TAIWANESE JOURNAL OF MATHEMATICS Vol. 3, No. 1, pp. 107-114, March 1999

NONLINEAR MEAN ERGODIC THEOREMS II

Isao Miyadera

Abstract. The purpose of this paper is to improve the previous results due to the author.

INTRODUCTION

Throughout this paper, let C be a nonempty subset of a real Hilbert space H and $T: C \to C$ be a (nonlinear) mapping. The purpose of this paper is to improve the results in [4]. We emphasize that the closedness and convexity of C and the asymptotic nonexpansivity of T are not assumed in this paper.

It is known that if $\{x_n\}$ is a bounded sequence in H, then there exists a unique element y in H such that $\overline{\lim}_{n\to\infty} ||x_n - y|| < \overline{\lim}_{n\to\infty} ||x_n - z||$ for every $z \in H \setminus \{y\}$. The element y is called the *asymptotic center* of $\{x_n\}$ (see [2]).

Definition 0.1. A sequence $\{x_n\}$ in H is said to be *strongly* (resp. *weakly*) *almost-convergent* to an element x in H if $\lim_{n\to\infty}(1/n)\sum_{i=0}^{n-1}x_{i+k} = x$ (resp. w - $\lim_{n\to\infty}(1/n)\sum_{i=0}^{n-1}x_{i+k} = x$) uniformly in $k = 0, 1, 2, \ldots$, where $\lim(\text{resp.} w - \lim)$ denotes the strong (resp. weak) limit.

The set of *fixed points* of T will be denoted by F(T).

Egdc

SG

Thee

Received October 3, 1997.

Communicated by S.-Y. Shaw.

¹⁹⁹¹ Mathematics Subject Classification: 47H09, 47H10.

Key words and phrases: Nonlinear ergodic theorem, fixed point, asymptotic center, asymptotically nonexpansive type, strong almost-convergence, weak almost-convergence.

Isao Miyadera

We consider the following conditions in this section.

Condition (α_2) . For every $u, v \in C$ and integer $k \geq 0$, there exists a $\delta_k(u, v) \geq 0$ with $\lim_{k\to\infty} \delta_k(u, v) = 0$ such that

(\(\alpha_2\))
$$\|T^k u - T^k v\|^p \le a_k \|u - v\|^p + c[a_k \|u\|^p - \|T^k u\|^p + a_k \|v\|^p - \|T^k v\|^p] + \delta_k(u, v),$$

where a_k, c and p are nonnegative constants independent of u and v such that $\lim_{k\to\infty} a_k = 1$ and $p \ge 1$.

Condition (β_1). For every bounded set $B \subset C, v \in C$ and integer $k \ge 0$, there exists a $\delta_k(B, v) \ge 0$ with $\lim_{k\to\infty} \delta_k(B, v) = 0$ such that

(
$$\beta_1$$
)
$$\|T^k u + T^k v\|^p \le a_k \|u + v\|^p + c[a_k \|u\|^p - \|T^k u\|^p + a_k \|v\|^p - \|T^k v\|^p] + \delta_k(B, v) \text{ for } u \in B,$$

where a_k, c and p are nonnegative constants independent of B and v such that $\lim_{k\to\infty} a_k = 1$ and $p \ge 1$.

Condition (β_3). For every bounded set $B \subset C, v \in C$ and integer $k \ge 0$, there exists a $\delta_k(B, v) \ge 0$ with $\lim_{k\to\infty} \delta_k(B, v) = 0$ such that

(
$$\beta_3$$
)
 $\|u - v\|^p \le a_k \|T^k u - T^k v\|^p + c[a_k \|T^k u\|^p - \|u\|^p + a_k \|T^k v\|^p - \|v\|^p] + \delta_k(B, v) \text{ for } u \in B,$

where a_k, c and p are the same constants as in (β_1) .

