ‖u‖2L2
w

+ ‖u′‖2L2 + ‖αu′′ + βu′‖2L2
w
,

where w(x) := 1
α(x)e

∫ x
1
2

β(t)
α(t) dt

, then A is self-adjoint and nonpositive on L2
w(0, 1).

Let us observe that under these assumptions L2
w(0, 1) coincides algebraically

with L2
α−1(0, 1). Applications of all these results are given to the case

α(x) := xj(1− x)j, β(x) := xk(1− x)k,

with j ≥ 2 and suitable k ≥ 1.
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In Section 4 we show how the technique developed in Section 3 allows us
to handle also degenerate second order differential operators whose domains
consist of functions defined on the unbounded interval [0,+∞).

For the sake of brevity, we confine our treatment to two prominent exam-
ples. The first one concerns the operator associated to the linear Kompaneets
equation, already studied by Goldstein in [15] and by Wang in [25]. We im-
prove some results of Wang, who obtained differentiability properties under
slightly more restrictive regularity assumptions on the coefficients. In par-
ticular, we give a precise justification to some basic a-priori estimates and
integrations by parts in the resolvent equation.

The second example treats the operator Au := xu′′+au′, where a ∈ R, x ∈
(0,+∞) and the considered space is L2

xa−1(0,+∞).
It was introduced by Feller in [13] and investigated in the very interesting

paper [3] by Brezis, Rosenkrantz and Singer, too. We also indicate how the
behaviour of an element u ∈ D(A) near 0 and ∞ depends in an essential way
on the constant a.

1. Preliminaries

Let us prove some preliminary results which will allow us in Section 2 to
check the analyticity of the semigroup generated by the operator Au := αu′′+
βu′, defined in suitable subspaces of (Lp

α−
1
2
(0, 1), ‖.‖

α−
1
2
), where 1 ≤ p < ∞,

by applying techniques analogous to those used in [11], in the setting of the
space C[0, 1].

In the following, we shall always assume that α, β are real-valued functions
on [0, 1] with α ∈ C[0, 1] such that

α(x) > 0, for x ∈ (0, 1), α(0) = 0 = α(1)(1.1)

and β ∈ L∞(0, 1).
Let us recall some definitions and notations.

Definition 1.1. A function α : [0, 1] → R is called R-admissible if the
following properties hold:

( i ) α ∈ C[0, 1] ;
(ii) α satisfies (1.1) ;

(iii)
∫ 1

2
0

1
α(x) dx = +∞ =

∫ 1
1
2

1
α(x) dx.

Now, let us consider the Banach space Lp
α−

1
2
(0, 1) (1 ≤ p < ∞) equipped

with the weighted norm

‖u‖
α−

1
2 ,p

:=

(∫ 1

0

|u(x)|p√
α(x)

dx

) 1
p

.
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Let us state the following basic result.

Lemma 1.2. If α ∈ C[0, 1] satisfies (1.1) and

√
α ∈ C1[0, 1],(1.2)

then the mapping Φ : (0, 1)→ R given by

Φ(x) :=
∫ x

1
2

ds√
α(s)

, x ∈ (0, 1),(1.3)

belongs to C1(0, 1) and is strictly increasing together with its inverse φ : R→
(0, 1), which is differentiable in R.

In addition, if 1 ≤ p <∞, the operator Tφ defined by

Tφu := u ◦ φ

possesses the following properties:

(1) Tφ(Lp
α−

1
2
(0, 1)) = Lp(R), with ‖Tφu‖Lp(R) = ‖u‖

α−
1
2 ,p

(u ∈ Lp
α−

1
2
(0, 1));

(2) Tφ(D(Bp)) = W 1,p(R),

where

D(Bp) := {u ∈ Lp
α−

1
2
(0, 1) ∩W 1,p

loc (0, 1)|
√
αu′ ∈ Lp

α−
1
2
(0, 1)}.

Proof. First of all, let us remark that assumption (1.2) implies that
√
α is

R-admissible. Now, let us consider the mapping Φ as given in (1.3) and observe
that Φ is differentiable in (0, 1) with Φ′(x) = 1/

√
α(x) for x ∈ (0, 1). Then,

Φ ∈ C1(0, 1) and is strictly increasing and invertible. Its inverse φ : R→ (0, 1)
is differentiable on R and satisfies

lim
t→−∞

φ(t) = 0, lim
t→+∞

φ(t) = 1, φ′(t) =
1

Φ′(φ(t))
=
√
α(φ(t)), t ∈ R.

In order to show (1), we consider u ∈ Lp
α−

1
2
(0, 1). Thus, u ◦φ is measurable on

R and, moreover, ∫
R
|u ◦ φ(t)|p dt =

∫ 1

0

|u(x)|p√
α(x)

dx < +∞.

Conversely, from v ∈ Lp(R) it follows that∫ 1

0

|v(Φ(x))|p√
α(x)

dx =
∫
R
|v(y)|p dy < +∞.
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Hence, Tφ(Lp
α−

1
2
(0, 1)) = Lp(R). In addition, if u ∈ D(Bp), then

∫
R
|(u ◦ φ)′(t)|p dt=

∫
R
|u′(φ(t))φ′(t)|p dt

=
∫ 1

0

|u′(x)|p(
√
α(x))p√

α(x)
dx < +∞.

On the other hand, for all v ∈W 1,p(R), the mapping v ◦Φ is measurable and,
moreover,∫ 1

0

|
√
α(x)(v ◦ Φ)′(x)|p√

α(x)
dx=

∫ 1

0

|
√
α(x)v′(Φ(x))Φ′(x)|p√

α(x)
dx

=
∫
R
|v′(t)|p dt < +∞.

Since W 1,p(R) = W
o

1,p(R), we observe that any u ∈ D(Bp) necessarily satisfies
lim

x→0+,x→1−
u(x) = 0.

Thus, assertion (2) holds.

Remark 1.3. Let us recall that the family of operators (Tp(t))t∈R given
by

Tp(t)u(x) := u(x+ t), t ∈ R, u ∈ Lp(R), x ∈ R,

with 1 ≤ p < ∞ is a C0-group on Lp(R), having as generator (Ap, D(Ap)),
where

D(Ap) := W 1,p(R),
Apu := u′(in the sense of distributions), foru ∈ D(Ap)

(see [19, A-I, p.10]). Hence, if α satisfies the assumptions of Lemma 1.2, then
for every 1 ≤ p < +∞, the operator Bpu :=

√
αu′ with domain D(Bp) defined

as in the above lemma, generates the C0-group on Lp
α−

1
2
(0, 1) obtained by

(Tp(t))t∈R via the similarity associated to Tφ, according to [19, A-I, 3.0, p.13].

