TAIWANESE JOURNAL OF MATHEMATICS
Vol. 2, No. 4, pp. 457-467, December 1998

DERIVATIONS COCENTRALIZING POLYNOMIALS

Tsiu-Kwen Lee and Wen-Kwei Shiue

Abstract

Let R be a prime ring with extended centroid C and $f\left(X_{1}, \ldots, X_{t}\right)$ a polynomial over C which is not central-valued on $R C$. Suppose that d and δ are two derivations of R such that $$
d\left(f\left(x_{1}, \ldots, x_{t}\right)\right) f\left(x_{1}, \ldots, x_{t}\right)-f\left(x_{1}, \ldots, x_{t}\right) \delta\left(f\left(x_{1}, \ldots, x_{t}\right)\right) \in C
$$ for all x_{1}, \ldots, x_{t} in R. Then either $d=0=\delta$, or $\delta=-d$ and $f\left(X_{1}, \ldots, X_{t}\right)^{2}$ is central-valued on $R C$, except when char $R=2$ and $\operatorname{dim}_{C} R C=4$.

This paper is motivated by a result of Wong [14]. In [14], Wong proved the following result.

Theorem W. Let K be a commutative ring with unity, R a prime K algebra with center Z and $f\left(X_{1}, \ldots, X_{t}\right)$ a multilinear polynomial over K which is not central-valued on R. Suppose that d and δ are derivations of R such that

$$
d\left(f\left(x_{1}, \ldots, x_{t}\right)\right) f\left(x_{1}, \ldots, x_{t}\right)-f\left(x_{1}, \ldots, x_{t}\right) \delta\left(f\left(x_{1}, \ldots, x_{t}\right)\right) \in Z
$$

for all x_{1}, \ldots, x_{t} in some nonzero ideal I of R. Then either $d=\delta=0$ or $\delta=-d$ and $f\left(X_{1}, \ldots, X_{t}\right)^{2}$ is central-valued on R, except when char $R=2$ and R satisfies the standard identity S_{4} in 4 variables.

We remark that the above theorem is a part of the study of a series of papers, initiated by Posner's paper [13], concerning derivations by a number of authors in the literature. We refer the reader to the references of [11]. For Theorem W, if $\delta=d$, the theorem can be regarded as Posner's theorem [13] on multilinear polynomials. For general polynomials, the first-named author proved the following result [11, Theorem 11].

Received May 8, 1997.
Communicated by P.-H. Lee.
1991 Mathematics Subject Classification: 16W25, 16R50, 16N60, 16U80.
Key words and phrases: Derivation, PI, GPI, prime ring, differential identity.

Theorem L. Let R be a prime ring with extended centroid C and $f\left(X_{1}, \ldots\right.$, X_{t}) be a nonzero polynomial over C. Suppose that d is a nonzero derivation of R such that $\left[d\left(f\left(x_{1}, \ldots, x_{t}\right)\right), f\left(x_{1}, \ldots, x_{t}\right)\right] \in C$ for all x_{1}, \ldots, x_{t} in R. Then (I) $f\left(X_{1}, \ldots, X_{t}\right)^{2}$ is central-valued on $R C$ if char $R=2$, unless $\operatorname{dim}_{C} R C=4$. (II) $f\left(X_{1}, \ldots, X_{t}\right)$ is central-valued on $R C$ if $\operatorname{char} R \neq 2$.

In this paper we shall use Theorem L to generalize Theorem W to its full generality. More precisely, the following result will be proved.

Main Theorem. Let R be a prime ring with extended centroid C and $f\left(X_{1}, \ldots, X_{t}\right)$ a polynomial over C which is not central-valued on RC. Suppose that d and δ are two derivations of R such that

$$
d\left(f\left(x_{1}, \ldots, x_{t}\right)\right) f\left(x_{1}, \ldots, x_{t}\right)-f\left(x_{1}, \ldots, x_{t}\right) \delta\left(f\left(x_{1}, \ldots, x_{t}\right)\right) \in C
$$

for all x_{1}, \ldots, x_{t} in R. Then either $d=0=\delta$, or $\delta=-d$ and $f\left(X_{1}, \ldots, X_{t}\right)^{2}$ is central-valued on $R C$, except when char $R=2$ and $\operatorname{dim}_{C} R C=4$.