It is easy to see that T satisfies

(1.1)
$$\lim_{k \to \infty} \|T^k u - T^k v\| \le \|u - v\| \text{ for every } u, v \in C$$

if and only if T satisfies condition (α_2) with c = 0 and p = 1. (1.1) is a condition of asymptotically nonexpansive type. This condition (1.1) has been considered in [5]. Clearly, condition (a_1) in [4] implies condition (β_1) above, and conditions (a_2) and (a_3) in [4] imply conditions (α_2) and (β_3) above, respectively. Therefore, Theorem 1.1 improves [4, Theorem 1.1], and Theorems 1.2 and 1.3 improve [4, Theorems 1.2 and 1.3], respectively.

Theorem 1.1. Suppose condition (β_1) holds. Then for every $x \in C$, $\{T^n x\}$ is strongly almost-convergent to its asymptotic center.

Proof. Let $x \in C$ and n be a nonnegative integer. By condition (β_1) with $B = \{T^n x\}$ (singleton) and $v = u = T^n x$, we get $\|T^{k+n} x\|^p \leq a_k \|T^n x\|^p + (1/(2^p+2c))\delta_k(\{T^n x\}, T^n x)$ for $k \geq 0$. Letting $k \to \infty$, we have $\overline{\lim_{k\to\infty}} \|T^k x\| \leq \|T^n x\|$, which implies

(1.2)
$$\{ \|T^n x\| \}$$
 is convergent.

Let $n > m \ge 0$. By condition (β_1) with $B = \{T^{\ell}x; \ell \ge 0\}, u = T^{m+i}x, v = T^m x$ and k = n - m, we have

$$\begin{split} \|T^{n+i}x + T^nx\|^p &\leq a_{n-m} \|T^{m+i}x + T^mx\|^p + c[a_{n-m}\|T^{m+i}x\|^p - \|T^{n+i}x\|^p \\ &+ a_{n-m} \|T^mx\|^p - \|T^nx\|^p] + \delta_{n-m}(B, T^mx) \\ &\leq \|T^{m+i}x + T^mx\|^p + [(2M)^p + 2cM^p]|a_{n-m} - 1| \\ &+ c(\|T^{m+i}x\|^p - \|T^{n+i}x\|^p + \|T^mx\|^p - \|T^nx\|^p) \\ &+ \delta_{n-m}(B, T^mx) \text{ for } i \geq 0, \end{split}$$

where $M = \sup_{\ell \ge 0} ||T^{\ell}x||$. Combining this with (1.2) we obtain

$$\lim_{m \to \infty} \lim_{n \to \infty} \sup_{i \ge 0} \left[\|T^{n+i}x + T^nx\|^p - \|T^{m+i}x + T^mx\|^p \right] \le 0,$$

which implies

$$\lim_{m \to \infty} \lim_{n \to \infty} \sup_{i \ge 0} \left[\|T^{n+i}x + T^nx\|^2 - \|T^{m+i}x + T^mx\|^2 \right] \le 0.$$

Therefore by [4, Proposition 1.5(I)], $\{T^n x\}$ is strongly almost-convergent to its asymptotic center.

Theorem 1.2. Suppose condition (α_2) holds. If either $F(T) \neq 0$ or c > 0 in (α_2) , and if $x \in C$ satisfies

(1.3)
$$\lim_{m \to \infty} \lim_{n \to \infty} \sup_{i \ge 0} \left[\|T^{m+i}x - T^nx\|^2 - \|T^{n+i}x - T^nx\|^2 \right] \le 0,$$

then $\{T^n x\}$ is strongly almost-convergent to its asymptotic center.

Proof. We first consider the case when c > 0 in (α_2) . Let $n \ge 0$ be arbitrarily fixed. By condition (α_2) with $u = v = T^n x$, we have $||T^{k+n}x||^p \le a_k ||T^n x||^p + \delta_k (T^n x, T^n x)/2c$ for $k \ge 0$. Letting $k \to \infty$, $\overline{\lim}_{k\to\infty} ||T^k x|| \le ||T^n x||$, which implies that $\{||T^n x||\}$ is convergent. By virtue of [4, Proposition 1.5(II)], $\{T^n x\}$ is strongly almost-convergent to its asymptotic center.

