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ON THE COLLECTIVE COMPACTNESS OF
STRONGLY CONTINUOUS SEMIGROUPS AND

COSINE FUNCTIONS OF OPERATORS

Hernán R. Henŕıquez∗

Abstract. LetX be a complex Banach spcce, and denote by T a strongly
continuous semigroup of linear operators defined on X and by C a co-
sine function of operators with associated sine function S defined on X.
In this note we characterize in terms of spectral properties of the in-
finitesimal generator those semigroups T and cosine functions C such
that {T (t) − I : t ≥ 0}, {C(t) − I : t ∈ R} and {S(t) : t ∈ R} are
collectively compact sets of bounded linear operators.

1. Introduction

The object of this note is the study of the compactness of semigroups and
cosine functions of operators.

Throughout this work we will denote by X a complex Banach space en-
dowed with a norm ‖ · ‖ and by B(X) the Banach algebra of bounded linear
operators defined on X. If A is a linear operator with domain D(A) and range
R(A) in X, then σ(A) (resp. σp(A)) denotes the spectrum (resp. point spec-
trum) of A. If λ belongs to the resolvent set of A, then R(λ,A) denotes the
resolvent operator (λI −A)−1. Some additional notations that we will use are
N0 := N∪{0}, R+ := (0,∞), R+

0 := [0,∞), R− := (−∞, 0) and R−0 := (−∞, 0].
For the necessary concepts in the theories of semigroups and cosine functions
of linear operators we refer to Nagel [14] and Fattorini [6], respectively.
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The compactness properties of strongly continuous semigroups and cosine
operator functions have been considered by several authors. Cuthbert [5] stud-
ies those strongly continuous semigroups T (·) such that T (t) − I is compact
for some t > 0 and Henŕıquez [8] characterizes those semigroups such that
(T (t) − I)n, n ∈ N, is compact for all t > 0. Likewise, if C denotes a cosine
operator function with associated sine function S the compactness of oper-
ators C(t) and S(t) was studied in [18] while the compactness of operators
(C(t) − I)n, n ∈ N, and (S(t) − tI)n, n ∈ N, for all t > 0 was studied in
[7, 8, 9]. Finally, Lizama [12] considered similar problems for resolvent families
of operators.

In this note we will present a characterization for the collective compact-
ness of sets {T (t)− I : t ≥ 0}, {C(t)− I : t ∈ R} and {S(t) : t ∈ R} in terms
of the infinitesimal generator A of T and C, respectively. These problems are
related with the existence of mild solutions with relatively compact range of
the abstract Cauchy problem

x′(t) = Ax(t) + f(t), x(0) ∈ X, t ≥ 0,

when A generates a semigroup, and

x′′(t) = Ax(t) + f(t), x(0), x′(0) ∈ X, t ≥ 0,

in the case A generates a cosine operator function.
In order to prove our results we need certain properties of almost periodic

functions. Next, for completeness, we present some preliminaries including
those properties that we will use extensively. We refer the reader to [4, 19] for
most of the basic aspects which are used afterward. First we shall give Bohr’s
definition of almost periodicity. We denote by J either the real line or the
half-line R+

0 .

Definition 1.1. A continuous function f : J → X is called almost periodic
(a.p.) if for every ε > 0 there exists a set Pε relatively dense in J such that

‖f(t+ τ)− f(t)‖ ≤ ε

for every t ∈ J and every τ ∈ Pε.

In the sequel we denote by Cb(J ;X) the Banach space of bounded continu-
ous functions from J into X endowed with the uniform convergence norm and
we indicate by C0(R+

0 ;X) the space of all continuous functions from R+
0 into

X which vanish at infinity. Moreover, the set of all a. p. functions from J into
X will be denoted by AP (J ;X). We define the translation Ht on Cb(J ;X) by

(Htf)(s) := f(t+ s), s, t ∈ J.
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Bochner’s characterization of almost periodicity asserts that a function f ∈
Cb(R;X) is a.p. if and only if {Htf : t ∈ R} is a relatively compact subset of
Cb(R;X).