2. Analyticity in Lp
α−

1
2
(0, 1) and in Lp(0, 1) (1 ≤ p <∞)

In this section, we shall show that the restrictions of the operator Au :=
αu′′+βu′ to certain domains generate analytic semigroups both in the spaces
Lp
α−

1
2
(0, 1), introduced at the beginning of Section 1, and in the spaces Lp(0, 1)

(1 < p <∞).
In analogy with [11, Theorem 2.4], we prove the following result.

187
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Theorem 2.1. Let α ∈ C[0, 1] and β ∈ L∞(0, 1) be such that (1.1) and
(1.2) hold. In addition, assume

β√
α
∈ L∞(0, 1).(2.1)

Then the operator Cpu := αu′′ + βu′ with domain

D(Cp) := {u ∈ Lp
α−

1
2
(0, 1)|

∫ 1

0
|u′(x)|pα(x)

p−1
2 dx < +∞,∫ 1

0
|u′′(x)|pα(x)

2p−1
2 dx < +∞},

generates an analytic semigroup on Lp
α−

1
2
(0, 1) for 1 < p <∞.

Proof. In view of Lemma 1.2 and Remark 1.3, the operator (Bp, D(Bp))
defined as follows

D(Bp) := {u ∈ Lp
α−

1
2
(0, 1)|

√
αu′ ∈ Lp

α−
1
2
(0, 1)},

Bpu :=
√
αu′, u ∈ D(Bp),

generates a C0-group of isometries on Lp
α−

1
2
(0, 1). From assumption (1.2), it

follows that the operator (B2
p , D(B2

p)), where

D(B2
p)= {u ∈ Lp

α−
1
2
(0, 1)|

√
αu′ ∈ Lp

α−
1
2
(0, 1),

√
α(
√
αu′)′ ∈ Lp

α−
1
2
(0, 1)},

B2
pu=

√
α(
√
α)′u′ + αu′′ = (

√
α)′Bpu+ αu′′, u ∈ D(B2

p),

generates an analytic semigroup on Lp
α−

1
2
(0, 1), according to [19, A-II, Corol-

lary 1.13].
Then the operator Cp with domain D(B2

p) coincides with

Cpu = B2
pu+ (

2β − α′

2
√
α

)Bpu, u ∈ D(B2
p),

and, in view of assumptions (1.2) and (2.1), it is easily seen that

D(Cp) = D(B2
p) = {u ∈ Lp

α−
1
2
(0, 1)|

∫ 1

0
|
√
α(x)u′(x)|p dx√

α(x)
< +∞,∫ 1

0
|α(x)u′′(x)|p dx√

α(x)
< +∞},

where 2β−α′
2
√
α
∈ L∞(0, 1) by virtue of assumptions (1.2) and (2.1) too.
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Now, by Kallman-Rota inequality (see e.g. [14, Theorem 9.8, p.65]), we
have that

‖Bpu‖2
α−

1
2 ,p
≤ 4‖B2

pu‖α− 1
2 ,p
‖u‖

α−
1
2 ,p

for all u ∈ D(B2
p). Hence, taking also into account the inequality

2ab ≤ εa2 +
b2

ε
(ε > 0, a, b ∈ R),

we obtain that the operator 2β−α′
2
√
α
Bp is B2

p-bounded with B2
p-bound equal to

0 in the sense of [16, p.190].
Thus, according to [14, Corollary 9, p.42], we can conclude that also

(Cp, D(Cp)) generates an analytic semigroup on Lp
α−

1
2
(0, 1) and the proof is

complete.

Remark 2.2. Assumptions (1.2) and (2.1) of the previous theorem assure
that

D(Cp) = {u ∈ Lp
α−

1
2
(0, 1)|

√
αu′ ∈ Lp

α−
1
2
(0, 1), αu′′ + βu′ ∈ Lp

α−
1
2
(0, 1)}.

Moreover, a function α satisfying (1.2) necessarily has the property

|α′(x)| ≤ c
√
α(x), x ∈ (0, 1),

and, therefore, by integration, α(x) ≤ cx2 near 0, and α(x) ≤ c(1 − x)2 near
1. In addition, for every u ∈ D(Cp), u(0) = u(1) = 0 and

lim
x→0+,x→1−

√
α(x)u′(x) = 0.

Concerning the domain D(Cp) we obtain this further result.

Theorem 2.3. Under the hypotheses of Theorem 2.1 we have that the
domain D(Cp) coincides with

D′(Cp) := {u ∈ Lp
α−

1
2
(0, 1)|αu′′ + βu′ ∈ Lp

α−
1
2
(0, 1)}

for 1 < p <∞.

Proof. Let 1 < p < ∞ and (Ap, D(Ap)), (Bp, D(Bp)) be the operators
introduced in Remark 1.3 and Theorem 2.1, respectively.

According to Lemma 1.2, let us define

v(t) := u(φ(t))

189



190 Angelo Favini, Jerome A. Goldstein, and Silvia Romanelli

and observe that v ∈ Lp(R) (v ∈W 1,p(R), resp.) if and only if u ∈ Lp
α−

1
2
(0, 1)

(u ∈ D(Bp), resp.). Hence, from

D(A2
p) = W 2,p(R) = {v ∈ Lp(R) ∩W 2,p

loc (R)| v′′ ∈ Lp(R)},

it follows that

D(B2
p) = {u ∈ Lp

α−
1
2
(0, 1) ∩W 2,p

loc (0, 1)|B2
pu ∈ L

p

α−
1
2
(0, 1)},

i.e., the conditionBpu ∈ Lp
α−

1
2
(0, 1) is automatically satisfied ifB2

pu ∈ L
p

α−
1
2
(0, 1).

Now, arguing as in Theorem 2.1, we have that D(Cp) = D(B2
p) and

Cpu = B2
pu+

2β − α′

2
√
α

Bp

for all u ∈ D(B2
p). Since 2β−α′

2
√
α
∈ L∞(0, 1), D(B2

p) = D′(Cp) and the assertion
holds.

In what follows we shall show that analogous results to Theorem 2.1 and
Theorem 2.3 hold in Lp(0, 1) too, provided that more regularity is supposed
for α. In order to accomplish this, we observe that the resolvent estimates are
reduced to ones in Lp

α−
1
2
(0, 1) and hence Theorem 2.1 and Theorem 2.3 play

a key role.