By [10, Theorem 2], each nonzero ideal of R and the right Utumi quotient ring U of R satisfy the same differential identities with coefficients in U. Thus the Main Theorem holds if the condition is imposed only for elements x_{1}, \ldots, x_{t} in a nonzero ideal of R. We begin the proof with a theorem on invariant subspaces in prime algebras. By a strongly primitive ring we mean a primitive ring with nonzero socle and with associated division ring which is a finitedimensional central division algebra. We denote by $\operatorname{soc}(R)$ the socle of R.

Theorem 1. Let R be a strongly primitive ring with extended centroid $C, R=R C$ and $1 \in R$. Suppose that M is a C-subspace of R such that $u M u^{-1} \subseteq M$ for all invertible elements $u \in R$. Then either $M \subseteq C$ or $[\operatorname{soc}(R), \operatorname{soc}(R)] \subseteq M$, except when char $R=2$ and $\operatorname{dim}_{C} R C=4$.

Proof. Suppose first that R contains no nontrivial idempotents. Then R is a division algebra algebraic over C. In view of Asano's theorem [1, Theorem 7] we have that either $M \subseteq C$ or $[R, R] \subseteq M$ as desired. Suppose next that R contains nontrivial idempotents. It follows from Chuang's theorem [2, Theorem 1] that either $M \subseteq C$ or $[I, R] \subseteq M$ for some nonzero ideal I of R, unless char $R=2$ and $\operatorname{dim}_{C} R C=4$. Since $\operatorname{soc}(R)$ is the smallest nonzero ideal of $R,[\operatorname{soc}(R), \operatorname{soc}(R)] \subseteq[I, R]$ in the latter case. This completes the proof.

The next result is a special case of the Main Theorem. For brevity we often denote $f\left(X_{1}, \ldots, X_{t}\right)$ and $f\left(x_{1}, \ldots, x_{t}\right)$ by $f\left(X_{i}\right)$ and $f\left(x_{i}\right)$ respectively.

For a derivation d of R, denote by $f^{d}\left(X_{1}, \ldots, X_{t}\right)$ the polynomial obtained from $f\left(X_{1}, \ldots, X_{t}\right)$ by replacing each coefficient α with $d(\alpha)$. Analogously, we often denote $f^{d}\left(X_{1}, \ldots, X_{t}\right)$ by $f^{d}\left(X_{i}\right)$. Denote by ad (u) the inner derivation induced by $u \in U$, that is, $\operatorname{ad}(u)(x)=[u, x]$ for all $x \in U$.

Theorem 2. Let R be a prime ring with extended centroid C and $f\left(X_{1}, \ldots\right.$, X_{t}) a polynomial over C which is not central-valued on $R C$. Suppose that d is a derivation of R such that $d\left(f\left(x_{i}\right)\right) f\left(x_{i}\right) \in C\left(\right.$ or $\left.f\left(x_{i}\right) d\left(f\left(x_{i}\right)\right) \in C\right)$ for all x_{1}, \ldots, x_{t} in R. Then $d=0$, except when char $R=2$ and $\operatorname{dim}_{C} R C=4$.

