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ON SLANT SURFACES

Bang-Yen Chen

Abstract. A slant immersion was introduced in [1] as an isometric im-
mersion of a Riemannian manifold into an almost Hermitian manifold
with constant Wirtinger angle. It is known that there exist ample exam-
ples of slant submanifolds; in particular, slant surfaces in complex-space-
forms. In this paper, we establish a sharp inequality for slant surfaces and
determine the Riemannian structures of special slant surfaces in complex-
space-forms. By applying the special forms of the Riemannian structures
on special slant surfaces we prove that proper slant surfaces in C2 are
minimal if and only if they are special slant. We also determine proper
slant surfaces in complex-space-forms which satisfy the equality case of
the inequality identically.

1. Introduction

Let M be a Riemannian manifold and M̃ an almost Hermitian manifold
with almost complex structure J . An isometric immersion f : M → M̃ of M
in M̃ is called holomorphic if at each point p ∈ M we have J(TpM) = TpM ,
where TpM denotes the tangent space of M at p. The immersion is called
totally real if J(TpM) ⊂ T⊥p M for each p ∈ M , where T⊥p M is the normal
space of M at p. A totally real immersion f : M → M̃ is called Lagrangian if
dimRM = dimC M̃ .

Let M̃m(4ε) denote a Kählerian m-manifold with constant holomorphic
sectional curvature 4ε and f : M → M̃m(4ε) an isometric immersion. We
denote by 〈 , 〉 the inner product for M as well as for M̃m(4ε).

For any vector X tangent to M , we put

JX = PX + FX,(1.1)
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where PX and FX denote the tangential and normal components of JX,
respectively. For each nonzero vector X tangent to M at p, the angle θ(X)
between JX and TpM is called the Wirtinger angle of X. An immersion
f : M → M̃m(4ε) is called slant if the Wirtinger angle θ is a constant [1].
The Wirtinger angle θ of a slant immersion is called the slant angle. A slant
submanifold with slant angle θ is said to be θ-slant. Holomorphic and totally
real immersions are slant immersions with slant angle 0 and π

2 , respectively.
A slant immersion is called proper slant if it is neither holomorphic nor to-
tally real. It is well-known that there exist ample examples of proper slant
submanifolds in complex-space-forms (see [1, 5− 8]).

In this paper we prove that the squared mean curvature H2 and the Gauss
curvature K of a proper slant surface M in M̃2(4ε) satisfy the inequality:

H2(p) ≥ 2K(p)− 2(1 + 3 cos2 θ)ε, p ∈M,(1.2)

where θ is the slant angle of the slant surface. For each θ ∈ (0, π2 ), we show
that there exist non-minimal slant surfaces in C2 satisfying the equality case
of (1.2) at some points in M . In contrast, we prove that, except the totally
geodesic ones, there do not exist proper slant surfaces in C2 which satisfy
the equality case on some nonempty open subset of M . In this paper, we also
determine the Riemannian structure of special slant surfaces in complex-space-
forms. By applying the obtained special forms of the Riemannian structure
we prove that proper slant surfaces in C2 are minimal if and only if they
are special slant. Finally, we prove that there exist non-minimal special slant
surfaces in complex hyperbolic plane CH2(−4ε) which satisfy the equality case
of (1.2) identically.

Several applications of the results of this paper are given in [3].

2. Basic Formulas

Let f : M → M̃m(4ε) be an isometric immersion of a Riemannian n-
manifold into M̃m(4ε). We denote by h and A the second fundamental form
and the shape operator of f and by ∇ and ∇̃ the Levi-Civita connections of
M and M̃m(4ε), respectively. The Gauss and Weingarten formulas of M in
M̃ are given respectively by

∇̃XY = ∇XY + h(X,Y ),(2.1)

∇̃Xξ = −AξX +DXξ,(2.2)

where X,Y are vector fields tangent to M and ξ is normal to M . The second
fundamental form h and the shape operator A are related by

〈AξX,Y 〉 = 〈h(X,Y ), ξ〉 .(2.3)
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The mean curvature vector ~H of the immersion is defined by ~H = (1/n)
trace h, where {e1, . . . , en} is a local orthonormal frame field of the tangent
bundle TM .