Theorem 2.4. Let 1 < p < ∞, and let α ∈ W 2,∞(0, 1), β ∈ L∞(0, 1)
satisfy the assumptions (1.1), (2.1) and, in addition,

α
1
2p ∈ C1[0, 1].(2.2)

Let D(Ap) consist of all u ∈ Lp(0, 1) such that∫ 1

0
|
√
α(x)u′(x)|p dx < +∞,

∫ 1

0
|α(x)u′′(x)|p dx <∞,

and let
Apu := αu′′ + βu′, u ∈ D(Ap).

Then (Ap, D(Ap)) generates a holomorphic semigroup on Lp(0, 1).

Remark 2.5. As it will be noted in the proof of the theorem, any u ∈
D(Ap) satisfies the boundary conditions

lim
x→0+,x→1−

α(x)
1
2pu(x) = lim

x→0+,x→1−
α(x)

p+1
2p u′(x) = 0.(2.3)
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Moreover, Theorem 2.4 refines Theorem 4.6 in Vespri’s paper [24, p.365], giving
both a unified treatment for all 1 < p < ∞ and an explicit description of
D(Ap).

Proof of Theorem 2.4. Let Re λ > 0 be sufficiently large and consider

λu− αu′′ − βu′ = f ∈ Lp(0, 1), u ∈ D(Ap).(2.4)

Multiplying (2.4) by α(x)
1
2p and denoting α(x)

1
2pu(x) by v(x) and α(x)

1
2p f(x)

by g(x), we observe that g ∈ Lp
α−

1
2
(0, 1) and (2.4) reads equivalently

λv(x)− α(x)v′′(x)− (β(x)− α′(x)
p

)v′(x) + γ(x)v(x) = g(x),(2.5)

where v ∈ D(Cp), 0 < x < 1, and

γ(x) :=
α′(x)

(2p)α(x)
β(x) +

1
2p
α′′(x)− (1 + 2p)(α′(x))2

4p2α(x)
.

By (2.2), α
1
2p ∈ C1[0, 1] implies

√
α ∈ C1[0, 1], while from α ∈W 2,∞(0, 1) and

assumption (2.1) it follows that γI is a bounded linear operator on Lp
α−

1
2
(0, 1).

Hence, by virtue of Theorem 2.1 the operator

Dpv := αv′′ + (β − α′

p
)v′ − γv

with domain D(Dp) := D(Cp) generates an analytic semigroup on Lp
α−

1
2
(0, 1),

so that
‖v‖

α−
1
2 ,p

= ‖u‖Lp ≤ C|λ|−1‖g‖
α−

1
2 ,p

= C|λ|−1‖f‖Lp .

Moreover, there exist c, c1 ∈ R such that the solution v to (2.5) satisfies∫ 1

0
|v′(x)|pα(x)

p−1
2 dx ≤ c‖f‖pLp ,(2.6)

and ∫ 1

0
|v′′(x)|pα(x)

2p−1
2 dx ≤ c1‖f‖pLp .(2.7)

We only need to translate (2.6), (2.7) into equivalent conditions on u.
Property (2.6) means∫ 1

0
| 1
2p

(α(x))
1
2p−1α′(x)u(x) + (α(x))

1
2pu′(x)|p(α(x))

p−1
2 dx <∞,(2.8)
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but, for a suitable c2 ∈ R we obtain∫ 1

0
α(x)

1−2p
2 |u(x)|pα′(x)pα(x)

p−1
2 dx ≤ c2

∫ 1

0
|u(x)|p dx,

because of Remark 2.2.
Therefore (2.8) reduces to∫ 1

0
(α(x))

p
2 |u′(x)|p dx <∞.

Concerning (2.7), it reads∫ 1

0
(α(x))p−

1
2 |1− 2p

4p2
(α(x))

1
2p−2(α′(x))2u(x) +

1
2p

(α(x))
1
2p−1α′′(x)u(x)

+
1
p

(α(x))
1
2p−1α′(x)u′(x) + (α(x))

1
2pu′′(x)|p dx <∞.

On the other hand,∫ 1

0
(α(x))p−

1
2 (α(x))

1
2−2p(α′(x))2p|u(x)|p dx

is estimated by c3‖u‖pLp for a suitable constant c3.
Moreover, by Remark 2.2 again,∫ 1

0
(α(x))p−

1
2 (α(x))

1
2−p|α′′(x)|p|u(x)|p dx ≤ c‖u‖pLp ,∫ 1

0
(α(x))p−

1
2 (α(x))

1
2−p|α′(x)|p|u′(x)|p dx ≤ c

∫ 1
0 (α(x))

p
2 |u′(x)|p dx.

Hence (2.7) affirms nothing else than∫ 1

0
|α(x)u′′(x)|p dx <∞.

Application of Remark 2.2 to v = α
1
2pu guarantees that

lim
x→0+,x→1−

(α(x))
1
2pu(x) = 0 = lim

x→0+,x→1−

√
α(x)(α

1
2pu)′(x).

Now √
α(x)(α(x))

1
2p−1α′(x)u(x) = α(x)

1
2p
α′(x)√
α(x)

u(x)

tends to 0 as x → 0+ and x → 1−. Hence, for all u ∈ D(Ap), we have the
boundary conditions (2.3).
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On the other hand, it is an easy matter to verify that if v ∈ D(Cp) satisfies
(2.5), with g = α

1
2p f, f ∈ Lp(0, 1), then u := α−

1
2p v ∈ D(Ap) satisfies (2.4).

This concludes the proof.

Remark 2.6. All u ∈ D(Ap) satisfy in fact the generalized Neumann
boundary conditions of the type

lim
x→0+,x→1−

α(x)u′(x) = 0,

for α(x)u′(x) = (α(x))
p+1
2p u′(x)(α(x))

p−1
2p and (α(x))

p+1
2p u′(x) tends to 0 as

x→ 0+ and x→ 1−, in view of Remark 2.5. Our result can be hence compared
to that one by Campiti, Metafune and Pallara in [5].

Theorem 2.7. Let 1 < p < ∞ and α ∈ C2[0, 1], β ∈ C[0, 1] verify
assumptions (1.1), (2.1) and (2.2). Then, the domain D(Ap) coincides with

Xp := {u ∈ Lp(0, 1)|αu′′ + βu′ ∈ Lp(0, 1)}.

