TAIWANESE JOURNAL OF MATHEMATICS
Vol. 3, No. 2, pp. 163-179, June 1999

ON SLANT SURFACES

Bang-Yen Chen

Abstract. A slant immersion was introduced in [1] as an isometric im-
mersion of a Riemannian manifold into an almost Hermitian manifold
with constant Wirtinger angle. It is known that there exist ample exam-
ples of slant submanifolds; in particular, slant surfaces in complex-space-
forms. In this paper, we establish a sharp inequality for slant surfaces and
determine the Riemannian structures of special slant surfaces in complex-
space-forms. By applying the special forms of the Riemannian structures
on special slant surfaces we prove that proper slant surfaces in C? are
minimal if and only if they are special slant. We also determine proper
slant surfaces in complex-space-forms which satisfy the equality case of
the inequality identically.

1. INTRODUCTION

Let M be a Riemannian manifold and M an almost Hermitian manifold
with almost complex structure J. An isometric immersion f : M — M of M
in M is called holomorphic if at each point p € M we have J(T,M) = T,M,
where T,M denotes the tangent space of M at p. The immersion is called
totally real it J(T,M) C TpLM for each p € M, where Tle is the normal
space of M at p. A totally real immersion f : M — M is called Lagrangian if
dimg M = dimg M.

Let M™(4¢) denote a Kihlerian m-manifold with constant holomorphic
sectional curvature 4e and f : M — M™(4¢) an isometric immersion. We
denote by (, ) the inner product for M as well as for M™(4e).

For any vector X tangent to M, we put

(1.1) JX = PX + FX,
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where PX and FX denote the tangential and normal components of JX,
respectively. For each nonzero vector X tangent to M at p, the angle 6(X)
between JX and T,M is called the Wirtinger angle of X. An immersion
f i+ M — M™(4¢) is called slant if the Wirtinger angle 6 is a constant [1].
The Wirtinger angle 6 of a slant immersion is called the slant angle. A slant
submanifold with slant angle 6 is said to be #-slant. Holomorphic and totally
real immersions are slant immersions with slant angle 0 and 7, respectively.
A slant immersion is called proper slant if it is neither holomorphic nor to-
tally real. It is well-known that there exist ample examples of proper slant
submanifolds in complex-space-forms (see [1,5 — 8]).

In this paper we prove that the squared mean curvature H? and the Gauss
curvature K of a proper slant surface M in M 2(4e) satisfy the inequality:

(1.2) H?(p) > 2K(p) — 2(1 + 3cos?f)e, p € M,

where 6 is the slant angle of the slant surface. For each 6 € (0, %), we show

that there exist non-minimal slant surfaces in C? satisfying the equality case
of (1.2) at some points in M. In contrast, we prove that, except the totally
geodesic ones, there do not exist proper slant surfaces in C? which satisfy
the equality case on some nonempty open subset of M. In this paper, we also
determine the Riemannian structure of special slant surfaces in complex-space-
forms. By applying the obtained special forms of the Riemannian structure
we prove that proper slant surfaces in C? are minimal if and only if they
are special slant. Finally, we prove that there exist non-minimal special slant
surfaces in complex hyperbolic plane C'H?(—4¢) which satisfy the equality case
of (1.2) identically.
Several applications of the results of this paper are given in [3].

2. BAsic FORMULAS

Let f : M — M™(4¢) be an isometric immersion of a Riemannian n-
manifold into M™(4€). We denote by h and A the second fundamental form
and the shape operator of f and by V and V the Levi-Civita connections of
M and M™(4¢), respectively. The Gauss and Weingarten formulas of M in
M are given respectively by

(2.1) VxY = VxY + h(X,Y),
(2.2) Vxé=—A¢X + Dx¢,

where X, Y are vector fields tangent to M and £ is normal to M. The second
fundamental form h and the shape operator A are related by

(2.3) (AeX,Y) = (h(X,Y),).
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The mean curvature vector H of the immersion is defined by H = (1/n)
trace h, where {e1,...,e,} is a local orthonormal frame field of the tangent
bundle T'M.