Definition 1.2. A continuous function f : R+
0 → X is called asymp-

totically almost periodic (a.a.p.) if there are functions g ∈ AP (R;X) and
q ∈ C0(R+

0 ;X) such that f(t) = g(t) + q(t) for every t ≥ 0.

Asymptotic almost periodicity has been studied by Ruess and Summer
(see [16] and the references therein). In particular, similar to Bochner’s com-
pactness criterion, a function f : R+

0 → X is a.a.p. if and only if the set
{Htf : t ≥ 0} is relatively compact in Cb(R+

0 ;X).
For operator-valued functions it is convenient to consider some weaker

forms of these definitions. A strongly continuous operator-valued function
F : J → B(X) is called a.p. (resp. a.a.p.) if for every x ∈ X the function
t→ F (t)x is a.p. (resp. a.a.p.). We will use this concept with semigroups and
cosine functions of operators. The a.p. semigroups were studied by Bart and
Goldberg [1], while the a.p. cosine functions were considered in [2]. After-
ward, Ruess and Summers [16] have characterized the a.a.p. semigroups and
Henŕiquez [10] studied the a.a.p. cosine operator functions . The essential
result is in [1]:

Proposition 1.1. A strongly continuous semigroup T with infinitesimal
generator A is almost periodic if and only if the following conditions hold:

(a) The semigroup T is uniformly bounded;
(b) σ(A) ⊆ iR;
(c) The set of eigenvectors of A is total in X.

Moreover, if T is a.p. and ir is an isolated point of σ(A) then ir is an eigen-
value of A and a simple pole of R(z,A).

We also need the following consequence of almost periodicity.

Lemma 1.1. Let T be an a.p. semigroup with infinitesimal generator A.
Then

Px := lim
t→∞

1
t

∫ t

0
T (s)x ds, x ∈ X,

exists and the following properties are satisfied:
(a) P is a linear bounded projection;
(b) For all t > 0, P commutes with T (t);
(c) R(P ) = Ker(A);
(d) Ker(P ) = R(A).
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Consequently, X = Ker(P )⊕R(A).

The a.a.p. semigroups have been characterized in [16]:

Proposition 1.2. A strongly continuous semigroup T is asymptotically al-
most periodic if and only if X = X0⊕X1, where X0 := {x ∈ X : limt→∞ T (t)x =
0} and X1 := {x ∈ X : T (t)x is a.p.}.

It follows from this result that every a.a.p. semigroup T can be decomposed
as T (t) = T0(t) ⊕ T1(t), where T0(t) := T (t)|

X0
is a strongly stable C0-

semigroup and T1(t) := T (t)|
X1

is an a.p. C0-semigroup.
Related to cosine functions, the a.p. strongly continuous cosine operator

functions were characterized by Cioranescu [2]:

Proposition 1.3. A strongly continuous cosine operator function C with
infinitesimal generator A is almost periodic if and only if C(t) is uniformly
bounded on R and the set of eigenvectors of A is total in X.

Finally, Henŕıquez [10] proved that an a.a.p. strongly continuous cosine
operator function is also a.p.

To complete this introduction we remind ([15]) that an operator-valued
map F : J → B(X) is called collectively compact if

⋃
t∈J

F (t)(B) is relatively

compact for every bounded set B ⊆ X.

2. Results for Semigroups

In this section we denote by T a strongly continuous semigroup of linear
operators on the complex Banach space X with infinitesimal generator A.

Lemma 2.1. If T (t)− I is collectively compact, then T is a.a.p.