Proof. Clearly Xp contains D(Ap). Now, if Re λ > 0 is sufficiently large,
for f ∈ Lp(0, 1) let us consider the resolvent equation

λu− αu′′ − βu′ = f(2.9)

with u ∈ Xp. Multiplying (2.9) by (α(x))
1
2p , we see that it is equivalent to the

equation in Lp
α−

1
2
(0, 1) as follows:

λv − αv′′ − (β − α′

p
)v′ + γv = g,(2.10)

where g(x) := (α(x))
1
2p f(x), in the unknown v given by v(x) := (α(x))

1
pu(x),

and with

γ(x) :=
α′(x)

2pα(x)
β(x) +

1
2p
α′′(x)− (1 + 2p)(α′(x))2

4p2α(x)
.

In view of the new assumptions, (notice that necessarily
√
α ∈ C1[0, 1] by

(2.2)), the function γ is in C[0, 1].
Now we apply Theorem 2.3 and deduce that the operator (Dp, D(Dp)) with

D(Dp) := {v ∈ Lp
α−

1
2
(0, 1)|αv′′ + (β − α′

p
)v′ − γv ∈ Lp

α−
1
2
(0, 1)},

Dpv := αv′′ + (β − α′

p
)v′ − γv, v ∈ D(Dp),
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generates an analytic semigroup on Lp
α−

1
2
(0, 1).

Thus, denoting by φ the same function introduced in Lemma 1.2, it suf-
fices to observe that the present assumptions assure that γ ◦ φ is uniformly
continuous on R, so that we can apply [17, Theorem 3.1.3, p.73], since p > 1.

Therefore,

‖v‖
α−

1
2 ,p

= ‖u‖Lp ≤ c|λ|−1‖g‖
α−

1
2 ,p

= c|λ|−1‖f‖Lp

and

∫ 1

0

|α(x)v′′(x) + (β(x)− α′(x)
p

)v′(x)− γ(x)v(x)|p√
α(x)

dx ≤ cp‖f‖pLp ,(2.11)

where v solves (2.10). Taking into account that v = α
1
2pu, (2.11) reads equiv-

alently ∫ 1

0
|α(x)u′′(x) + β(x)u′(x)|p dx ≤ c‖f‖pLp ,

which characterizes Xp. Since

Lp(0, 1) = (λ−Ap)(D(Ap)) ⊆ (λ−Ap)(Xp) = Lp(0, 1),

necessarily D(Ap) = Xp. We want to remark that since v is a solution of (2.10)
in Lp

α−
1
2
(0, 1), we have

lim
|t|→+∞

(v ◦ φ)(t) = 0, lim
|t|→+∞

(v ◦ φ)′(t) = 0,

so that

lim
x→0+,x→1−

(α(x))
1
2pu(x) = 0 = lim

x→0+,x→1−
α(x)u′(x) = 0.

Hence, the proof is complete.

Using the ideas of Remark 2.2 and taking into account Remark 2.5, we
deduce the following

Corollary 2.8. Let 1 < p < ∞ and α ∈ C2[0, 1], β ∈ C[0, 1] verify
assumptions (1.1), (2.1) and (2.2). Then, the operator (Kp, D(Kp)) given by

D(Kp) := {u ∈ Lp(0, 1)| (αu′)′ + βu′ ∈ Lp(0, 1)},

Kpu := (αu′)′ + βu′, u ∈ D(Kp)

generates an analytic semigroup on Lp(0, 1).
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Proof. Under our regularity assumptions, it suffices to observe that Kpu =
αu′′ + (β + α′)u′ and, on the other hand, β + α′ has precisely the properties
that allow the application of Theorem 2.7.

Example. Let α(x) := xj(1− x)j, β(x) := xk(1−x)k, where j, k ≥ 1 and

x ∈ [0, 1]. Then Theorems 2.1 and 2.3 hold, provided that j ≥ 2 and k ≥ j

2
.

If, in addition, j ≥ 2p, then Theorems 2.4 and 2.7 apply too. Here j, k need
not be integers.

3. A Generation Theorem for Au := αu′′ + βu′ in L2
w(0, 1)

Here we shall consider the space L2
w(0, 1), with a suitable w, in order

to obtain analyticity results for the semigroup generated by Au := αu′′ +
βu′, where the mappings α and β are more general than in Section 2. The
arguments we shall use are similar to those in [2], as already observed in the
Introduction.

We begin our discussion by stating a preliminary lemma.

Lemma 3.1. Let α, β ∈ C[0, 1] be such that α satisfies (1.1) and β
α
∈

L1(0, 1). If we introduce

w(x) :=
1

α(x)
e

∫ x
1
2

β(t)
α(t) dt

, x ∈ (0, 1),(3.1)

then the operator (A,D(A)) with

Au := αu′′ + βu′, u ∈ D(A),

and D(A) given by the completion of C∞0 (0, 1) with respect to the norm

‖u‖2D(A) := ‖u‖2L2
w

+ ‖u′‖2L2 + ‖αu′′ + βu′‖2L2
w

is self-adjoint and nonpositive in L2
w(0, 1). Moreover, the domain of A is equiv-

alently described by

D(A) ={u ∈ L2
w(0, 1) ∩H1

o (0, 1)|u ∈ H2
loc(0, 1),

1
w

(e
∫ x

1
2

β(t)
α(t) dt

u′)′ ∈ L2
w(0, 1)}.

(3.2)

Proof. 1st step.
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We show that A is symmetric and nonpositive. Indeed, if u, v ∈ D(A),
there exist two sequences (un)n∈N and (vn)n∈N in C∞0 (0, 1) such that

‖un − u‖D(A) → 0, ‖vn − v‖D(A) → 0.

Thus

〈Au, v〉L2
w

=
∫ 1

0
(α(x))−1e

∫ x
1
2

β(t)
α(t) dt(α(x)u′′(x) + β(x)u′(x))v(x) dx

=
∫ 1

0
e

∫ x
1
2

β(t)
α(t) dt(u′′(x) +

β(x)
α(x)

u′(x))v(x) dx

=
∫ 1

0

d

dx
(e
∫ x

1
2

β(t)
α(t) dt

u′(x))v(x) dx

= lim
n→∞

∫ 1

0

d

dx
(e
∫ x

1
2

β(t)
α(t) dt

u′n(x))vn(x) dx

= lim
n→∞

{[e
∫ x

1
2

β(t)
α(t) dt

u′n(x)vn(x)]x=1
x=0 −

∫ 1

0
e

∫ x
1
2

β(t)
α(t) dt

u′n(x)v′n(x) dx}

= − lim
n→∞

∫ 1

0
e

∫ x
1
2

β(t)
α(t) dt

u′n(x)v′n(x) dx

= −
∫ 1

0
e

∫ x
1
2

β(t)
α(t) dt

u′(x)v′(x) dx

= −
∫ 1

0
e

∫ x
1
2

β(t)
α(t) dt

u′(x)v′(x) dx = 〈u,Av〉L2
w
.