Denote by R the Riemann curvature tensor of M and by R the curvature
tensor of the normal connection D. Then the equation of Gauss and the
equation of Ricci are given respectively by

R(X,)Y;ZW)=R(X,Y; Z, W)+ (h(X,Z),h(Y,W))
- <h(X7 W)? h(Y7 Z)) )

(2.5) RP(X,Y;¢,n) = R(X,Y;6,m) + ([A¢, Ap)(X),Y)

(2.4)

for vectors X,Y, Z, W tangent to M and &, normal to M.
For the second fundamental form h, we define the covariant derivative Vh
of h with respect to the connection on TM @& T+M by

(2.6) (Vxh)(Y,Z) = Dx(h(Y,Z)) — h(VxY,Z) - h(Y,VxZ).
The equation of Codazzi is given by
(2.7) (R(X,Y)Z)" = (Vxh)(Y, Z) - (Vyh)(X, Z),

where (R(X,Y)Z)"* denotes the normal component of R(X,Y)Z.
For an endomorphism @) on the tangent bundle of the submanifold, we
define V@ by

(2.8) (VxQ)Y = Vx(QY) - Q(VxY).
For any vector field £ normal to the submanifold M in M "(4¢), we put
(2.9) JE =18+ f¢,

where t€ and f¢ are the tangential and the normal components of J¢, respec-
tively. -
Suppose M is §-slant in M"™(4e€), then we have [1]

(2.10) P? = —(cos’0)I, (PX,Y)+(X,PY)=0,
(2.11) (VxP)Y =th(X,Y) + Apy X,
(2.12) Dx(FY) - F(VxY) = fh(X,Y) — h(X, PY),

where [ is the identity map. For simplicity, for each X € T'M, we put

(2.13) X" = (csch)FX.

165



166 Bang-Yen Chen

We define a symmetric bilinear T'M-valued form o on M by
(2.14) a(X,Y) =th(X,Y).
(1.1) and (2.13) imply
(2.15) Ja(X,Y) =Pa(X,Y) + (sinf)a*(X,Y).
Also (2.14) implies
(2.16) Jh(X,Y)=a(X,Y)+ *(X,Y),

where 3 is also a symmetric bilinear T'M-valued form on M. From (2.13),
(2.15) and (2.16), we have

—h(X,Y) =Pa(X,Y)+ (sinf)a™(X,Y) — (sind)5(X,Y) — PO(X,Y)".

Thus B(X,Y) = (csch)Pa(X,Y) and h(X,Y) = —(csch)a*(X,Y). Conse-
quently, the second fundamental form satisfies

(2.17) h(X,Y) = (csc? 0) (Pa(X,Y) — Ja(X,Y)).

For an n-dimensional #-slant submanifold in M "(4e) with 6 # 0, the equa-
tions of Gauss and Codazzi in M"(4¢) become

RX,Y;Z,W) = (esc20){(a(X,W),a(Y, Z)) — (a(X, Z),a(Y,W))}
Fe((X, WYY, Z) — (X, Z) (Y, W) + (PX, W) (PY, Z)
—(PX,Z)(PY, W) +2(X,PY)(PZ, W)},

(2.18)
(Vxa)(Y, Z) +(csc? 0) {Po(X, a(Y, Z)) + (X, Pa(Y, Z)) }
(2.19) +(sin? 0)c{(X, PY) Z + (X, PZ) Y}
' = (Vya)(X, Z) +(csc? 0) {Pa(Y, (X, Z)) + a(Y, Pa(X, Z))}
+(sin? 0)c{(Y, PX) Z + (Y, PZ) X }.

We need the following Existence Theorem from [6].

Existence Theorem. Let c and 6 be two constants with 0 < 8 < g and M
a simply-connected Riemannian n-manifold with inner product {, ). Suppose
there exist an endomorphism P of the tangent bundle TM and a symmetric
bilinear T M -valued form o on M such that for X, Y, Z, W € T M, we have

(2.20) P? = —(cos?O)I,

(2.21) (PX,Y) + (X, PY) =0,
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(2.22) (VxP)Y.Z) = (a(X.Y), Z) — (a(X, 2),Y),

R(X,Y;Z,W) =(csc? 0) {{a(X, W), (Y, Z)) — (a(X, Z),a(Y,W))}
+e{ (X, W) (Y, Z) — (X, Z) (Y, W) + (PX, W) (PY. Z)
—(PX, Z) (PY,W) +2(X, PY) (PZ, W)},
(2.23)
and

(Vxa)(Y, Z)+(csc? 0) {Pa(X,a(Y, Z)) + a(X, Pa(Y, Z))}

(2.24) +(sin? 0)e{(X, PZ)Y + (X, PY) Z}

is totally symmetric. Then there exists a 0-slant isometric immersion from M
into a complete simply-connected complex-space-form M"™(4e) whose second
fundamental form h is given by

(2.25) h(X,Y) =csc?0(Pa(X,Y) — Ja(X,Y)).