Proof. Let x ∈ X and define the function f(t) := T (t)x. We will prove
that H(f) = {Htf : t ≥ 0} is relatively compact in Cb(R+

0 ;X). Let (hn)n be
a sequence of positive real numbers. Since there exists a compact set K such
that T (t)x − x ∈ K for all t ≥ 0, T is uniformly bounded and there is a
subsequence (sk)k such that T (sk)x is convergent, as k →∞, to some element
y ∈ X. Therefore,

‖Hskf − T (·)y‖∞ = sup
t≥0
‖T (t) (T (sk)x− y) ‖ → 0, k →∞,

which implies the assertion.

Theorem 2.1. The operator-valued function T (t)− I is collectively com-
pact if and only if the following conditions hold:
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(a) The semigroup T is uniformly bounded and its infinitesimal generator is
compact;

(b) The spectrum of A is a finite set of eigenvalues included in {λ ∈ C :
Re(λ) ≤ 0};

(c) The generalized eigenvectors of A span the space X.

Proof. We begin the proof by assuming that T (t)−I is collectively compact.
It is immediate that T is uniformly bounded and the compactness of A follows
from [5]. Consequently,

σ(A) ⊆ {λ ∈ C : Re(λ) ≤ 0}

and
σ(A) ⊆ σp(A) ∪ {0}.

If X is a finite-dimensional space, the previous inclusions prove conditions (b)
and (c).

We consider now that X is an infinite-dimensional space. To prove condi-
tion (b), we will show that 0 is an isolated point of σ(A). This statement is
verified by the following considerations. From Lemma 2.1 and Proposition 1.2
it follows that we can decompose X as X = X0 ⊕X1 so that T0(t) := T (t)|X0

is a strongly stable semigroup with infinitesimal generator A0 := A|X0 and
T1(t) := T (t)|X1 is an a.p. semigroup with infinitesimal generator A1 := A|X1 .
It is clear that T0(t)−I is collectively compact, that is, there exists a compact
set K0 ⊆ X0 such that T0(t)x− x ∈ K0 for all t ≥ 0 and all x ∈ X0, ‖x‖ ≤ 1.
Taking limit as t → ∞ we obtain that x ∈ K0 which implies that X0 has
finite dimension and σ(A0) is a finite set. From this we conclude that the set
σ−p (A) := {λ ∈ σp(A) : Re(λ) < 0} is finite. In fact, if λ ∈ σ−p (A), then there
is x ∈ X, x 6= 0, such that Ax = λx. Since T (t)x = eλtx → 0 as t → ∞, it
follows that x ∈ X0 and λ ∈ σ(A0). On the other hand, since A is compact,
we have that 0 ∈ σ(A). If we assume that 0 is a cluster point of σ(A), then,
since σp(A0) is finite, there exists a sequence (λn)n in σp(A1) such that λn → 0
as n→∞. By the property we have just established we can choose λn = iβn
with 0 6= βn ∈ R. Let xn ∈ X1, ‖xn‖ = 1, be the eigenvector corresponding to
λn. From the equality

T1(t)xn − xn = (eiβnt − 1)xn, t ≥ 0

and selecting t := tn so that eiβntn = −1 we infer that the set {xn : n ∈ N}
is relatively compact. Hence, by passing to subsequences if needed, we may
assume that (xn)n converges to some element y ∈ X1. From this it follows
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that 0 = A1xn − iβnxn → A1y − 0 as n → ∞, and so A1y = 0. Furthermore,
since xn ∈ R(A1) it follows that y ∈ R(A1). Applying Lemma 1.1 with the
a.p. semigroup T1 we conclude that y = 0 which is a contradiction and proves
our statement.

Using now the characterization (Proposition 1.1) of Bart and Goldberg [1]
we obtain that 0 ∈ σp(A1) and that the set of eigenvectors of A1 is total in X1.
Next we decompose the spectrum σ(A) into the spectral sets σ1 := σ(A) \ {0}
and σ2 := {0}. If X = Y1 ⊕ Y2 is the decomposition of X induced by the
decomposition of σ(A) (see Taylor [17], Theorem 5.7-A), then Y1 is a finite-
dimensional space and the ascent of the eigenvalue 0 is 1. In fact, if x ∈ Y2

and Akx = 0 for some k ∈ N, then

T (t)x = x+ tAx+ · · ·+ tk−1

(k − 1)!
Ak−1x.