Denote by R the Riemann curvature tensor of M and by RD the curvature
tensor of the normal connection D. Then the equation of Gauss and the
equation of Ricci are given respectively by

R̃(X,Y ;Z,W ) =R(X,Y ;Z,W ) + 〈h(X,Z), h(Y,W )〉
− 〈h(X,W ), h(Y, Z)〉 ,(2.4)

RD(X,Y ; ξ, η) = R̃(X,Y ; ξ, η) + 〈[Aξ, Aη](X), Y 〉(2.5)

for vectors X,Y, Z,W tangent to M and ξ, η normal to M .
For the second fundamental form h, we define the covariant derivative ∇̄h

of h with respect to the connection on TM ⊕ T⊥M by

(∇̄Xh)(Y, Z) = DX(h(Y, Z))− h(∇XY, Z)− h(Y,∇XZ).(2.6)

The equation of Codazzi is given by

(R̃(X,Y )Z)⊥ = (∇̄Xh)(Y, Z)− (∇̄Y h)(X,Z),(2.7)

where (R̃(X,Y )Z)⊥ denotes the normal component of R̃(X,Y )Z.
For an endomorphism Q on the tangent bundle of the submanifold, we

define ∇Q by

(∇XQ)Y = ∇X(QY )−Q(∇XY ).(2.8)

For any vector field ξ normal to the submanifold M in M̃n(4ε), we put

Jξ = tξ + fξ,(2.9)

where tξ and fξ are the tangential and the normal components of Jξ, respec-
tively.

Suppose M is θ-slant in M̃n(4ε), then we have [1]

P 2 = −(cos2 θ)I, 〈PX, Y 〉+ 〈X,PY 〉 = 0,(2.10)

(∇XP )Y = th(X,Y ) +AFYX,(2.11)

DX(FY )− F (∇XY ) = fh(X,Y )− h(X,PY ),(2.12)

where I is the identity map. For simplicity, for each X ∈ TM , we put

X∗ = (csc θ)FX.(2.13)
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We define a symmetric bilinear TM -valued form α on M by

α(X,Y ) = th(X,Y ).(2.14)

(1.1) and (2.13) imply

Jα(X,Y ) = Pα(X,Y ) + (sin θ)α∗(X,Y ).(2.15)

Also (2.14) implies

Jh(X,Y ) = α(X,Y ) + β∗(X,Y ),(2.16)

where β is also a symmetric bilinear TM -valued form on M . From (2.13),
(2.15) and (2.16), we have

−h(X,Y ) = Pα(X,Y ) + (sin θ)α∗(X,Y )− (sin θ)β(X,Y )− Pβ(X,Y )∗.

Thus β(X,Y ) = (csc θ)Pα(X,Y ) and h(X,Y ) = −(csc θ)α∗(X,Y ). Conse-
quently, the second fundamental form satisfies

h(X,Y ) = (csc2 θ) (Pα(X,Y )− Jα(X,Y )).(2.17)

For an n-dimensional θ-slant submanifold in M̃n(4ε) with θ 6= 0, the equa-
tions of Gauss and Codazzi in M̃n(4ε) become

R(X,Y ;Z,W ) = (csc2 θ){〈α(X,W ), α(Y, Z)〉 − 〈α(X,Z), α(Y,W )〉}
+ε{〈X,W 〉 〈Y, Z〉 − 〈X,Z〉 〈Y,W 〉+ 〈PX,W 〉 〈PY,Z〉
− 〈PX,Z〉 〈PY,W 〉+ 2 〈X,PY 〉 〈PZ,W 〉},

(2.18)

(∇Xα)(Y, Z)+(csc2 θ) {Pα(X,α(Y, Z)) + α(X,Pα(Y, Z))}
+(sin2 θ)c{〈X,PY 〉Z + 〈X,PZ〉Y }

= (∇Y α)(X,Z)+(csc2 θ) {Pα(Y, α(X,Z)) + α(Y, Pα(X,Z))}
+(sin2 θ)c{〈Y, PX〉Z + 〈Y, PZ〉X}.

(2.19)

We need the following Existence Theorem from [6].