Let M be a proper f-slant surface in a Kaéhlerian surface M2, Let el
be a unit vector tangent to M. We choose a canonical orthonormal basis
{e1, e2,e3,e4} defined by

(2.26) ea = (secl)Pey, e3 = (cscl)Fey, eyq= (csch)Fes.

We call such an orthonormal basis an adapted orthonormal basis.

3. A Basic INEQUALITY FOR SLANT
First we give the following.

~_ Theorem 1. Let M be a proper slant surface in a complez-space-form
M?(4¢). Then the squared mean curvature and the Gauss curvature of M
satisfy

(3.1) H%(p) > 2K (p) — 2(1 4 3cos? f)e

at each point p € M, where 0 is the slant angle of the slant surface.

The equality sign of (3.1) holds at a point p € M if and only if, with respect
to a suitable adapted orthonormal basis {e1, ea, e3,e4} at p, the shape operators
of M at p take the following form.:

32 0 0 A
o o (B0) e (12)
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Proof. Let M be a proper slant surface in a complex-space-form M 2(4e)
with slant angle #. Then, according to Proposition 3.3 of [1], M is Kahlerian
slant, i.e., M satisfies VP = 0 identically. Hence, by (2.11), we have

(3.3) (ArxY, Z) = (Ary X, Z)

for any vectors X, Y, Z tangent to M.
Let e; be a unit tangent vector of M. We put

es = (seca)Pey, e3 = (csca)Fey, eq = (csca)Fes.

Then, with respect to the adapted orthonormal frame {eq, e3, €3, €4}, we obtain
from (3.3) that

a b b ¢
o e (20) a2 s)

From (2.18) and (3.4) we obtain

AH? = (a+¢)* + (b+d)?, K =ac—b>4+bd—c*+ (14 3cos?f)e.
Thus, we get
(3.5) 4H?(p) — 8K (p) + 8(1 + 3cos?B)e = (a — 3¢)? + (3b — d)? > 0,

which implies (3.1). From (3.5) we know that the equality case of (3.1) holds
at a point p € M if and only if a = 3c and d = 3b at p. Therefore, if we choose
e1 in such a way that Fej is parallel to the mean curvature vector ﬁ, then
the shape operators at p take the form (3.2).

Conversely, by applying (2.18), it is easy to verify that (3.2) implies the
equality case of (3.1). [

The following result shows that inequality (3.1) is sharp for each 6 € (0, 7).

Proposition 2. For each 0 € (0, 5), there exists a non-totally geodesic 0-
slant surface M in C? which satisfies the equality sign of (3.1) at some points
m M.

Proof. Let ¢ = ¢(x) be a function defined on an open interval containing
0 such that ¢(0) = 3b # 0.
Consider the following system of first order ordinary differential equations:

yi () = =3y1y3 + (csc b cot 0)(y2 + ¢)y2,
(3.6) yh(x) = (¢ — 2y2)ys — (cschcot ) (y2 + )y,
y5(x) = —y3 + (csc® 0) (247 + v3 — dyo),
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with the initial conditions

(3.7) y1(0) =0, 32(0)=0b, y3(0) =c¢,

where ¢ is a real number. It is well-known that the system (3.6) with the initial
condition (3.7) has a unique solution: y; = ¢1(x),y2 = ¢2(x),y3 = ¢3(x) on
some open interval containing 0.

Put

(3.8) 1@) = exp ( [ oalars).

Let M be a simply-connected open neighborhood of the origin (0,0) € E?
endowed with the warped metric tensor:

(3.9) g =dz®dr+ f*(z)dy @ dy.

