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WIDE DIAMETERS OF BUTTERFLY NETWORKS

Sheng-Chyang Liaw and Gerard J. Chang∗

Abstract. Reliability and efficiency are important criteria in the design
of interconnection networks. Recently, the w-wide diameter dw(G), the
(w − 1)-fault diameter Dw(G), and the w-Rabin number rw(G) have
been used to measure network reliability and efficiency. In this paper,
we study wide diameters for an important class of parallel networks—
butterfly networks. The main result of this paper is to determine their
wide diameters.

1. Introduction

Reliability and efficiency are important criteria in the design of inter-
connection networks. Connectivity is widely used to measure network fault-
tolerance capacity, while diameter determines routing efficiency along individ-
ual paths. In practice, we are interested in high-connectivity, small-diameter
networks.

The distance dG(x, y) from a vertex x to another vertex y in a network
G is the minimum number of edges of a path from x to y. The diameter
d(G) of a network G is the maximum distance from one vertex to another.
The connectivity k(G) of a network G is the minimum number of vertices
whose removal results in a disconnected or trivial network. According to
Menger’s theorem, there are k (internally) vertex-disjoint paths from a vertex
x to another vertex y in a network of connectivity k. Throughout this paper,
“vertex-disjoint” always means “internally vertex-disjoint.”

For a network G with connectivity k(G) and w ≤ k(G), the three pa-
rameters dw(G), Dw(G), and rw(G) (defined below) arise from the study of,
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respectively, parallel routing, fault-tolerant systems, and randomized routing
(see [3, 6, 9, 10]). Due to widespread use of (and demand for) reliable, efficient,
and fault-tolerant networks, these three parameters have been the subjects of
extensive study over the past decade (see [3]).

The w-wide diameter dw(G) of a network G is the minimum l such that for
any two distinct vertices x and y there exist w vertex-disjoint paths of length
at most l from x to y. The notion of w-wide diameter was introduced by Hsu
[3] to unify the concepts of diameter and connectivity.

The (w− 1)-fault diameter of G is Dw(G) = max{d(G−S) : |S| ≤ w− 1}.
This notion was defined by Hsu [3], and the special case in which w = k(G)
was first defined by Krishnamoorthy and Krishnamurthy [6] who studied the
fault-tolerant properties of graphs and networks.

The w-Rabin number rw(G) of a network G is the minimum l such that for
any w + 1 distinct vertices x, y1, · · ·, yw there exist w vertex-disjoint paths
of length at most l from x to y1, y2, · · · , yw. This concept was first defined by
Hsu [3], and the special case in which w = k(G) was studied by Rabin [10] in
conjunction with a randomized routing algorithm.

It is clear that when w = 1, d1(G) = D1(G) = r1(G) = d(G) for any
network G. On the other hand, these parameters can be very large, as in
the case in which w = k(G). For example, Hsu and Luczak [4] showed that
dk(G) = n

2 for some regular graphs G having connectivity and degree k and
n vertices. The following are basic properties and relationships among dw(G),
Dw(G), and rw(G).

Proposition 1. [8] The following statements hold for any network G of
connectivity k.

(1) D1(G) ≤ D2(G) ≤ · · · ≤ Dk(G).

(2) d1(G) ≤ d2(G) ≤ · · · ≤ dk(G).

(3) r1(G) ≤ r2(G) ≤ · · · ≤ rk(G).

(4) Dw(G) ≤ dw(G) and Dw(G) ≤ rw(G) for 1 ≤ w ≤ k.

This paper examines the above parameters for butterfly networks, which
are banyan networks in the literature. The butterfly network Bn is the graph
whose vertices are x = (x0, x1, · · · , xn) with 0 ≤ x0 ≤ n and xi ∈ {0, 1} for
1 ≤ i ≤ n, and two vertices x and y are adjacent if and only if y0 = x0 + 1
and xi = yi for 1 ≤ i ≤ n with i 6= y0. Note that B1 is a 4-cycle. For a vertex
x = (x0, x1, · · · , xn) in Bn, we say that x is in level x0 of Bn and call xi the ith
coordinate of x. FIG. 1 shows an example of B3, in which the top line indicates
the level numbers and the left column indicates the names (x1, x2, · · · , xn).
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FIG. 1. The butterfly network B3.

Cao, Du, Hsu and Wan [1] gave the connectivity, the diameter, the fault
diameter, and bounds of the wide diameter and the Rabin number of the
butterfly network Bn as follows.