Existence Theorem. Let c and θ be two constants with 0 < θ ≤ π
2 and M

a simply-connected Riemannian n-manifold with inner product 〈 , 〉. Suppose
there exist an endomorphism P of the tangent bundle TM and a symmetric
bilinear TM -valued form α on M such that for X,Y, Z,W ∈ TM , we have

P 2 = −(cos2 θ)I,(2.20)

〈PX, Y 〉+ 〈X,PY 〉 = 0,(2.21)
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〈(∇XP )Y, Z〉 = 〈α(X,Y ), Z〉 − 〈α(X,Z), Y 〉 ,(2.22)

R(X,Y ;Z,W ) =(csc2 θ) {〈α(X,W ), α(Y, Z)〉 − 〈α(X,Z), α(Y,W )〉}
+ε{〈X,W 〉 〈Y, Z〉 − 〈X,Z〉 〈Y,W 〉+ 〈PX,W 〉 〈PY,Z〉
− 〈PX,Z〉 〈PY,W 〉+ 2 〈X,PY 〉 〈PZ,W 〉},

(2.23)
and

(∇Xα)(Y, Z)+(csc2 θ) {Pα(X,α(Y, Z)) + α(X,Pα(Y, Z))}
+(sin2 θ)ε{〈X,PZ〉Y + 〈X,PY 〉Z}(2.24)

is totally symmetric. Then there exists a θ-slant isometric immersion from M
into a complete simply-connected complex-space-form M̃n(4ε) whose second
fundamental form h is given by

h(X,Y ) = csc2 θ(Pα(X,Y )− Jα(X,Y )).(2.25)

Let M be a proper θ-slant surface in a Kählerian surface M̃2. Let e1
be a unit vector tangent to M . We choose a canonical orthonormal basis
{e1, e2, e3, e4} defined by

e2 = (sec θ)Pe1, e3 = (csc θ)Fe1, e4 = (csc θ)Fe2.(2.26)

We call such an orthonormal basis an adapted orthonormal basis.

3. A Basic Inequality for Slant

First we give the following.

Theorem 1. Let M be a proper slant surface in a complex-space-form
M̃2(4ε). Then the squared mean curvature and the Gauss curvature of M
satisfy

H2(p) ≥ 2K(p)− 2(1 + 3 cos2 θ)ε(3.1)

at each point p ∈M , where θ is the slant angle of the slant surface.
The equality sign of (3.1) holds at a point p ∈M if and only if, with respect

to a suitable adapted orthonormal basis {e1, e2, e3, e4} at p, the shape operators
of M at p take the following form:

Ae3 =

(
3λ 0
0 λ

)
, Ae4 =

(
0 λ
λ 0

)
.(3.2)
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Proof. Let M be a proper slant surface in a complex-space-form M̃2(4ε)
with slant angle θ. Then, according to Proposition 3.3 of [1], M is Kählerian
slant, i.e., M satisfies ∇P = 0 identically. Hence, by (2.11), we have

〈AFXY, Z〉 = 〈AFYX,Z〉(3.3)

for any vectors X,Y, Z tangent to M .
Let e1 be a unit tangent vector of M . We put

e2 = (secα)Pe1, e3 = (cscα)Fe1, e4 = (cscα)Fe2.

Then, with respect to the adapted orthonormal frame {e1, e2, e3, e4}, we obtain
from (3.3) that

Ae3 =

(
a b
b c

)
, Ae4 =

(
b c
c d

)
.(3.4)

From (2.18) and (3.4) we obtain

4H2 = (a+ c)2 + (b+ d)2, K = ac− b2 + bd− c2 + (1 + 3 cos2 θ)ε.

Thus, we get

4H2(p)− 8K(p) + 8(1 + 3 cos2 θ)ε = (a− 3c)2 + (3b− d)2 ≥ 0,(3.5)

which implies (3.1). From (3.5) we know that the equality case of (3.1) holds
at a point p ∈M if and only if a = 3c and d = 3b at p. Therefore, if we choose
e1 in such a way that Fe1 is parallel to the mean curvature vector ~H, then
the shape operators at p take the form (3.2).