Next, let $F(T) \neq \emptyset$ and c = 0 in (α_2) , i.e., for every $u, v \in C$ and integer $k \ge 0$ there exists a $\delta_k(u, v) \ge 0$ such that

(1.4)
$$||T^{k}u - T^{k}v||^{p} \le a_{k}||u - v||^{p} + \delta_{k}(u, v),$$

Isao Miyadera

where a_k and p are nonnegative constants independent of u and v such that $\lim_{k\to\infty} a_k = 1$ and $p \ge 1$. Take an $f \in F(T)$. Let $n \ge 0$ be arbitrarily fixed. By (1.4) with $u = T^n x$ and v = f, we have $||T^{k+n}x - f||^p \le a_k ||T^n x - f||^p + \delta_k(T^n x, f)$ for $k \ge 0$. Letting $k \to \infty$, we get $\overline{\lim_{k\to\infty}} ||T^k x - f|| \le ||T^n x - f||$ and hence $\{||T^n x - f||\}$ is convergent. Using [4, Proposition 1.5(II)] again, we obtain the conclusion.

Remarks. 1) We see that if T satisfies condition (α_2) , then $\{||T^{n+i}x - T^ny||\}$ is convergent for every $x, y \in C$ and $i \geq 0$. 2) Suppose T satisfies condition (α_2) and the following

Condition (α_1) . For every $u, v \in C$ and integer $k \geq 0$, there exists a $\delta_k(u, v) \geq 0$ with $\lim_{k\to\infty} \delta_k(u, v) = 0$ such that

$$(\alpha_1) \qquad \qquad \|T^k u + T^k v\|^q \le a_k \|u + v\|^q + d[a_k \|u\|^q - \|T^k u\|^q + a_k \|v\|^q - \|T^k v\|^q] + \delta_k(u, v),$$

where a_k, d and q are nonnegative constants independent of u and v such that $\lim_{k\to\infty} a_k = 1$ and $q \ge 1$.

Then we see that for every $x, y \in C$

(*)
$$\lim_{n \to \infty} \|T^{n+i}x - T^n y\| \text{ exists uniformly in } i \ge 0.$$

(This is an extension of [1, Theorem 2.3].) Clearly, (*) with y = x satisfies (1.3). So, in this case, for every $x \in C$, $\{T^n x\}$ is strongly almost-convergent to its asymptotic center.

Theorem 1.3. Suppose condition (β_3) holds.

(I) If $x \in C$ and $\{||T^nx||\}$ is convergent, then $\{T^nx\}$ is strongly almost-convergent to its asymptotic center.

(II) If either $F(T) \neq \emptyset$ or c > 0 in (β_3) , then for every $x \in C$, either $\lim_{n\to\infty} ||T^n x|| = \infty$ or $\{T^n x\}$ is strongly almost-convergent to its asymptotic center.

Proof. (I) Set $B = \{T^n x; n \ge 0\}$. Let $n > m \ge 0$. By condition (β_3) with $u = T^{m+i}x, v = T^m x$ and k = n - m, we have

(1.5)
$$\|T^{m+i}x - T^mx\|^p \le \|T^{n+i}x - T^nx\|^p + [(2M)^p + 2cM^p]|a_{n-m} - 1| + c[\|T^{n+i}x\|^p - \|T^{m+i}x\|^p + \|T^nx\|^p - \|T^mx\|^p] + \delta_{n-m}(B, T^mx)$$

for $i \ge 0$, where $M = \sup_{\ell \ge 0} \|T^{\ell}x\|$. Since $\{\|T^nx\|\}$ is convergent, we see from (1.5) that

$$\lim_{m \to \infty} \lim_{n \to \infty} \sup_{i \ge 0} \left[\|T^{m+i}x - T^mx\|^2 - \|T^{n+i}x - T^nx\|^2 \right] \le 0.$$

By virtue of [4, Proposition 1.5(II)], $\{T^n x\}$ is strongly almost-convergent to its asymptotic center.