Note also that the above calculation (with u = v) shows that

〈Au, u〉L2
w

= −
∫ 1

0
e

∫ x
1
2

β(x)
α(x) dx|u′(x)|2 dx < 0 (unlessu ≡ constant),

whence Au is nonpositive.
2nd step. Let us observe that D(A) ⊆ L2

w(0, 1) ∩ H1
o (0, 1) and if we

interpret αu′′ + βu′ as w−1(e
∫ x

1
2

β(t)
α(t)

u′)′, then by arguing as in [18] we deduce
that D(A) satisfies (3.2).

3rd step. Since a symmetric operator which is onto is self-adjoint (see
e.g. [26, Chapter VII 3, Corollary, p.199]), in order to complete the proof it
suffices to show that I − A is onto X := L2

w(0, 1). For this goal, we observe
that if V is the Hilbert space obtained by the completion of C∞o (0, 1) with
respect to the norm

‖u‖V := (‖u‖2X +
∫ 1

0
e

∫ x
1
2

β(t)
α(t) dt|u′(x)|2 dx)

1
2 ,
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which is equivalent to (‖u‖2X + ‖u′‖2L2) 1
2 by the assumption β

α
∈ L1(0, 1), then

the equation
u−Au = f,(3.3)

where f ∈ X, admits a weak formulation : to find u ∈ V such that∫ 1

0
w(x)u(x)φ(x) dx+

∫ 1

0
e

∫ x
1
2

β(t)
α(t) dt

u′(x)φ′(x) dx =
∫ 1

0
w(x)f(x)φ(x) dx(3.4)

for each φ ∈ V.
The left-hand side of (3.4) defines a quadratic form B(u, φ) on V ×V which

is continuous and coercive on V × V. Hence, by the Lax-Milgram theorem (cf.
[22, Lemma 2.2.1, p.26]), equation (3.4) has a unique weak solution u ∈ V for
all f ∈ X (⊆ V ∗). Let

D(B̃) := {u ∈ V |φ→ B(u, φ) is continuous onV
with respect to ‖.‖X}.

Since V is dense in X, for each u ∈ D(B̃) the mapping φ ∈ V → B(u, φ) can
be extended to a continuous functional on X and, consequently, there exists a
unique element in X, say B̃u, such that B(u, φ) = (B̃u, φ). By [22, Theorems
2.2.2 and 2.2.3, pp.28-29], B̃ is an isomorphism from D(B̃) onto X, so that
for all f ∈ X there exists a unique u ∈ D(B̃) satisfying (3.4). On the other
hand, if we observe that (3.4) holds for all φ ∈ C∞o (0, 1) it is deduced that the

derivative d
dx

(e
∫ x

1
2

β(t)
α(t) dt

u′) in the sense of distributions fulfils∫ 1

0
w(x)u(x)φ(x) dx−

∫ 1

0
w(x)w(x)−1 d

dx
(e
∫ x

1
2

β(t)
α(t) dt

u′)(x)φ(x) dx

=
∫ 1

0
w(x)f(x)φ(x) dx,

and w−1 d
dx

(e
∫ x

1
2

β(t)
α(t) dt

u′) ∈ X. Therefore B̃u = f means just that the solution
u belongs in fact to the required space D(A) with (I −A)u = f.

The proof is now complete.

Since a nonpositive self-adjoint operator acting in a space X such that
R(I − A) = X is sectorial in {z ∈ C| |arg z| < π}, according to [14, Theorem
5.4, p.34], we obtain the following result which extends [2, Theorem 1.2] to
the case β 6= 0 (in the one-dimensional case).

Theorem 3.2. Under the same assumptions of Lemma 3.1, the operator
Au := αu′′ + βu′ with domain D(A) as before, generates a uniformly bounded
semigroup on L2

w(0, 1), which is analytic in the right half plane.
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Remark 3.3. The self-adjointness of A could be proven in an alternative
way as in Metafune and Pallara [18]. To this purpose, we want to notice that,

if the assumption β
α
∈ L1(0, 1) is replaced by e

−
∫ x

1
2

β(t)
α(t) dt ∈ L1(0, 1), and we

change H1
o (0, 1) to

{u ∈ X|
∫ 1

0
e

∫ x
1
2

β(t)
α(t) dt|u′(x)|2 dx <∞, u(0) = u(1) = 0},

our approach furnishes an alternative method to prove Proposition 3.5 in [18].
We also observe that if β

α
∈ L1(0, 1) and w ∈ L1(0, 1), then we have a

regular Sturm-Liouville operator and it is already known from [7] that

D(A) = {u ∈ AC[0, 1]|u′ ∈ AC[0, 1], αu′′ + βu′ ∈ L2
w(0, 1), u(0) = u(1) = 0}

is a domain entailing that (A,D(A)) is self-adjoint and nonpositive on L2
w(0, 1).

On the other hand, if

w /∈ L1(0,
1
2

), w /∈ L1(
1
2
, 1)

and ∫ 1

0
w(x)|u(x)|2 dx < +∞,

∫ 1

0
w(x)|w(x)−1(e

∫ x
1
2

β(t)
α(t) dt

u′)′|2 dx < +∞,

then [18, Lemma 3.3] implies that u(x)→ 0 as x→ 0, 1 and hence the operator
A coincides with the maximal operator AM whose domain is given by

D(AM) ={u ∈ L2
w(0, 1)|u, u′ ∈ ACloc(0, 1),

αu′′ + βu′ = w−1(e
∫ x

1
2

β(t)
α(t) dt

u′) ∈ L2
w(0, 1)}.

Example. Let α(x) := xj(1− x)j, β(x) := xk(1−x)k, where j, k ≥ 0 and
x ∈ [0, 1]. Then Theorem 3.2 applies when k > j − 1.

4. Some Examples on the Unbounded Interval (0,+∞)

In this section we shall show that the technique of Section 3 works in the
infinite interval (0,+∞) too. To this aim, we shall introduce the space with
weight L2

w(0,+∞), where w is suitably chosen depending on the coefficients
of the considered operator.

Example 1. Let us consider the linear Kompaneets equation

∂u

∂t
=

1
β(x)

∂

∂x
[α(x)(

∂u

∂x
+ k(x)u)], t > 0, x > 0,
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with initial condition

u(0, x) = u0(x), x > 0,

and boundary conditions

lim
x→0,x→+∞

α(x)[
∂u

∂x
(t, x) + k(x)u(t, x)] = 0, t > 0.