Conversely, by applying (2.18), it is easy to verify that (3.2) implies the
equality case of (3.1).

The following result shows that inequality (3.1) is sharp for each θ ∈ (0, π2 ).

Proposition 2. For each θ ∈ (0, π2 ), there exists a non-totally geodesic θ-
slant surface M in C2 which satisfies the equality sign of (3.1) at some points
in M .

Proof. Let φ = φ(x) be a function defined on an open interval containing
0 such that φ(0) = 3b 6= 0.

Consider the following system of first order ordinary differential equations:

y′1(x) = −3y1y3 + (csc θ cot θ)(y2 + φ)y2,
y′2(x) = (φ− 2y2)y3 − (csc θ cot θ)(y2 + φ)y1,
y′3(x) = −y2

3 + (csc2 θ)(2y2
1 + y2

2 − φy2),
(3.6)
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with the initial conditions

y1(0) = 0, y2(0) = b, y3(0) = c,(3.7)

where c is a real number. It is well-known that the system (3.6) with the initial
condition (3.7) has a unique solution: y1 = φ1(x), y2 = φ2(x), y3 = φ3(x) on
some open interval containing 0.

Put

f(x) = exp
(∫ x

φ3(x)dx
)
.(3.8)

Let M be a simply-connected open neighborhood of the origin (0, 0) ∈ E2

endowed with the warped metric tensor:

g = dx⊗ dx+ f2(x)dy ⊗ dy.(3.9)

Put e1 = ∂
∂x , e2 = 1

f
∂
∂y . Then {e1, e2} is an orthonormal frame field of TM

such that

∇e1e1 = ∇e1e2 = 0, ∇e2e1 = φ3e2, ∇e2e2 = −φ3e1.

We define a symmetric bilinear TM -valued form α on M by

α(e1, e1) = φe1 + φ1e2, α(e1, e2) = φ1e1 + φ2e2,
α(e2, e2) = φ2e1 − φ1e2.

(3.10)

The oriented Riemannian 2-manifold (M, g) admits a canonical Kählerian
structure J = (sec θ)P . By a direct long computation, we can prove that
(M, g, P, α) satisfies the conditions of the Existence Theorem with ε = 0.
Thus, by applying the Existence Theorem, we know that there exists a θ-slant
isometric immersion of M into C2 whose second fundamental form is given by
h = Pα− Jα, where α is defined by (3.10) and P = (cos θ)J .

From the initial condition (3.7), it follows that the shape operators of M
take the form of (3.2) at the point p = (0, 0). Thus, the slant surface satisfies
the equality case of (3.1) at p. Clearly, the slant surface so obtained is a
non-totally geodesic one.

4. Minimal and Special Slant Surfaces

A slant surface M in a Kählerian surface M̃2 is called special slant if, with
respect to some suitable adapted orthonormal frame {e1, e2, e3, e4}, the shape
operators of M take the following special form:

Ae3 =

(
cλ 0
0 λ

)
, Ae4 =

(
0 λ
λ 0

)
(4.1)
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for some constant c.

Proposition 3. Every proper slant minimal surface in a Kählerian surface
is special slant which satisfies (4.1) with c = −1.

Proof. Let M be a proper slant minimal surface in a Kählerian surface.
Let p be a non-totally geodesic point in M . We define a function γp by

γp : UMp → R : v 7→ γp(v) = 〈h(v, v), Jv〉 ,(4.2)

where UMp = {v ∈ TpM : 〈v, v〉 = 1}. Since UMp is a compact set, there
exists a vector v in UMp such that γp attains its absolute minimum at v. Since
p is a non-totally geodesic point, it follows from (3.3) that γp 6= 0. By linearity,
we have γp(v) < 0. Because γp attains an absolute minimum at v, it follows
from (3.3) that 〈h(v, v), Jw〉 = 0 for all w orthogonal to v. So, using (3.3), v
is an eigenvector of the symmetric operator AJv. By choosing an orthonormal
basis {e1, e2} of TpM with e1 = v, we obtain

h(e1, e1) = −λJe1, h(e1, e2) = λJe2, h(e2, e2) = λJe1

for some real number λ. This gives (4.1) with c = −1.
If p is a totally geodesic point, (4.1) holds trivially.