Theoremm 2. [1] If n ≥ 2, then k(Bn) = 2, d(Bn) = 2n, D2(Bn) =
2n+ 2, 2n+ 2 ≤ d2(Bn) ≤ 2n+ 4, and 2n+ 2 ≤ r2(Bn) ≤ 2n+ 4.

In this paper, we prove that d2(Bn) = 2n+ 2 for n ≥ 2.

2. The Wide Diameter d2(Bn)

For any a ∈ {0, 1}, a is defined to be 1−a. Suppose y and x are two vertices
with y0 = i ≤ j = x0 and yk = xk for k ∈ {1, 2, · · · , i} ∪ {j + 1, j + 2, · · · , n}.
Denote as Pi,j(y, x), or Pi,j with y and x specified, the following path of length
j − i from y to x:

(i, y1, · · · , yi, yi+1, yi+2, yi+3, · · · , yj , yj+1, · · · , yn)
→ (i+ 1, y1, · · · , yi, xi+1, yi+2, yi+3, · · · , yj , yj+1, · · · , yn)
→ (i+ 2, y1, · · · , yi, xi+1, xi+2, yi+3, · · · , yj , yj+1, · · · , yn)
→ · · · · · ·
→ (j, y1, · · · , yi, xi+1, xi+2, xi+3, · · · , xj , yj+1, · · · , yn).
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Similarly, if y and x are two vertices with y0 = i ≥ j = x0 and yk = xk for
k ∈ {1, 2, · · · , j}∪{i+ 1, i+ 2, · · · , n}. Denote as Qi,j(y, x), or Qi,j with y and
x specified, the following path of length i− j from y to x:

(i, y1, · · · , yj , yj+1, · · · , yi−2, yi−1, yi, yi+1, · · · , yn)
→ (i− 1, y1, · · · , yj , yj+1, · · · , yi−2, yi−1, xi, yi+1, · · · , yn)
→ (i− 2, y1, · · · , yj , yj+1, · · · , yi−2, xi−1, xi, yi+1, · · · , yn)
→ · · · · · ·
→ (j, y1, · · · , yj , xj+1, · · · , xi−2, xi−1, xi, yi+1, · · · , yn).

We are now ready to prove the main result.

Theorem 3. If n ≥ 2, then d2(Bn) = 2n+ 2.

Proof. According to Proposition 1 (4) and the fact that D2(Bn) = 2n+ 2
(see [1]), it suffices to show that for any two vertices y = (y0, y1, · · · , yn) and
x = (x0, x1, · · · , xn), there exist two vertex-disjoint y-x paths of lengths at
most 2n + 2. We, in fact, will construct two vertex-disjoint y-x walks based
on the following three cases. Without loss of generality, we may assume that
y0 ≥ x0. Let a = dy0+x0−2

2 e.

Case 1. y0 ≥ x0 + 2. In this case, we have y0 > a+ 1 > x0. The first y-x
walk is W = Py0,n(y, u1)Qn,a(u1, u2)Qa,0(u2, u3)P0,a+1(u3, u4)Qa+1,x0(u4, x),
where

y = (y0, y1, · · · , yx0 , yx0+1, yx0+2, · · · , ya, ya+1, ya+2, · · · , yy0−1, yy0 , yy0+1, · · · , yn),
u1 = (n, y1, · · · , yx0 , yx0+1, yx0+2, · · · , ya, ya+1, ya+2, · · · , yy0−1, yy0 , yy0+1, · · · , yn),
u2 = (a, y1, · · · , yx0 , yx0+1, yx0+2, · · · , ya, xa+1, xa+2, · · · , xy0−1, xy0 , xy0+1, · · · , xn),
u3 = (0, x1, · · · , xx0 , xx0+1, xx0+2, · · · , xa, xa+1, xa+2, · · · , xy0−1, xy0 , xy0+1, · · · , xn),
u4 = (a+ 1, x1, · · · , xx0 , yx0+1, xx0+2, · · · , xa, xa+1, xa+2, · · · , xy0−1, xy0 , xy0+1, · · · , xn),
x = (x0, x1, · · · , xx0 , xx0+1, xx0+2, · · · , xa, xa+1, xa+2, · · · , xy0−1, xy0 , xy0+1, · · · , xn),

and W has a length of (n − y0) + (n − a) + a + (a + 1) + (a + 1 − x0) =
2n + 2 + 2a − y0 − x0 ≤ 2n + 1. The second y-x walk is W ′ = Qy0,a(y, v