Since T (t)x is a bounded function on R+
0 , it follows from the above expres-

sion that Ax = 0. Thus, the generalized eigenvectors of A|Y2 coincide with
the eigenvectors and this implies that Ker(A|Y2) = Y2. Since the generalized
eigenvectors of A|Y1 span Y1, this shows (b) and (c).

We assume now conditions (a), (b) and (c) are verified. If X is a finite-
dimensional space, then condition (a) implies that T (t)−I is collectively com-
pact. In the case X is an infinite-dimensional space the earlier argument shows
that we can decomposeX asX = Y1⊕Y2, where Y1 is a finite-dimensional space
and Y2 = Ker(A). If we use subindices to indicate restriction to the corre-
sponding subspace, we deduce that T1(t)−I is collectively compact and A2 = 0.
Therefore T2(t) = I and T (t) = T1(t)⊕ I so that T (t)− I = (T1(t)− I)⊕ 0
is collectively compact.

Remarks.

( i ) If T (t) − I is collectively compact, the preceding argument shows that
the ascent of eigenvalues of A located in iR \ {0} is equal to 1.

(ii) By Lemma 2.1, [5], and the proof of Theorem 2.1, one can see that
T (t)−I is collectively compact if and only if T is a.a.p. and A is compact.

3. Results for Cosine Operator Functions

Throughout this section C(t) is a strongly continuous cosine operator func-
tion with infinitesimal generator A. We denote by S(t) the sine function as-
sociated with C which is defined by

S(t)x :=
∫ t

0
C(s)x ds, x ∈ X, t ∈ R.(3.1)
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Theorem 3.1. The operator-valued function C(t)− I is collectively com-
pact if and only if the following conditions hold:

(a) The cosine function C is uniformly bounded and its infinitesimal gene-
rator A is compact;

(b) The spectrum of A is a finite set of eigenvalues included in R−0 ;

(c) The eigenvectors of A span the space X.

Proof. Suppose that C(t) − I is a collectively compact function. Then
condition (a) follows from [7]. Moreover, it is well-known ([6]) that A is the
infinitesimal generator of a holomorphic semigroup T (t) defined by

T (t)x =
1√
πt

∫ ∞
0

e−s
2/4tC(s)x ds, x ∈ X, t > 0.(3.2)

Since {C(t)x − x : t ≥ 0, ‖x‖ ≤ 1} is totally bounded, from the above
expression it is easy to see that {T (t)x− x : t ≥ 0, ‖x‖ ≤ 1} is also a totally
bounded set in X. Therefore T (t)− I is a collectively compact function. On
the other hand, if C(t) is uniformly bounded then ([13]) σ(A) ⊆ R−0 so that,
collecting this property with Theorem 2.1, we obtain that σ(A) = σp(A) ⊆ R−0
is a finite set. This shows (b). Moreover, the ascent of eigenvalues of A is equal
to 1. In fact, if λ = 0 is an eigenvalue and Akx0 = 0 for some vector x0 6= 0,
then using the series expansion of C(t)x0 we obtain the vector polynomial

C(t)x0 = x0 +
t2

2!
Ax0 +

t4

4!
A2x0 + · · ·+ t2k−2

(2k − 2)!
Ak−1x0,

which is bounded only in the case k = 1. This shows the assertion for the eigen-
value 0. Similarly, if µ = −λ2, λ 6= 0, is an eigenvalue of A and (A−µ)kx0 = 0
for some vector x0 6= 0, then C(t)x0 is a linear combination of functions
ti(sinλt) yi and ti(cosλt) zi, with yi, zi ∈ X for i = 0, 1, . . . , k − 1, which is
bounded only in the case k = 1. Therefore, the generalized eigenvectors of A
coincide with the eigenvectors and Theorem 2.1 proves condition (c).