For this equation, in the general nonlinear case, we refer to J. A. Goldstein in
[15], while for the linear case we quote K. Wang in [25].

We shall prove an analyticity result, extending Wang’s theorem [25, p.568]
in that weaker regularity will be assumed regarding α, β.

More precisely, we make the following assumptions :

(4.1) α ∈ C(0,+∞), β ∈ L∞loc|(0,+∞), α(x) > 0 and β(x) > 0 for all x ∈
(0,+∞), α(x) = O(xj) as x→ 0 for some j ≥ 1;

(4.2) k ∈ C(0,+∞);

(4.3) if γ(x) := e
∫ x

1
k(t) dt

, x ∈ (0,+∞), then∫ ∞
0

β(t)
γ(t)

dt < +∞;

(4.4) inf
(0,+∞)

γ(x)
β(x)

> 0, inf
(0,+∞)

γ(x)
α(x)

> 0.

To begin with our analysis, we observe that the differential operator

Wu :=
1
β

[α(u′ + ku)]′

is formally expressed by means of

Wu =
1
β

(
α

γ
(γu)′)′,

where ′ denotes the derivative.
Let us introduce the weighted-L2 space (X, 〈·, ·〉) by

X := {u : (0,+∞)→ C|umeasurable,
∫ ∞

0
β(x)γ(x)|u(x)|2 dx < +∞}.

Endowed with the inner product

〈u, v〉 :=
∫ ∞

0
β(x)γ(x)u(x)v(x) dx, u, v ∈ X,
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the pair (X, 〈·, ·〉) is a Hilbert space. Let V be the Hilbert space

V := {u ∈ C1(0,∞) ∩X|
∫ ∞

0

α(x)
γ(x)

|(γ · u)′(x)|2 dx < +∞,∫ ∞
0
|γ(x)
β(x)

|(α
γ

(γ · u)′)′(x)|2 dx < +∞}

with the inner product 〈·, ·〉V given by

〈u, v〉V := 〈u, v〉+
∫ ∞

0

α(x)
γ(x)

(γ · u)′(x)(γ · v)′(x) dx

+
∫ ∞

0

γ(x)
β(x)

(
α

γ
(γ · u)′)′(x)(

α

γ
(γ · v)′)′(x) dx

for u, v ∈ V. That is, u ∈ C1(0,∞) belongs to V if and only if the following
conditions hold ∫ ∞

0

β(x)
γ(x)

|(γu)(x)|2 dx < +∞,∫ ∞
0

γ(x)
α(x)

|α(x)
γ(x)

(γu)′(x)|2 dx < +∞,∫ ∞
0

γ(x)
β(x)

|(α
γ

(γu)′)′(x)|2 dx < +∞.

In view of (4.4), any element u of V has the property that

α

γ
(γu)′ ∈ H1(0,+∞),

so that lim
x→+∞

α(x)
γ(x) (γu)′(x) exists and equals zero.

Moreover, there exists

lim
x→0+

α(x)
γ(x)

(γu)′(x) = λ ∈ C.

On the other hand, if λ 6= 0, then necessarily∫ 1

0

γ(x)
α(x)

dx < +∞,

contradicting (4.1).
Hence, any element u of V satisfies the boundary conditions

lim
x→0+,x→+∞

α(x)
γ(x)

(γu)′(x) = 0.
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Our next goal is to show that the operator (A,D(A)), where D(A) := V, and

Au := Wu, u ∈ D(A),

is symmetric (with respect to the inner product 〈·, ·〉) and nonpositive. Let
u, v be given in V. Then

〈Au, v〉=
∫ +∞

0
γ(x)

d

dx
(
α

γ

d

dx
(γ · u))(x)v(x) dx

= [
α(x)
γ(x)

d

dx
(γ · u)(x)(γ(x)v(x))]+∞0

−
∫ +∞

0

α(x)
γ(x)

d

dx
(γ · u)(x)

d

dx
(γ · v)(x) dx.

We know that the above two integrals converge and thus there exist both
limits

lim
x→0+

α(x)
γ(x)

d

dx
(γ · u)(x)(γ(x)v(x)), lim

x→+∞

α(x)
γ(x)

d

dx
(γ · u)(x)(γ(x)v(x)).

We show that they vanish.
Let lim

x→0+

α(x)
γ(x)

d
dx

(γ · u)(x)(γ(x)v(x)) = µ 6= 0. Since u ∈ V , we have

|α(x)
γ(x)

(γ · u)′(x)|= |
∫ x

0

d

dt
(
α

γ
(γ · u)′)(t) dt|

≤ [
∫ x

0

β(t)
γ(t)

dt]
1
2 (
∫ x

0

γ(t)
β(t)
|(α
γ

(γ · u)′)′(t)|2 dt)
1
2

≤ (
∫ x

0

β(t)
γ(t)

dt)
1
2 ‖u‖V

≤ c(
∫ x

0

β(t)
γ(t)

dt)
1
2 .

Hence, there is a positive constant c1 such that

|γ(x)v(x)|2 ≥ c1∫ x

0

β(t)
γ(t)

dt

,

where x ∈ (0, δ) for a suitable δ > 0. This implies that∫ δ

0

β(x)
γ(x)

|γ(x)v(x)|2 dx≥ c1

∫ δ

0

β(x)
γ(x)∫ x

0
β(t)
γ(t) dt

dx

= c1[ log
∫ x

0

β(t)
γ(t)

dt]δ0

= +∞,
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a contradiction because of (4.3).
Analogously, if lim

x→+∞
α(x)
γ(x)

d
dx

(γ · u)(x)(γ(x)v(x)) = µ 6= 0, from

|α(x)
γ(x)

(γ · u)′(x)|= | −
∫ ∞
x

d

dt
(
α

γ
(γ · u)′)(t) dt|

≤ (
∫ ∞
x

β(t)
γ(t)

dt)
1
2 ‖u‖V ,

we can repeat the same argument, taking into account (4.3) again, because

β(x)
γ(x)

|γ(x)v(x)|2 ≥
c1
β(x)
γ(x)∫∞

x
β(t)
γ(t) dt

,

with x ∈ [δ,∞) for a suitable δ ≥ 1, implies that∫ ∞
δ

β(x)
γ(x)

|γ(x)v(x)|2 dx ≥ −c1

∫ ∞
δ

f ′(x)
f(x)

dx = −c1[log f(x)]∞δ ,

where f(x) :=
∫∞
x

β(t)
γ(t) dt→ 0, as x→ +∞. This cannot happen if v ∈ X.