(II) Let $x \in C$ and suppose $\underline{\lim}_{n\to\infty} ||T^n x|| < \infty$. We first consider the case when c > 0 in (β_3) . Let $n \ge 0$ be arbitrarily fixed. By condition (β_3) with $B = \{T^n x\}$ (singleton) and $u = v = T^n x$, we have $||T^n x||^p \le a_k ||T^{k+n} x||^p + \delta_k (\{T^n x\}, T^n x)/2c$ for $k \ge 0$. Letting $k \to \infty$, we obtain $||T^n x|| \le \underline{\lim}_{k\to\infty} ||T^k x||$, which implies that $\{||T^n x||\}$ is convergent. Therefore by part (I), $\{T^n x\}$ is strongly almost-convergent to its asymptotic center.

Next, let $F(T) \neq \emptyset$ and c = 0 in (β_3) , i.e., for every bounded set $B \subset C$, $v \in C$ and integer $k \ge 0$, there exists a $\delta_k(B, v) \ge 0$ with $\lim_{k\to\infty} \delta_k(B, v) = 0$ such that

(1.6)
$$||u - v||^{p} \le a_{k} ||T^{k}u - T^{k}v||^{p} + \delta_{k}(B, v) \text{ for } u \in B,$$

where a_k and p are nonnegative constants independent of B and v such that $p \ge 1$ and $\lim_{k\to\infty} a_k = 1$. Take an $f \in F(T)$ and let $n \ge 0$ be arbitrarily fixed. Using (1.6) with $B = \{T^n x\}, u = T^n x$ and v = f, we have $||T^n x - f||^p \le a_k ||T^{k+n}x - f||^p + \delta_k(\{T^n x\}, f)$ for $k \ge 0$. This implies that $\{||T^n x - f||\}$ is convergent.

Let $n > m \ge 0$. By (1.6) with $B = \{T^{\ell}x; \ell \ge 0\}, u = T^{m+i}x, v = T^mx$ and k = n - m, we have

$$||T^{m+i}x - T^mx||^p \le ||T^{n+i}x - T^nx||^p + |a_{n-m} - 1|(2M)^p + \delta_{n-m}(B, T^mx)$$

for $i \ge 0$, where $M = \sup_{\ell \ge 0} \|T^{\ell}x\|$, which implies

$$\lim_{m \to \infty} \lim_{n \to \infty} \sup_{i \ge 0} \left[\|T^{m+i}x - T^m x\|^2 - \|T^{n+i}x - T^n x\|^2 \right] \le 0.$$

It follows from [4, Proposition 1.5(II)] that $\{T^n x\}$ is strongly almost-convergent to its asymptotic center.

2. Wea

Egdc

Thee

Isao Miyadera

We consider the following conditions in this section.

Condition (β_2) . For every bounded set $B \subset C, v \in C$ and integer $k \ge 0$, there exists a $\delta_k(B, v) \ge 0$ with $\lim_{k\to\infty} \delta_k(B, v) = 0$ such that

(
$$\beta_2$$
)
$$\|T^k u - T^k v\|^p \le a_k \|u - v\|^p + c[a_k \|u\|^p - \|T^k u\|^p + a_k \|v\|^p - \|T^k v\|^p] + \delta_k(B, v) \text{ for } u \in B,$$

where a_k, c and p are the same constants as in condition (β_1).