1)
Pa,n(v1, v2)Qn,0(v2, v3) P0,x0(v3, x), where

y = (y0, y1, · · · , yx0 , yx0+1, yx0+2, · · · , ya, ya+1, ya+2, · · · , yy0−1, yy0 , yy0+1, · · · , yn),
v1 = (a, y1, · · · , yx0 , yx0+1, yx0+2, · · · , ya, ya+1, ya+2, · · · , yy0−1, xy0 , yy0+1, · · · , yn),
v2 = (n, y1, · · · , yx0 , yx0+1, yx0+2, · · · , ya, ya+1, ya+2, · · · , yy0−1, xy0 , yy0+1, · · · , yn),
v3 = (0, x1, · · · , xx0 , xx0+1, xx0+2, · · · , xa, xa+1, xa+2, · · · , xy0−1, xy0 , xy0+1, · · · , xn),
x = (x0, x1, · · · , xx0 , xx0+1, xx0+2, · · · , xa, xa+1, xa+2, · · · , xy0−1, xy0 , xy0+1, · · · , xn),

and W ′ has a length of (y0−a)+(n−a)+n+x0 = 2n−2a+y0 +x0 ≤ 2n+2.
Moreover, between levels n and y0, vertices in W and W ′ differ at (a + 1)th
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coordinate; between levels y0 and 0, vertices in W and W ′ differ at y0th,
(a+ 1)th, or (x0 + 1)th coordinate. So, W and W ′ are vertex-disjoint. From
W and W ′ we can find two vertex-disjoint y-x paths as desired.

Case 2. y0 = x0 +1 or y0 = x0 6= 0. In this case, we have y0 = a+1 ≥ x0.
For y0 = x0+1, the first y-x walk is W = Qy0,0(y, u1) P0,n(u1, u2) Qn,y0(u2, u3)
Qy0,x0(u3, x), where

y = (y0, y1, · · · , yy0−1, yy0 , yy0+1, · · · , yn),
u1 = (0, y1, · · · , yy0−1, xy0 , yy0+1, · · · , yn),
u2 = (n, x1, · · · , xy0−1, xy0 , xy0+1, · · · , xn),
u3 = (y0, x1, · · · , xy0−1, xy0 , xy0+1, · · · , xn),
x = (x0, x1, · · · , xy0−1, xy0 , xy0+1, · · · , xn).

Note that the length of W is y0+n+(n−y0)+(y0−x0) = 2n+y0−x0 ≤ 2n+1.
For y0 = x0, replace Qy0,x0(u3, x) with Qy0,x0−1(u3, u4)Px0−1,x0(u4, x), where
u4 = (x0−1, x1, · · · , xy0−1, xy0 , xy0+1, · · · , xn), to obtain the first y-x walk W of
length 2n+2. The second y-x walk is W ′ = Qy0,0(y, v1)P0,n(v1, v2)Qn,x0(v2, x),
where

y = (y0, y1, · · · , yy0−1, yy0 , yy0+1, · · · , yn),
v1 = (0, y1, · · · , yy0−1, xy0 , yy0+1, · · · , yn),
v2 = (n, x1, · · · , xy0−1, xy0 , xy0+1, · · · , xn),
x = (x0, x1, · · · , xy0−1, xy0 , xy0+1, · · · , xn).

Note that the length of W ′ is y0 + n + (n − x0) = 2n + y0 − x0 ≤ 2n + 1.
Moreover, vertices in W and W ′ differ at the y0th coordinate and hence are
disjoint.

Case 3. y0 = x0 = 0. Consider y-x walks W j = P j0,nQ
j
n,0 for j = 0 or

1, where P j0,n is from y = (0, y1, · · · , yn) to (n, j, x2, · · · , xn) and Qjn,0 is from
(n, j, x2, · · · , xn) to x = (0, x1, · · · , xn). It is clear that vertices in W 0 and W 1

differ at the 1st coordinate and hence are disjoint. Moreover, the length of
W 0 or W 1 is 2n.

The referee provides the information that Chen and Li [2] extended the
study of wide diameter to k-ary butterfly networks. In particular, they proved
that the wide diameter of the k-ary butterfly network is bounded above by
D + 4 if n ≥ 4, by D + 2 if n ≥ 8, and by D + 3 if 4 ≤ n ≤ 7, where n is the
dimension and D the diameter of the network.

Determining the exact values of r2(Bn) remains open. Although there
is no strong indication, after checking many special cases, we do believe the
following conjecture should be true.
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Conjecture. r2(Bn) = 2n+ 2.
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