Conversely, if we assume conditions (a), (b) and (c), then C(t) − I is a
compact operator for each t ∈ R. Moreover, proceeding as above we can
assert that the ascent of the eigenvalues of A is equal to 1. If 0 ∈ σ(A) and
X = X1⊕X2 is the decomposition of X associated with the spectral sets σ1 :=
σ(A)\{0} and σ2 = {0}, then the compactness of A implies that X1 is a finite-
dimensional space and using (c) we easily find that X1 = ⊕ni=1Ker(A − µi),
where µi = −λ2

i , λ 6= 0, i = 1, 2 . . . , n, denote the non-zero eigenvalues of
A, and X2 = Ker(A). It follows that A|X2 = 0 and C2(t) := C(t)|X2 = I.
Consequently C(t) = C1(t)⊕ I, where C1(t) = C(t)|X1 is a uniformly bounded
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cosine operator function defined on a finite-dimensional space. This completes
the proof.

We will consider now the collective compactness of the function S(t). We
begin by establishing an elementary property of cosine operator functions that
we will need in the proof of our main result.

Lemma 3.1. If the sine function S(·) is collectively compact, then for
each a > 0 the operator function C(·)S(a) is also collectively compact and a.p.

Proof. The first assertion follows from the identity

S(t+ a)− S(t− a) = 2C(t)S(a).

To prove the second one we begin by showing that the operator-valued function
S(·)S(a) is a.p. To this end, we fix x ∈ X and prove that the set of translations
{HtS(·)S(a)x : t ∈ R} is relatively compact in the space Cb(R;X). Let (tn)n
be a real sequence. From the collective compactness of S(·) and C(·)S(a) we
infer the existence of a subsequence (t′n)n and elements y, z ∈ X such that
S(t′n)x → y and C(t′n)S(a)x → z as n → ∞. Since C(·)S(a) and S(·) are
uniformly bounded on R, from the expression

S(t′n + u)S(a)x = C(u)S(a)S(t′n)x + S(u)C(t′n)S(a)x

we conclude that the sequence of functions S(t′n +u)S(a)x converges uniform-
ly to C(u)S(a)y + S(u)z. Bochner’s characterization of almost periodicity
implies that S(·)S(a) is a.p. In addition, from the identity

C(t)y − y =
∫ t

0
S(u)Ay du, y ∈ D(A),

and the fact that the operator-valued function C(·)S(a) is uniformly bounded
on R, we infer that C(·)S(a)x is uniformly continuous on R. The assertion is
now a consequence of the fact that C(t)S(a)x is the derivative of S(t)S(a)x
and the properties of almost periodic functions (see [19]).

Our main result is:

Theorem 3.2. The operator-valued function S(t) is collectively compact
if and only if the following conditions hold :

(a) The operator R(µ,A) is compact for every µ in the resolvent set of A;

(b) The spectrum of A is a discrete set of eigenvalues included in R−;

(c) The set of eigenvectors of A is total in X.
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Proof. Suppose that the operator function S(t) is collectively compact. It
is clear that S(t) is uniformly bounded on R, and from Proposition 2.3 in [18]
it follows that R(µ,A) is compact. Moreover, it is well-known that in this case
the spectrum of A is a discrete set of isolated eigenvalues with finite algebraic
multiplicity. If µ ∈ σ(A), then µ ∈ R and µ < 0. To prove this assertion we
assume the contrary. We select x ∈ D(A), x 6= 0, such that Ax = µx. We
must consider two cases. If µ = 0, then S(t)x = tx; if µ /∈ R−, then we can
write µ = λ2 with Re(λ) 6= 0 and it is easy to see that S(t)x = sinhλt

λ
x. Hence,

in both cases the function S(t)x is not bounded on R which is a contradiction.
To prove condition (c) we modify slightly the construction carried out in

the proof of Theorem 1 in [2]. Initially we fix a > 0. Since by the previous
lemma for every x ∈ X the function C(·)S(a)x is a.p., we can define the
Fourier coefficient

Pλ(a)x := lim
t→∞

1
2t

∫ t

−t
e−iλsC(s)S(a)x ds, λ ∈ R.