Lemma 4. Let M be a proper slant surface in a complex-space-form
M̃2(4ε) with slant angle θ. If M is special slant such that, with respect to
some suitable adapted orthonormal frame {e1, e2, e3, e4}, the shape operators
satisfy (4.1) for some constant c 6= −1, then we have

e1λ = (2− c)λω1
2(e2),(4.3)

e2λ = −λω1
2(e1) +

(
3

1 + c

)
ε sin 2θ,(4.4)

λω1
2(e1) = −

(
1 + c

2

)
λ2 cot θ +

3(c− 1)
4(1 + c)

ε sin 2θ,(4.5)

where ω1
2 = −ω2

1 are the connection forms defined by

∇Xe1 = ω2
1(X)e2, ∇Xe2 = ω1

2(X)e1.(4.6)

In particular, if c 6= −1, 2, then the metric tensor on M is given by

g =
(
k(x)
λ

eW
)2

dx2 +
(
φ(y)λ1/(c−2)

)2
dy2(4.7)
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for some nonzero functions k = k(x) and φ = φ(y), where

W = W (x, y) =
(

3ε
c+ 1

)
sin 2θ

∫ y

φ(y)λ(3−c)/(c−2)dy.(4.8)

Proof. Let M be a proper θ-slant surface in a complex-space-form M̃2(4ε).
If, with respect to some suitable adapted orthonormal frame {e1, e2, e3, e4},
the shape operators are given by (4.1), then we have

h(e1, e1) = cλe3, h(e1, e2) = λe4, h(e2, e2) = λe3.(4.9)

Put

DXe3 = ω4
3(X)e4, DXe4 = ω4

3(X)e3.(4.10)

From Lemma 4.1 of [1, p.29] we have

ω4
3 = ω2

1 − cot θ{(traceh3)ω1 + (traceh4)ω2},(4.11)

where {ω1, ω2} is the dual basis of {e1, e2} and h = h3e3 + h4e4.
From (2.6), (4.9) and (4.11) we obtain

(∇̄e2h)(e1, e1) = c(e2λ)e3 + (c− 2)λω2
1(e2)e4,

(∇̄e1h)(e2, e1) = (e1λ)e4 + (c+ 1)λ2 cot θe3 + (2− c)λω1
2(e1)e3,

(∇̄e1h)(e2, e2) = (e1λ)e3 − (c+ 1)λ2 cot θe4 + 3λω2
1(e1)e4,

(∇̄e2h)(e1, e2) = (e2λ)e4 + λω1
2(e2)e3 + (1− c)λω1

2(e2)e3.

(4.12)

Because M̃2(4ε) is a complex-space-form with constant holomorphic sec-
tional curvature 4ε, the Riemann curvature tensor R̃ of M̃2(4ε) satisfies

R̃(X̃, Ỹ )Z̃ = c(〈 Ỹ , Z̃ 〉 X̃ − 〈 X̃, Z̃ 〉 Ỹ + 〈 JỸ , Z̃ 〉 JX̃

−〈 JX̃, Z̃ 〉 JỸ + 2 〈 X̃, JỸ 〉 JZ̃).
(4.13)

From (4.13), we find

(R̃(e2, e1)e1)⊥ = 3ε sin θ cos θe3,

(R̃(e1, e2)e2)⊥ = −3ε sin θ cos θe4.
(4.14)

Substituting (4.12) and (4.14) into equation (2.7) of Codazzi gives rise to
(4.3)-(4.5) whenever c 6= −1.