Therefore

〈Au, v〉 = −
∫ ∞

0

α(x)
γ(x)

d

dx
(γ · u)(x)

d

dx
(γ · v)(x) dx.

A second integration by parts yields

〈Au, v〉 = 〈v,Au〉 for u, v ∈ V.

Moreover, 〈Au, u〉 ≤ 0 for all u ∈ V.
Now, let us consider the sesquilinear form b(u, v) defined on V1 × V1 by

b(u, v) := 〈u, v〉+
∫ ∞

0

α(x)
γ(x)

d

dx
(γ · u)(x)

d

dx
(γ · v)(x) dx,

where u, v ∈ V1 and V1 is the Hilbert space given by

V1 := {f : (0,∞)→ C| f ∈ X,
∫ ∞

0

α(x)
γ(x)

| d
dx

(γ · f)(x)|2 dx <∞}

equipped with the inner product

〈u, v〉V1 := b(u, v).

Hence, for all u ∈ D(A) we have

〈(I −A)u, u〉 = b(u, u) = ‖u‖2V1
.
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Using similar arguments as in [22, p.25], we observe that V1 ↪→ X ↪→ V ∗1 and
I −A can be extended as a continuous and coercive operator (still denoted by
I −A) from V1 to V ∗1 . Thus the Lax-Milgram theorem and similar remarks as
in the proof of Lemma 3.1 imply that

X ⊆ V ∗1 ⊆ R(I −A).

Therefore, (A,D(A)) is self-adjoint.
This completes the proof that (A,D(A)) generates an analytic semigroup

on X.

Remark 4.1. If we take

k(x) := ko > 0, α(x) := xj, β(x) := xs

with j ≥ 1 and s > 0, then all assumptions (4.1)-(4.4) are satisfied.

Example 2. Let us consider the problem
∂u

∂t
(t, x)= x

∂2u

∂x2
(t, x) + a

∂u

∂x
(t, x), t, x > 0,

u(0, x)= u0(x), x > 0,

with a ∈ R and the related operator

A1u := xu′′ + au′, x ∈ (0,+∞).

A basic study of this operator, or the related operator (xu)′′ + au′, which is
of great importance in the theory of probability, was done by W. Feller in [13]
and by H. Brezis, W. Rosenkrantz and B. Singer in [3]. These authors [3]
showed that A1 with domain

D(A1) := {u ∈ C2(R+) ∩B1
0 |A1u ∈ B0, lim

x→0+
xu′′(x) = 0},

where

Bk
0 := {f : [0,+∞)→ C |f (j) continuous and bounded on [0,+∞),

lim
x→+∞

f (j)(x) = 0, j = 0, 1, .., k} (k ∈ N)

and

B0 := {f : [0,+∞)→ C| f continuous and bounded on [0,+∞),
lim

x→+∞
f(x) = 0},

generates a C0-semigroup of contractions in B0, provided that a > 0.
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More recently, in [1] S. Angenent established the analyticity of the semi-
group generated by

A2u := u′′ +
b− 1
x

u′, b ∈ C, Re b+m > 0,

on

Em := {f ∈ D′(0,∞)| f (m)bounded and uniformly continuous on
[0,+∞), f (2k+1)(0) = 0, 1 ≤ 2k + 1 ≤ m}

with domain
D(A2) := Em ∩ Em+2.

It is easily seen (e.g. in [3]) that a change of variable transforms an operator
like A2 into an operator A1. In what follows, we shall treat A1 in an L2-space
with weight. To accomplish this, we observe that, formally,

A1u = x1−a d

dx
(xa

du

dx
)

but the assumptions required in the treatment of Example 1 fail here, provided
that

α(x) := xa, β(x) := xa−1, k(x) :≡ 0.

Then, we introduce Y := D(A1) as the completion of C∞0 (0,∞) with respect
to the inner product

〈u, v〉Y :=
∫ ∞

0
xa−1u(x)v(x) dx+

∫ ∞
0

xau′(x)v′(x) dx

+
∫ ∞

0
x1−a d

dx
(xa

du(x)
dx

)
d

dx
(xa

dv(x)
dx

) dx

for u, v ∈ C∞0 (0,∞). Let us denote by W the completion of C∞0 (0,∞) with
respect to the inner product

〈u, v〉W :=
∫ ∞

0
xa−1u(x)v(x) dx+

∫ ∞
0

xau′(x)v′(x) dx,

where u, v ∈ C∞0 (0,∞) and by X the space

X := {u : (0,+∞)→ C|umeasurable,
∫ ∞

0
xa−1|u(x)|2 dx <∞}

equipped with the inner product

〈u, v〉 :=
∫ ∞

0
xa−1u(x)v(x) dx, u, v ∈ X,
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and the related norm ‖.‖.
Let

b(u, v) := 〈u, v〉W , u, v ∈W.

Then, similar arguments to those used in Example 1 show that the operator
B̃ associated to b(u, v) is an isomorphism from W to its dual space W ∗ (with
respect to the inner product in X). Moreover, if Ã is the operator associated
to the sesquilinear form a(u, v) on W ×W given by

a(u, v) :=
∫ ∞

0
xau′(x)v′(x) dx,

and A is the part of Ã in X, then I −A = B, where B is the part of B̃ in X.
Hence, I −A is an isomorphism from D(A) onto X.
But D(A) = D(A1) and Au = A1u for all u ∈ C∞0 (0,∞). On the other

hand, the equalities

〈A1u, v〉=
∫ ∞

0

d

dx
(xau′(x))v(x) dx

= −
∫ ∞

0
xau′(x)v′(x) dx

=
∫ ∞

0
u(x)

d

dx
(xav′(x)) dx

= 〈u,A1v〉

for all u, v ∈ D(A1), show that A1 is symmetric on X.
Therefore, since A1 is nonpositive, we conclude that (A1, D(A1)) is self-

adjoint and nonpositive, hence it generates an analytic semigroup on X. More-
over, if we apply Hardy’s inequality, which says that∫ ∞

0
t−σ|u(t)|p dt ≤ (

p

|σ − 1|
)p
∫ ∞

0
t−σ+p|u′(t)|p dt

whenever 1 < p < ∞, σ 6= 1 and u ∈ C∞0 (0,∞) (cf. inequality (11) in [23, p.
262]), we deduce that

a < 1 implies ∃ lim
x→0+

u(x) ∈ C,

a ≤ 0 implies ∃ lim
x→0+

u(x) = 0 = lim
x→+∞

xau′(x),

a ≥ 1 implies ∃ lim
x→+∞

u(x) = 0 = lim
x→0+

xau′(x),

for all u ∈ D(A1).
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Further, if a 6= 1, by virtue of Hardy’s inequality again, for any u ∈ D(A1)
we have ∫ ∞

0
x−(1+a)|xau′(x)|2 dx <∞,

so that ∫ ∞
0

xa−1|u′(x)|2 dx <∞.