Put e; = 3%, ey = %8%' Then {e1, ex} is an orthonormal frame field of T M
such that

Vee1=Veea =0, Vee1 =dzea, Ve,e2 = —dser.
We define a symmetric bilinear T'M-valued form a on M by

aler,e1) = der + pres, aler,e2) = dre1 + Paea,
(3.10)
a(ez, e2) = ¢ae1 — prea.

The oriented Riemannian 2-manifold (M, ¢g) admits a canonical Kahlerian
structure J = (secf)P. By a direct long computation, we can prove that
(M, g, P,a) satisfies the conditions of the Existence Theorem with ¢ = 0.
Thus, by applying the Existence Theorem, we know that there exists a 8-slant
isometric immersion of M into C? whose second fundamental form is given by
h = Pa — Ja, where « is defined by (3.10) and P = (cos#)J.

From the initial condition (3.7), it follows that the shape operators of M
take the form of (3.2) at the point p = (0,0). Thus, the slant surface satisfies
the equality case of (3.1) at p. Clearly, the slant surface so obtained is a
non-totally geodesic one. [

4. MINIMAL AND SPECIAL SLANT SURFACES

A slant surface M in a Kihlerian surface M2 is called special slant if, with
respect to some suitable adapted orthonormal frame {e1, 2, €3, €4}, the shape
operators of M take the following special form:

ch 0 0 A
" (3 0) a(02)
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for some constant c.

Proposition 3. Fvery proper slant minimal surface in a Kdahlerian surface
is special slant which satisfies (4.1) with ¢ = —1.

Proof. Let M be a proper slant minimal surface in a Kéhlerian surface.
Let p be a non-totally geodesic point in M. We define a function -, by

(4.2) Yp : UMy, — R : v vy(v) = (h(v,v), Jv),

where UM, = {v € T,M : (v,v) = 1}. Since UM, is a compact set, there
exists a vector v in U M), such that v, attains its absolute minimum at v. Since
p is a non-totally geodesic point, it follows from (3.3) that v, # 0. By linearity,
we have v,(v) < 0. Because 7, attains an absolute minimum at v, it follows
from (3.3) that (h(v,v), Jw) = 0 for all w orthogonal to v. So, using (3.3), v
is an eigenvector of the symmetric operator A ;,. By choosing an orthonormal
basis {e1,ea} of T,M with e; = v, we obtain

h(el,el) = —)\Jel, h(el,eg) = /\Jeg, h(eg,eg) = )\J61

for some real number \. This gives (4.1) with ¢ = —1.
If p is a totally geodesic point, (4.1) holds trivially. ]

Lemma 4. Let M be a proper slant surface in a complex-space-form
M2(4e) with slant angle 0. If M is special slant such that, with respect to
some suitable adapted orthonormal frame {e1,ea,e3,e4}, the shape operators
satisfy (4.1) for some constant ¢ # —1, then we have

(4.3) e1d = (2 — ¢)\wi(ez),
3 .
(4.4) ead = —Awa(er) + (1—|—c> €sin 20,
1 -1
(4.5) Awa(ey) = — ( + C) Mot § + m esin 26,
where wi = —w? are the connection forms defined by
(4.6) VX61 = wf(X)eg, VX@Q = w%(X)el.

In particular, if ¢ # —1,2, then the metric tensor on M is given by

(4.7) 9= <k()\x)ew)2d$2 + (o)A <C—2>)2dy2
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for some nonzero functions k = k(x) and ¢ = ¢(y), where
3¢ Vg Y S )AB-0/(c=2)
(4.8) W=W(z,y) = P Sln29/ d(y)A dy.

Proof. Let M be a proper -slant surface in a complex-space-form M? (4e).
If, with respect to some suitable adapted orthonormal frame {ej,e2,es,e4},
the shape operators are given by (4.1), then we have

(4.9) h(ei,e1) = ches, h(ei,e2) = Aeq, h(ez,e2) = Aes.
Put
(4.10) DXeg = wg(X)e4, DXe4 = wg(X)eg.