Proceeding as in [12] we can show that Pλ(a)x ∈ D(A) and APλ(a)x =
−λ2Pλ(a)x for every x ∈ X. Thus if E denotes the set of eigenvectors of
A, including the vector 0, then Pλ(a)x ∈ E. If we assume that E is not
total in X, then there exists x′ ∈ X ′, x′ 6= 0, such that 〈x′, y′〉 = 0 for all
y ∈ E. In particular, this implies that 〈x′, Pλ(a)x〉 = 0 for every λ ∈ R
and all x ∈ X. From the properties of scalar a.p. functions we conclude that
〈x′, C(t)S(a)x〉 ≡ 0. Taking t = 0 we obtain that 〈x′, S(a)x〉 = 0 for all x ∈ X.
Since 1

a
S(a)x→ x as a→ 0+, it follows that x′ = 0, which is contrary to our

assumption.
Assuming now that conditions (a), (b) and (c) are fulfilled, we will prove

that S(t) is collectively compact. Initially we establish that C(t) is uniformly
bounded on R. From Cioranescu and Ubilla [3] it follows that it is sufficient
to show that the semigroup T defined by the expression (3.2) is uniformly
bounded and that the space of exponential vectors of A is dense in X. Since T
is a holomorphic semigroup, its growth bound ω0(T ) = sup Reσ(A) < 0 (see
Nagel [14]) which implies that T (t) is uniformly bounded on R+

0 . The second
assertion is a direct consequence of (c) since every eigenvector is an exponential
vector. As an immediate consequence of this property and (3.1) we deduce
the existence of a positive constant M such that ‖S(t2)− S(t1)‖ ≤M |t2 − t1|
for every t1, t2 ∈ R.

Next we observe that A−1 is a compact operator. From the identity

A−1(C(b)− C(a))x =
∫ b

a

S(u)x du

we conclude that the two-parameter operator-valued function
∫ b
a S(u) du, 0 ≤

a ≤ b, is collectively compact. In order to prove that S(t) is collectively
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compact we assume the contrary. Thus, there exist ε > 0, a real sequence
(tn)n and a sequence (xn)n, xn ∈ X, ‖xn‖ = 1, such that the sequence
yn := S(tn)(xn) satisfies ‖yn − ym‖ ≥ ε for all m 6= n. Let us take a := ε/2M
and define zn := 1

a

∫ tn+a
tn

S(u)xn du. Clearly {zn : n ∈ N} is a relatively
compact set. Moreover

‖zn − yn‖ ≤
1
a

∫ tn+a

tn

‖S(u)xn − S(tn)xn‖ du

≤ M

a

∫ tn+a

tn

(u− tn) du =
ε

4
,

which allows us to conclude that ‖zn − zm‖ ≥ ε/2 for every m 6= n. Since this
is a contradiction, we have completed the proof.

Remark. The last part of the above demonstration also serves to show
that conditions (a) and (b) in the statement of the previous theorem can be
substituted by

(a’) For each t > 0, the operator S(t) is compact;

(b’) For each x ∈ X, the function S(·)x has relatively compact range.

Corollary 3.1. If S(t) is collectively compact, then C(·) and S(·) are a.p.
operator-valued functions.

Proof. From the demonstration of Theorem 3.2 we know that C(t) is u-
niformly bounded on R. Collecting this property with condition (c) in the
statement of Theorem 3.2 we conclude that the hypotheses of Proposition 1.3
([2], Theorem 1) are verified. Hence C is a.p. Furthermore, since for each
x ∈ X the function S(t)x is a primitive of C(t)x and the range of S(t)x is
relatively compact, the function S(t)x is a.p. ([19], Theorem 7.1).