Condition (β_4). For every bounded set $B \subset C, v \in C$ and integer $k \ge 0$, there exists a $\delta_k(B, v) \ge 0$ with $\lim_{k\to\infty} \delta_k(B, v) = 0$ such that

(
$$\beta_4$$
)
 $\|u+v\|^p \le a_k \|T^k u + T^k v\|^p + c[a_k \|T^k u\|^p - \|u\|^p + a_k \|T^k v\|^p - \|v\|^p] + \delta_k(B,v) \text{ for } u \in B,$

where a_k, c and p are the same constants as in condition (β_1) .

It is easy to see that T satisfies

(2.1)
$$\lim_{k \to \infty} \sup_{u \in B} (\|T^k u - T^k v\| - \|u - v\|) \le 0$$

for every bounded set $B \subset C$ and $v \in C$ if and only if T satisfies condition (β_2) with c = 0 and p = 1. (2.1) is a condition of asymptotically nonexpansive type and this kind of condition has been introduced in [3]. Clearly, conditions (a_2) and (a_4) in [4] imply conditions (β_2) and (β_4) above, respectively. Therefore, the following Theorems 2.1 and 2.2 improve [4, Theorems 2.1 and 2.2], respectively.

Theorem 2.1. Suppose condition (β_2) holds. If either $F(T) \neq \emptyset$ or c > 0 in (β_2) , then for every $x \in C$, $\{T^n x\}$ is weakly almost-convergent to its asymptotic center.

Proof. Let $x \in C$. We first consider the case when c > 0 in (β_2) . Let $n \ge 0$ be arbitrarily fixed. By condition (β_2) with $B = \{T^n x\}$ and $u = v = T^n x$, we have $||T^{k+n}x||^p \le a_k ||T^n x||^p + \delta_k(\{T^n x\}, T^n x)/2c$ for $k \ge 0$, which implies that $\{||T^n x||\}$ is convergent. Using condition (β_2) with $B = \{T^\ell x; \ell \ge 0\}, u = T^{m+i}x, v = T^m x$ and k = n - m, we see that if $n > m \ge 0$, then

$$||T^{n+i}x - T^nx||^p \le ||T^{m+i}x - T^mx||^p + [(2M)^p + 2cM^p]|a_{n-m} - 1|$$

+ $c(||T^{m+i}x||^p - ||T^{n+i}x||^p + ||T^mx||^p - ||T^nx||^p)$
+ $\delta_{n-m}(B, T^mx)$

for $i \ge 0$, where $M = \sup_{\ell \ge 0} \|T^{\ell}x\|$. Since $\{\|T^nx\|\}$ is convergent, the above inequality shows that

$$\lim_{m \to \infty} \lim_{n \to \infty} \sup_{i \ge 0} \left[\|T^{n+i}x - T^nx\|^p - \|T^{m+i}x - T^mx\|^p \right] \le 0$$

and then

$$\lim_{m \to \infty} \lim_{n \to \infty} \sup_{i \ge 0} \left[\|T^{n+i}x - T^nx\|^2 - \|T^{m+i}x - T^mx\|^2 \right] \le 0$$

so that

(2.2)
$$\lim_{m \to \infty} \lim_{i \to \infty} \lim_{i \to \infty} \left[\|T^{n+i}x - T^nx\|^2 - \|T^{m+i}x - T^mx\|^2 \right] \le 0.$$

By [4, Proposition 2.3] with $x_n = T^n x$, $\{T^n x\}$ is weakly almost-convergent to its asymptotic center.