From Lemma 4.1 of [1, p.29] we have
(4.11) wi = w? — cot B (trace h3)w! + (trace h)w?},

where {w!, w?} is the dual basis of {e1,es} and h = h3es3 + hey.
From (2.6), (4.9) and (4.11) we obtain

(Vesh)(e1,e1) = ceaN)es + (¢ — 2)Mwi(e2)eu,
(4.12) (Ve h)(e2,e1) = (e1\)es + (¢ + 1)A% cot fes + (2 — c) \wi(e1)es,
' (Ve h)(e2,e2) = (e1M)es — (¢ + 1)A% cot feyq + 3Aw? (e1)ey,
(Vey,h)(e1,e2) = (e2)\)eq + Awd(e2)es + (1 — ¢)dwi(ea)es.

Because M 2(4e) is a complex-space-form with constant holomorphic sec-
tional curvature 4e¢, the Riemann curvature tensor R of M?(4¢) satisfies

RXYZ=c((Y,Z\X — (X, Z\Y +(JY,Z)JX

(4.13) o
—(JX,Z)JY +2(X,JY ) JZ).

From (4.13), we find

(R(ez,e1)e1)™ = 3esin f cos e,

(4.14) (R(e1,e2)ez)t = —3esin 0 cos fey.

Substituting (4.12) and (4.14) into equation (2.7) of Codazzi gives rise to
(4.3)-(4.5) whenever ¢ # —1.

Since Span {e;} and Span {es} are one-dimensional distributions, there
exists a local coordinate system {z,y} on M such that 9/0z and 0/0y are
parallel to e, es, respectively. Thus, the metric tensor ¢ on M takes the
following form:
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(4.15) g = E?dz? + G%dy?,

where F and G are positive functions of x,y. Without loss of generality, we
may assume

10 10
4.16 _ -9 _1a9
( ) €1 Eox’ €2 G 8y
From (4.16) we find
E, 0 OE
(417) w%(el)el = veleQ = ﬁ%, Ey = 873/
Using (4.4), (4.16) and (4.17), we get
E A 3esin 20\ G
4.1 v Y- el
(4.18) E + A ( 1+c ) A’
from which we obtain L
(4.19) E = (;) eV,
where W = W(x,y) is given by
3e VG
4.2 =|-——)sin2 —dy.
T
Similarly, we have
G, 0 oG
4.21 7 =—=—, Gp=—.
(4.21) “ie)e = goag, O 5
If ¢ # 2, (4.3) and (4.21) imply
Gz 1\ Az
4.22 — = —.
( ) G <2 - c) A
Therefore
(4.23) G = p(y)\/ 2
for some function ¢ = ¢(y). Combining (4.19), (4.20) and (4.23), we obtain
(4.7)-(4.8). This completes the proof of Lemma 4. ]

Lemma 5. If M is a proper slant surface in a complex-space-form M2(4e)
such that, with respect to some suitable adapted orthonormal frame {e1, e, e3,e4},
the shape operators take the form (4.1) with ¢ = 2, then, with respect to the
coordinate system {x,y} with 0/0x = Ee;,0/0y = Gea, we have

(4.24) A= Ay), eA= ;)\2 cot 6 + Ze sin 26,
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1
(4.25) Awy(er) = _g)\z cot 6 + 1€ sin 26,
where 0 is the slant angle. Moreover, the metric tensor on M is given by
f(z) Z( )2 2 ( 4N )2 2
4.2 = (=W g d
(4:26) g ()\(y)e T M cot 0 + 3esin26) Y
for some function f = f(x), where
4.27 Z in 26 ! o d
(4.27) (y) = esin / 6\3 cot 0+ 3eAsin2
Proof. Under the hypothesis, we have
(4.28) h(el, 61) = 2)\63, h(el, 62) = )\64, h(eg, 62) = )\63.

173

Applying (4.28) and the equation of Codazzi, we obtain (4.24) and (4.25).

Using (4.24) we find

- AN
"~ 6)\2cotf + 3esin20°

(4.29) G =G(y)
Applying (4.17), (4.25) and (4.29) we obtain

_ f(2)
(4.30) o @62@)7

where Z = Z(y) is given by (4.27).

The following theorem determines completely special slant surfaces in

C2.

Theorem 6. A proper slant surface M in the complex Euclidean plane

C? is special slant if and only if it is a slant minimal surface.

Proof. Let M be a special slant surface with slant angle # whose shape
operators satisfy (4.1) for some constant ¢ # —1. We divide the proof into

two cases.