We conclude this section with an application to the second-order abstract
Cauchy problem. We consider the inhomogeneous Cauchy problem

x′′(t) = Ax(t) + f(t), t ∈ R, x(0) = x0, x
′(0) = x1,(3.3)

where A is the infinitesimal generator of a cosine function C(t) and f is a
locally integrable function. It is well-known that the mild solution of (3.3) is
given by

x(t;x0, x1, f) := C(t)x0 + S(t)x1 +
∫ t

0
S(t− s)f(s) ds.(3.4)
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Next we will establish conditions to guarantee the compactness of the trajec-
tory {x(t;x0, x1, f) : t ≥ 0}, where f ∈ L1([0,∞);X). In order to state our
result we introduce the following terminology : a subset E of L1([0,∞);X) is
said equi-integrable at infinity if for every ε > 0 there exists a > 0 such that∫ ∞

a

‖f(s)‖ ds ≤ ε

for every f ∈ E. It is clear from the dominated convergence theorem that
the singleton E = {f} is equi-integrable at infinity for each function f ∈
L1([0,∞);X).

Proposition 3.1. Let K be a compact subset of X, let E be a bounded
and equi-integrable-at-infinity subset of L1([0,∞);X) and let M be a positive
real number. If S(t) is collectively compact, then the set {x(t;x0, x1, f) : t ≥
0, x0 ∈ K, ‖x1‖ ≤M, f ∈ E} is relatively compact.

Proof. It follows from Corollary 3.1 that C(t) is a.p., which in turn
implies that {C(t)x0 : t ≥ 0, x0 ∈ K} is relatively compact. Similarly,
by the hypothesis, the set {S(t)x1 : t ≥ 0, ‖x1‖ ≤ M} is relatively compact.
Consequently, using (3.4), it remains to prove that the set {u(t, f) : t ≥ 0, f ∈
E} is relatively compact, where we have defined

u(t, f) :=
∫ t

0
S(t− s)f(s) ds.

It is clear from the hypothesis that S(t) is uniformly bounded. Hence for every
ε > 0 there exists a > 0 such that

‖
∫ t

a

S(t− s)f(s) ds‖ ≤ ε, t ≥ a, f ∈ E.

On the other hand, denoting v(t, f) := u(t, f) −
∫ t
a S(t − s)f(s) ds for every

t ≥ a we can write

v(t, f) =
∫ a

0
S(t− s)f(s) ds

=
∫ a

0
[S(t− a)C(a− s) + C(t− a)S(a− s)] f(s) ds

= S(t− a)
∫ a

0
C(a− s)f(s) ds+ C(t− a)u(a, f).

(3.5)

The first term of the right-hand side of (3.5) is included in a compact set since
S(·) is collectively compact and the set formed by

∫ a
0 C(a− s)f(s) ds, f ∈ E,
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is bounded. To study the second term of (3.5) let us define the operator
Λ : L1([0, a];X)→ X by the expression

Λ(f) :=
∫ a

0
S(a− s)f(s) ds.

It has been proved in [11], Theorem 5, that Λ is a compact operator. Therefore
{u(a, f) : f ∈ E} = {Λ(f) : f ∈ E} is relatively compact. Turning to use the
almost periodicity of C(·) we infer that the second term of the right-hand side
of (3.5) is also included in a compact set, which completes the proof.

The previous result remains valid under some weaker form of integrability
for functions f . In fact, the identity

C(t)x− x = A

∫ t

0
S(t− s)x ds, x ∈ X, t ∈ R,

shows that the argument used in the proof of Proposition 3.1 also serves for
functions f of type f = g + Az where g ∈ E, z ∈ W and W is a compact
subset of D(A).
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11. H. R. Henŕıquez, On non-exact controllable systems, Internat. J. Control 42
(1985), 71-83.

12. C. Lizama, Uniform continuity and compactness for resolvent families of oper-
ators, Acta Appl. Math. 38 (1995), 131-138.
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