Since Span {e1} and Span {e2} are one-dimensional distributions, there
exists a local coordinate system {x, y} on M such that ∂/∂x and ∂/∂y are
parallel to e1, e2, respectively. Thus, the metric tensor g on M takes the
following form:
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g = E2dx2 +G2dy2,(4.15)

where E and G are positive functions of x, y. Without loss of generality, we
may assume

e1 =
1
E

∂

∂x
, e2 =

1
G

∂

∂y
.(4.16)

From (4.16) we find

ω1
2(e1)e1 = ∇e1e2 =

Ey
E2G

∂

∂x
, Ey =

∂E

∂y
.(4.17)

Using (4.4), (4.16) and (4.17), we get

Ey
E

+
λy
λ

=
(

3ε sin 2θ
1 + c

)
G

λ
,(4.18)

from which we obtain
E =

k(x)
λ

eW ,(4.19)

where W = W (x, y) is given by

W =
(

3ε
1 + c

)
sin 2θ

∫ y G

λ
dy.(4.20)

Similarly, we have

ω2
1(e2)e2 =

Gx
EG2

∂

∂y
, Gx =

∂G

∂x
.(4.21)

If c 6= 2, (4.3) and (4.21) imply

Gx
G

=
(

1
2− c

)
λx
λ
.(4.22)

Therefore

G = φ(y)λ1/(c−2)(4.23)

for some function φ = φ(y). Combining (4.19), (4.20) and (4.23), we obtain
(4.7)-(4.8). This completes the proof of Lemma 4.

Lemma 5. If M is a proper slant surface in a complex-space-form M̃2(4ε)
such that, with respect to some suitable adapted orthonormal frame {e1, e2, e3, e4},
the shape operators take the form (4.1) with c = 2, then, with respect to the
coordinate system {x, y} with ∂/∂x = Ee1, ∂/∂y = Ge2, we have

λ = λ(y), e2λ =
3
2
λ2 cot θ +

3
4
ε sin 2θ,(4.24)
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λω1
2(e1) = −3

2
λ2 cot θ +

1
4
ε sin 2θ,(4.25)

where θ is the slant angle. Moreover, the metric tensor on M is given by

g =
(
f(x)
λ(y)

eZ(y)
)2

dx2 +
(

4λ′

6λ2 cot θ + 3ε sin 2θ

)2

dy2(4.26)

for some function f = f(x), where

Z(y) = ε sin 2θ
∫ y 4λ′

6λ3 cot θ + 3ελ sin 2θ
dy.(4.27)

Proof. Under the hypothesis, we have

h(e1, e1) = 2λe3, h(e1, e2) = λe4, h(e2, e2) = λe3.(4.28)

Applying (4.28) and the equation of Codazzi, we obtain (4.24) and (4.25).
Using (4.24) we find

G = G(y) =
4λ′

6λ2 cot θ + 3ε sin 2θ
.(4.29)

Applying (4.17), (4.25) and (4.29) we obtain

E =
f(x)
λ(y)

eZ(y),(4.30)

where Z = Z(y) is given by (4.27).

The following theorem determines completely special slant surfaces in C2.

Theorem 6. A proper slant surface M in the complex Euclidean plane
C2 is special slant if and only if it is a slant minimal surface.

Proof. Let M be a special slant surface with slant angle θ whose shape
operators satisfy (4.1) for some constant c 6= −1. We divide the proof into
two cases.

Case (i): c 6= 2. In this case, Lemma 4 implies that the metric tensor of
M takes the following form:

g =
(
k(x)
λ

)2

dx2 +
(
φ(y)λ1/(c−2)

)2
dy2(4.31)
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for some functions k = k(x) and φ = φ(y).
It is well-known that the Gauss curvature K of a surface with metric tensor

g = E2dx2 +G2dy2 is given by

K = − 1
EG

{
∂

∂y

(
Ey
G

)
+

∂

∂x

(
Gx
E

)}
.(4.32)

Applying (4.31), (4.32) and a direct computation, we find

(2− c)kλ(3−c)/(c−2)K =
∂

∂x

(
λ1/(c−2)λx

k

)
.(4.33)

On the other hand, from (4.4), (4.5) and (4.31), we obtain

λy =
(

1 + c

2

)
(cot θ)φ(y)λ(2c−3)/(c−2).(4.34)

Integrating (4.34) with respect to y yields

λ(1−c)/(c−2) =

(
1− c2

2c− 4

)
cot θ

∫ y

φ(y)dy + F (x)(4.35)

for some function F = F (x). Applying (4.33) and (4.35) we conclude that λ
satisfies the following equation:

2
(
F ′(x)
k(x)

)2

λ2(c−1)/(c−2) −
(
F ′(x)
k(x)

)′
λ(c−1)/(c−2) + (1− c)2k(x) = 0.