Case (i): ¢ # 2. In this case, Lemma 4 implies that the metric tensor of

M takes the following form:

(4.31) = <k(;)>2dx2 T (o)A ) ay?
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for some functions k = k(z) and ¢ = ¢(y).
It is well-known that the Gauss curvature K of a surface with metric tensor
g = E%dz?® + G?dy? is given by

w R}

Applying (4.31), (4.32) and a direct computation, we find

1/(c—2)
(4.33) (2 — YEAB-I (D ¢ ) (w) |

= oz k

On the other hand, from (4.4), (4.5) and (4.31), we obtain

(4.34) hy = (15 (cor b)),

Integrating (4.34) with respect to y yields

2

(4.35) A=)/ (e=2) — (;c__c 4) cot f / ’ o(y)dy + F(x)

for some function F' = F(z). Applying (4.33) and (4.35) we conclude that A
satisfies the following equation:

F' @)\ e/ (F O\ \e 0/ | (1 o2p(a) —
2<k(x)>x <k(x>>x b (1= )2k(z) = 0.

Therefore, A(¢=1/(¢=2) is a function of x only. Hence, Ay = 0. Consequently,
(4.34) yields cot = 0 which is a contradiction.

Case (ii): ¢ = 2. In this case, since ¢ = 0, Lemma 5 implies that the
metric tensor on the slant surface is given by

(4.36) g= <§g;)2 dz? + <3)\22()\y,)(gé;9>2 dy?.

(4.32), (4.36) and a direct computation yield K = 0. On the other hand, since
e = 0 and ¢ = 2, the assumption on special slantness yields \> = K = 0.
Hence, M must be totally geodesic in this case.

The converse follows from Proposition 3. ]

The following proposition shows that Theorem 6 is false if C? were replaced
by a non-flat complex-space-form M?(4e).
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Proposition 7. For any 6 € (0,5), there exists a non-minimal special

slant surface with slant angle 6 and with constant Gauss curvature —4 cos? § <
0 in the complex hyperbolic plane CH?(—4).

Proof. Let M be a simply-connected open subset of the half-plane of E?
endowed with metric tensor

sec 62
(4.37) g =y2da? + Tyzdyz.

Then the Gauss curvature of M is constant given by —4 cos? § < 0 by applying
(4.32) and (4.37).
We put

1
(4.38) A=sinf, e = y@ax’ e = 2ycos€§y

and let P denote the endomorphism of the tangent bundle T'M defined by
Pe; = (cosf@)ea, Peg = —(cosf)e;.
Define a symmetric bilinear form o on M by

aler,e1) = —2sin?fe;, aler,ez) = —sin? fes,

(4.39) a(ez, e —2) = —sin? fe;.

Then, by a direct long computation, we can verify that (M, g, P, ) satisfies the
conditions (2.20)—(2.24) of the Existence Theorem for ¢ = —1. Therefore, by
applying the Existence Theorem, we know that there exists a 0-slant isometric
immersion from (M, g) into the complex hyperbolic plane CH?(—4). Using
(4.39), we conclude that the slant immersion is special slant with ¢ = 2. ]

5. A FURTHER RESULT

Although there exist proper slant surfaces in C? which satisfy the equality
sign of (3.1) at some points, the following result shows that the equality sign
of (3.1) cannot hold identically on any nonempty open subset of a proper slant
surface in C? except the totally geodesic one.

~_ Theorem 8. Let M be a proper slant surface in complez-space-form
M?(4¢€) which satisfies the equality sign of (3.1) identically. Then either

(1) M isatotally geodesic slant surface in a flat Kdhlerian surface (e = 0) or

(2) € <0, M has constant Gauss curvature K = (2/3)e, and M is a slant
surface with slant angle 0 = cos™1(1/3).
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Proof. We divide the proof into two cases.

Case (1). If M is a non-totally geodesic proper slant surface in a flat
Kéhlerian surface which satisfies the equality sign of (3.1) identically on a
nonempty subset U of M, then U is a special slant surface satisfying (4.1)
with ¢ = 3 according to Theorem 1. Thus, by applying Theorem 6, U is
minimal which is impossible unless A = 0 identically on U. This implies that
U is totally geodesic which is a contradiction.