Since ∫ ∞
0

x1−a|xau′′(x) + axa−1u′(x)|2 dx <∞,

we deduce that ∫ ∞
0

x1+a|u′′(x)|2 dx < +∞

for all u ∈ D(A1).
Therefore, if a > 1, then necessarily lim

x→+∞
u′(x) = 0 too.

Final remarks. Now we want to discuss a special class of examples to
illustrate why we focus on analyticity and not on other aspects of positive
semigroups (such as dominant eigenvalues, irreducibility, etc.).

Let X = C[0,+∞] := {u ∈ C[0,+∞)| lim
x→+∞

u(x) < ∞} and denote by

X0 = C0(0,+∞), the space of all continuous (real) functions on (0,+∞) that
vanish at both 0 and ∞. Let c ∈ R and for α ∈ R let

Aαu(x) := xαu′′(x) + cxα−1u′(x).

Let
D(Bα) := {u ∈ X ∩ C2(0,+∞)|Aαu ∈ X0},
D(Cα) := {u ∈ X0 ∩ C2(0,+∞)|Aαu ∈ X0},

and let Bα (resp. Cα) be the restriction of Aα to D(Bα) (resp. D(Cα)).
Then Bα comes equipped with the Wentzell boundary conditions, that is,

for u ∈ D(Bα), Bαu vanishes on the spatial boundary. The same is true for
Cα but in this case we may equivalently view the boundary condition as being
the homogeneous Dirichlet one. To see this, consider the resolvent problem

λu−Aαu = h

for λ > 0. When h ∈ X0, then u ∈ X0 if and only if Aαu ∈ X0, i.e., the
Dirichlet and Wentzell boundary conditions are equivalent for Cα. We will
show below that Cα has no eigenvalue for α 6= 0. (Of course, Bα1 = 0, but
1 ∈ X \X0; that is why we are focusing on Cα and not on Bα. ) The unusual
spectral behavior of Cα is caused by the singular behavior of the coefficients
of Aα at the spatial endpoints.
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The positive operators arising from Markov processes are generators of
analytic semigroups when they are uniformly elliptic. These semigroups are
analytic on lots of spaces, including C[a, b] and Lp(a, b). The question of the
analyticity of positive semigroups generated by nonuniformly elliptic operators
is in general very difficult to answer and the focus of this paper is to answer
this question affirmatively in some cases. But let us now return to Bα and Cα.

For λ > 0, let U(λ) be the scaling transformation defined by U(λ)f(x) :=
f(λx). Then U(λ) is an isometric isomorphism on bothX andX0 and (U(λ))−1

= U(1/λ). It is easy to see that

U(λ)−1AαU(λ) = λ2−αAα

for all λ > 0, α ∈ R. Consequently, Bα (and Cα too) is isometrically equivalent
to any positive multiple of itself if α 6= 2. Thus if µ is a nonzero eigenvalue of
either Bα or Cα ( and if α 6= 2), then so is λµ for all positive λ. Now consider
µ = 0 : the general solution of

xαu′′(x) + cxα−1u′(x) = 0

is given by u(x) = c1 + c2x
1−c unless c = 1; when it is, u(x) = c1 + c2 log x.

Then 0 is not an eigenvalue of Cα. Finally consider the case of α = 2. To solve

x2u′′(x) + cxu′(x) = µu(x),

we seek solutions of the form u(x) = xr and we get

r =
1
2

(1− c±
√

(c− 1)2 + 4µ),

interpreting xa+ib as xa(cos(b log x)+i sin(b log x)). In all cases, it easily follows
that C2 has no eigenvalues and B2 has no nonzero eigenvalues.

The function ψ defined by ψ(t) = tan(π2 t) is a diffeomorphism from [0, 1]
onto [0,∞].

Let V f := f ◦ ψ for f ∈ X and let

Dα := V BαV
−1,

Eα := V CαV
−1.

Then Dα (resp. Eα) is the restriction of V AαV −1v := β2v
′′ + β1v

′ to C[0, 1]
(resp. Co(0, 1)) with Wentzell (resp. homogeneous Dirichlet) boundary condi-
tions. Here

β2(t) :=
4
π2

[ tan(
π

2
t)]α{1 + tan2(

π

2
t)}−2

,

β1(t) :=
2
π

[ tan 2(
π

2
t)]α−1[(c− 2) tan2(

π

2
t) + c]{1 + tan2(

π

2
t)}−2

.
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Near t = 0,
β2(t) ≈ const. tα, β1(t) ≈ const. tα−1;

while near t = 1,

β2(t) ≈ const. [ tan (
π

2
t)]α−4

,

β1(t) ≈ const. [ tan (
π

2
t)]α−3 if c 6= 2,

β1(t) ≈ const. [ tan (
π

2
t)]α−5 if c = 2.

It follows that for c ≤ 2,

β1(t)
β2(t)

≈ const. t near t = 0

and
β1(t)
β2(t)

≈ k tan(
π

2
t) near t = 1,

where k > 0 (resp. k = 0, k < 0) if c > 2 (resp. c = 2, c < 2).
It follows that

W (t) := e
−
∫ t

1
2

β1(s)
β2(s) ds ∈ L1(0, 1),

and so Dα is densely defined, m-dissipative and generates a positive C0-
semigroup on C[0, 1] by the theorem of Clément and Timmermans [6]. Since
etDα(C0(0, 1)) ⊂ C0(0, 1), it follows that the same is true for Eα on C0(0, 1).
Consequently, Bα on X and Cα on X0 generate positive C0- semigroups.

Concerning analyticity of the semigroup generated by Cα, we point out that
very recent results by Campiti and Metafune [4] assure that Aαwith domain

D1(Cα) := {u ∈ D(Cα)|xα2 u′, xαu′′ bounded at +∞}

generates an analytic semigroup on C[0,+∞], provided that 0 < α < 2 and
c < 1.

On the other hand, for α = 2, Bα generates an analytic semigroup on
C[0,+∞] by virtue of [12, Theorem 1.2].
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