Therefore, λ(c−1)/(c−2) is a function of x only. Hence, λy = 0. Consequently,
(4.34) yields cot θ = 0 which is a contradiction.

Case (ii): c = 2. In this case, since ε = 0, Lemma 5 implies that the
metric tensor on the slant surface is given by

g =
(
f(x)
λ(y)

)2

dx2 +
(

2λ′(y)
3λ2(y) cot θ

)2

dy2.(4.36)

(4.32), (4.36) and a direct computation yield K = 0. On the other hand, since
ε = 0 and c = 2, the assumption on special slantness yields λ2 = K = 0.
Hence, M must be totally geodesic in this case.

The converse follows from Proposition 3.

The following proposition shows that Theorem 6 is false if C2 were replaced
by a non-flat complex-space-form M̃2(4ε).
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Proposition 7. For any θ ∈ (0, π2 ), there exists a non-minimal special
slant surface with slant angle θ and with constant Gauss curvature −4 cos2 θ <
0 in the complex hyperbolic plane CH2(−4).

Proof. Let M be a simply-connected open subset of the half-plane of E2

endowed with metric tensor

g = y2dx2 +
sec θ2

4y2 dy2.(4.37)

Then the Gauss curvature of M is constant given by −4 cos2 θ < 0 by applying
(4.32) and (4.37).

We put

λ = sin θ, e1 =
1
y

∂

∂x
, e1 = 2y cos θ

∂

∂y
(4.38)

and let P denote the endomorphism of the tangent bundle TM defined by

Pe1 = (cos θ)e2, P e2 = −(cos θ)e1.

Define a symmetric bilinear form α on M by

α(e1, e1) = −2 sin2 θe1, α(e1, e2) = − sin2 θe2,
α(e2, e− 2) = − sin2 θe1.

(4.39)

Then, by a direct long computation, we can verify that (M, g, P, α) satisfies the
conditions (2.20)–(2.24) of the Existence Theorem for ε = −1. Therefore, by
applying the Existence Theorem, we know that there exists a θ-slant isometric
immersion from (M, g) into the complex hyperbolic plane CH2(−4). Using
(4.39), we conclude that the slant immersion is special slant with c = 2.

5. A Further Result

Although there exist proper slant surfaces in C2 which satisfy the equality
sign of (3.1) at some points, the following result shows that the equality sign
of (3.1) cannot hold identically on any nonempty open subset of a proper slant
surface in C2 except the totally geodesic one.

Theorem 8. Let M be a proper slant surface in complex-space-form
M̃2(4ε) which satisfies the equality sign of (3.1) identically. Then either

(1) M is a totally geodesic slant surface in a flat Kählerian surface (ε = 0) or

(2) ε < 0, M has constant Gauss curvature K = (2/3)ε, and M is a slant
surface with slant angle θ = cos−1(1/3).
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Proof. We divide the proof into two cases.

Case (1). If M is a non-totally geodesic proper slant surface in a flat
Kählerian surface which satisfies the equality sign of (3.1) identically on a
nonempty subset U of M , then U is a special slant surface satisfying (4.1)
with c = 3 according to Theorem 1. Thus, by applying Theorem 6, U is
minimal which is impossible unless λ = 0 identically on U . This implies that
U is totally geodesic which is a contradiction.

Case (2). Assume M is a proper slant surface in a non-flat complex-space-
form satisfying the equality sign of (3.1) identically on a nonempty subset U
of M . Then, U is non-totally geodesic according to the well-known classifica-
tion theorem of totally geodesic submanifolds of non-flat complex-space-forms.
Thus, according to Theorem 1, U is a special slant surface satisfying (4.1) with
c = 3 and λ 6= 0. Hence, by Lemma 4, the metric tensor g on U is given by

g =
(
k(x)
λ

eW
)2

dx2 + (φ(y)λ)2 dy2(5.1)

for some nonzero functions k = k(x) and φ = φ(y), where

W = W (y) =
(

3ε
4

)
sin 2θ

∫ y

φ(y)dy.(5.2)