Case (2). Assume M is a proper slant surface in a non-flat complex-space-
form satisfying the equality sign of (3.1) identically on a nonempty subset U
of M. Then, U is non-totally geodesic according to the well-known classifica-
tion theorem of totally geodesic submanifolds of non-flat complex-space-forms.
Thus, according to Theorem 1, U is a special slant surface satisfying (4.1) with
¢ =3 and X\ # 0. Hence, by Lemma 4, the metric tensor g on U is given by

k(x 2
(5.1 9= (M) 2+ (6r7
for some nonzero functions k = k(z) and ¢ = ¢(y), where

(5.2) W =W(y) <?I> sin 26 /y o(y)dy.

From Lemma 4, we also have

(5.3) e1X = —wy(e2),

(5.4) ead = —Awg(e1) + Zesin 20,
(5.5) wi(er) = —2X\% cot 6 + % €sin 26,
where

(5.6) e1 = A-w O Lo

S ar T Mooy
Using (5.4), (5.5) and (5.6), we obtain

(5.7) Ay — g(qﬁe sin 20)\ = 2(¢ cot )3,

Solving differential equation (5.7) yields

(5.8) A2 =W (Z(y) + F(x))
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for some function F' = F(x), where

(5.9) Z(y) = —4cot b / y(b(y)ew(y)dy.

From (4.32) and (5.1), we know that the Gauss curvature of U is given by
(5.10) K =6ecos?d+e W3 ()\/\zk’(x) — k(z)A2 — k(m)/\)\m) .
Combining (5.10) with equation (2.23) of Gauss yields
(5:11) Mok — kX2 = kM = K (2)e?V W) (202 + ¢ — 3ecos?0)

Differentiating (5.8) with respect to x yields

1
o= ——e WAF'(2),
(5.12) 52 )
Aog = Ze_QW)ﬁF/z(x) — ie_W)\?’F”(:c).

Combining (5.8), (5.11) and (5.12) gives

o () o ()

=4e™/(Z + F)? 4+ 2eWe(Z + F)3(1 — 3 cos?0).

(5.13)

Taking the partial derivative of (5.13) with respect to y yields

kF// _ k/F/

3 =—3esin? eV (Z + F)? + 82V (Z + F)

(5.14) _262 sin® (1 — 3cos® 0)(Z + F)?

+6ee"V (1 — 3cos?0)(Z + F)2.

Differentiating (5.14) with respect to y yields

(5.15) 0= Zez sin260(3 — 11 cos? 0)(Z + F)* + 24ee’ (sin 20)(Z + F)

—32¢2W cot 0 — 48ee™ (1 — 3 cos? ) cot 6.
By taking partial derivative of (5.15) with respect to y we find

e{sin20 — cot #(3 — 11cos? 0)}(Z + F)

(516) — {8€W + 26(1 _ 3COS2 9)}C0t 07

177
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which implies that either F' = F(x) is a constant or
(5.17) sin 26 = cot #(3 — 11 cos? 6).

If (5.17) holds, then (5.16) implies that W = W (y) is constant. Hence,
#(y) = 0 by virtue of (5.2). This is impossible. Thus, F' = F(x) is constant.
Hence, by using (5.12), we get Ay = Azz = 0. Therefore, by (5.11), X is a
constant satisfying

(5.18) 202 = 3ecos’H — .
On the other hand, since A is constant, (5.7) yields

(5.19) M= —gesiHQ 6.

Combining (5.18) and (5.19), we obtain

1 8
(5.20) C0829:§, sin29:§7 )\2:_3

From (5.20), we get € < 0 and K = Ze. n

Remark 5.1. See [2,4] for Lagrangian surfaces in C? whose shape oper-
ators take the form (4.1).

Remark 5.2. For an n-dimensional Kéahlerian slant submanifold in a
complex-space-form M"(4¢), one may prove that the scalar curvature 7 and
the squared mean curvature H? of M satisfy

(5.21) H? >

2(n+2) n+2
— 1
n?(n—1) T ( *
where 6 is the slant angle and 7 is the scalar curvature defined by

T:ZK(ei/\ej)

1<j

3 cos? 9) €,
1

for an orthonormal frame {ey,...,e,} of TM.
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