Next, let $F(T) \neq \emptyset$ and c = 0 in (β_2) , i.e., for every bounded set $B \subset C$, $v \in C$ and integer $k \ge 0$, there exists a $\delta_k(B, v) \ge 0$ with $\lim_{k\to\infty} \delta_k(B, v) = 0$ such that

(2.3)
$$||T^{k}u - T^{k}v||^{p} \le a_{k}||u - v||^{p} + \delta_{k}(B, v) \text{ for } u \in B,$$

where a_k and p are nonnegative constants independent of B and v such that $\lim_{k\to\infty} a_k = 1$ and $p \ge 1$. Since (2.3) implies (1.4), we see from the proof of Theorem 1.2 that $\{||T^n x - f||\}$ is convergent, where $f \in F(T)$. Using (2.3) with $B = \{T^{\ell}x; \ell \ge 0\}, u = T^{m+i}x, v = T^m x$ and k = n - m, we have that if $n > m \ge 0$, then

$$||T^{n+i}x - T^nx||^p \le ||T^{m+i}x - T^mx||^p + (2M)^p |a_{n-m} - 1| + \delta_{n-m}(B, T^mx)$$

for $i \ge 0$, where $M = \sup_{\ell \ge 0} ||T^{\ell}x||$. This implies (2.2). Therefore, using [4, Proposition 2.3] with $x_n = T^n x - f$, we see that $\{T^n x - f\}$ is weakly almost-convergent to its asymptotic center z, so that $\{T^n x\}$ is weakly almost-convergent to its asymptotic center z + f.

Theorem 2.2. Suppose condition (β_4) holds. Then for every $x \in C$, either $\lim_{n\to\infty} ||T^n x|| = \infty$ or $\{T^n x\}$ is weakly almost-convergent to its asymptotic center.

Proof. Let $x \in C$, and suppose $\underline{\lim}_{n\to\infty} ||T^n x|| < \infty$. By condition (β_4) with $B = \{T^n x\}$ and $v = u = T^n x$, we have

$$||T^n x||^p \le a_k ||T^{k+n} x||^p + \delta_k(\{T^n x\}, T^n x)/(2^p + 2c) \text{ for } k, n \ge 0,$$

which implies that $\{||T^nx||\}$ is convergent.

Let $n > m \ge 0$. By condition (β_4) with $B = \{T^{\ell}x; \ell \ge 0\}, u = T^{m+i}x, v = T^m x$ and k = n - m, we have

$$||T^{m+i}x + T^mx||^p \le ||T^{n+i}x + T^nx||^p + [(2M)^p + 2cM^p]|a_{n-m} - 1| + c(||T^{n+i}x||^p - ||T^{m+i}x||^p + ||T^nx||^p - ||T^mx||^p) + \delta_{n-m}(B, T^mx)$$

for $i \ge 0$, where $M = \sup_{\ell \ge 0} ||T^{\ell}x||$. Combining this with the convergence of $\{||T^nx||\}$, we obtain

$$\lim_{m \to \infty} \lim_{n \to \infty} \sup_{i \ge 0} \left[\|T^{m+i}x + T^m x\|^p - \|T^{n+i}x + T^n x\|^p \right] \le 0$$

and a fortiori

$$\lim_{m \to \infty} \lim_{n \to \infty} \lim_{i \to \infty} \left[\|T^{m+i}x + T^m x\|^2 - \|T^{n+i}x + T^n x\|^2 \right] \le 0.$$

So, it follows from [4, Proposition 2.3] that $\{T^n x\}$ is weakly almost-convergent to its asymptotic center.

EFEECE

- R. E. Bruck, On the almost-convergence of iterates of a nonexpansive mapping in Hilbert space and the structure of the weak w-limit set, *Israel J. Math.* 29 (1978), 1-16.
- E. Edelstein, Fixed point theorems in uniformly convex Banach spaces, Proc. Amer. Math. Soc. 44 (1974), 369-374.
- W. A. Kirk, Fixed point theorems for non-Lipschitzian mappings of asymptotically nonexpansive type, *Israel J. Math.* 17 (1974), 339-346.
- I. Miyadera, Nonlinear mean ergodic theorems, *Taiwanese J. Math.* 1 (1997), 433-449.
- D. Tingley, An asymptotically nonexpansive commutative semigroup with no fixed point, Proc. Amer. Math. Soc. 97 (1986), 107-113.

Department of Mathematics, Waseda University Tokyo, Japan