From Lemma 4, we also have

e1λ = −λω1
2(e2),(5.3)

e2λ = −λω1
2(e1) +

3
4
ε sin 2θ,(5.4)

λω1
2(e1) = −2λ2 cot θ +

3
8
ε sin 2θ,(5.5)

where

e1 =
λ

k
e−W

∂

∂x
, e2 =

1
λφ

∂

∂y
.(5.6)

Using (5.4), (5.5) and (5.6), we obtain

λy −
3
8

(φε sin 2θ)λ = 2(φ cot θ)λ3.(5.7)

Solving differential equation (5.7) yields

λ−2 = e−W (Z(y) + F (x))(5.8)
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for some function F = F (x), where

Z(y) = −4 cot θ
∫ y

φ(y)eW (y)dy.(5.9)

From (4.32) and (5.1), we know that the Gauss curvature of U is given by

K = 6ε cos2 θ + e−2Wk−3
(
λλxk

′(x)− k(x)λ2
x − k(x)λλxx

)
.(5.10)

Combining (5.10) with equation (2.23) of Gauss yields

λλxk
′ − kλ2

x − kλλxx = k3(x)e2W (y)
(
2λ2 + ε− 3ε cos2 θ

)
.(5.11)

Differentiating (5.8) with respect to x yields

λx= −1
2
e−Wλ3F ′(x),

λxx=
3
4
e−2Wλ5F ′2(x)− 1

2
e−Wλ3F ′′(x).

(5.12)

Combining (5.8), (5.11) and (5.12) gives

(Z(y) + F (x))
(
k(x)F ′′(x)− k′(x)F ′(x)

k3(x)

)
− 2

(
F ′(x)
k(x)

)2

= 4e2W (Z + F )2 + 2eW ε(Z + F )3(1− 3 cos2 θ).
(5.13)

Taking the partial derivative of (5.13) with respect to y yields

kF ′′ − k′F ′

k3 =−3ε sin2 θeW (Z + F )2 + 8e2W (Z + F )

−3
4
ε2 sin2 θ(1− 3 cos2 θ)(Z + F )3

+6εeW (1− 3 cos2 θ)(Z + F )2.

(5.14)

Differentiating (5.14) with respect to y yields

0 =
9
4
ε2 sin 2θ(3− 11 cos2 θ)(Z + F )2 + 24εeW (sin 2θ)(Z + F )

−32e2W cot θ − 48εeW (1− 3 cos2 θ) cot θ.
(5.15)

By taking partial derivative of (5.15) with respect to y we find

ε{sin 2θ − cot θ(3− 11 cos2 θ)}(Z + F )
= {8eW + 2ε(1− 3 cos2 θ)} cot θ,

(5.16)
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which implies that either F = F (x) is a constant or

sin 2θ = cot θ(3− 11 cos2 θ).(5.17)

If (5.17) holds, then (5.16) implies that W = W (y) is constant. Hence,
φ(y) = 0 by virtue of (5.2). This is impossible. Thus, F = F (x) is constant.
Hence, by using (5.12), we get λx = λxx = 0. Therefore, by (5.11), λ is a
constant satisfying

2λ2 = 3ε cos2 θ − ε.(5.18)

On the other hand, since λ is constant, (5.7) yields

λ2 = −3
8
ε sin2 θ.(5.19)

Combining (5.18) and (5.19), we obtain

cos2 θ =
1
9
, sin2 θ =

8
9
, λ2 = − ε

3
.(5.20)

From (5.20), we get ε < 0 and K = 2
3ε.

Remark 5.1. See [2,4] for Lagrangian surfaces in C2 whose shape oper-
ators take the form (4.1).

Remark 5.2. For an n-dimensional Kählerian slant submanifold in a
complex-space-form M̃n(4ε), one may prove that the scalar curvature τ and
the squared mean curvature H2 of M satisfy

H2 ≥ 2(n+ 2)
n2(n− 1)

τ − n+ 2
n

(
1 +

3
n− 1

cos2 θ

)
ε,(5.21)

where θ is the slant angle and τ is the scalar curvature defined by

τ =
∑
i<j

K(ei ∧ ej)

for an orthonormal frame {e1, . . . , en} of TM .
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