For clarifying its proof we introduce t polynomials associated with $f\left(X_{1}, \ldots\right.$, $\left.X_{t}\right)$ as given in [11]. Set $g_{i}\left(Y_{i}, X_{1}, \ldots, X_{t}\right)$ to be the sum of all possible monomials which are obtained from each monomial involving X_{i} of $f\left(X_{1}, \ldots, X_{t}\right)$ by replacing one of the X_{i} 's with Y_{i} for $1 \leq i \leq t$. For instance, if $f\left(X_{1}, X_{2}\right)=$ $X_{1}^{2} X_{2}+X_{2} X_{1}$, then $g_{1}\left(Y_{1}, X_{1}, X_{2}\right)=Y_{1} X_{1} X_{2}+X_{1} Y_{1} X_{2}+X_{2} Y_{1}$ and $g_{2}\left(Y_{2}, X_{1}\right.$, $\left.X_{2}\right)=X_{1}^{2} Y_{2}+Y_{2} X_{1}$. We remark that

$$
\begin{equation*}
\left[b, f\left(x_{1}, \ldots, x_{t}\right)\right]=\sum_{i=1}^{t} g_{i}\left(\left[b, x_{i}\right], x_{1}, \ldots, x_{t}\right) \tag{1}
\end{equation*}
$$

for all $b, x_{1}, \ldots, x_{t} \in U$. Also, each $g_{i}\left(Y_{i}, X_{1}, \ldots, X_{t}\right)$ is linear in Y_{i}.
Before giving the proof of Theorem 2, we first show a preliminary lemma.
Lemma 1. Let R be a prime ring with center Z, extended centroid C, L a noncentral Lie ideal of R and $a, b \in R, a \neq 0$. Suppose that $[b, L] a \subseteq$ $Z($ or $a[b, L] \subseteq Z)$. Then $b \in Z$ except when char $R=2$ and $\operatorname{dim}_{C} R C=4$.

Proof. We prove only the case when $[b, L] a \subseteq Z$. The proof for the other case is similar. Suppose that either char $R \neq 2$ or $\operatorname{dim}_{C} R C>4$. Set $I=R[L, L] R$. In view of $[7$, Lemma 7$],[L, L] \neq 0$ follows and so I is a nonzero ideal of R. Note that $[I, R] \subseteq L$. Thus $[b,[I, I]] a \subseteq Z$ and hence $[b,[R, R]] a \subseteq Z[3]$. If $[b,[R, R]] a=0$, then we are done by [9, Theorem 6$]$ and [5, Lemma 3]. We may assume henceforth that $0 \neq[b,[R, R]] a \subseteq Z$. Then $b \notin Z$ and $\left[\left[b,\left[X_{1}, X_{2}\right]\right] a, X_{3}\right]$ is a nontrivial GPI for R. It follows from Martindale's theorem [12] that $R C$ is a strongly primitive ring. By [3, Theorem $2], 0 \neq[b,[\operatorname{soc}(R C), \operatorname{soc}(R C)]] a \subseteq C$ and hence $\operatorname{soc}(R C)$ contains a nonzero central element and so $R C$ is a finite-dimensional central simple C-algebra. In particular, a is invertible in $R C$. Thus we have $[b,[R, R]] \subseteq C a^{-1}$. In particular, $[[b,[R, R]],[b,[R, R]]]=0$. Since $[R, R]$ is a noncentral Lie ideal of R, in view of $[9$, Theorem 3] and [5, Corollary] we obtain $b \in Z$, a contradiction. This proves the lemma.

Proof of Theorem 2. Suppose that either char $R \neq 2$ or $\operatorname{dim}_{C} R C>4$. The aim is to prove that $d=0$. Suppose on the contrary that $d \neq 0$. By symmetry we may assume that $d\left(f\left(x_{i}\right)\right) f\left(x_{i}\right) \in C$ for all $x_{i} \in R$. Expansion of it yields that

$$
\begin{equation*}
\left(f^{d}\left(x_{i}\right)+\sum_{j=1}^{t} g_{j}\left(d\left(x_{j}\right), x_{1}, \ldots, x_{t}\right)\right) f\left(x_{i}\right) \in C \tag{2}
\end{equation*}
$$

for all $x_{i} \in R$. Suppose first that d is not a Q-inner derivation. Applying Kharchenko's theorem [6] to (2) we have

$$
\begin{equation*}
\left(f^{d}\left(x_{i}\right)+\sum_{j=1}^{t} g_{j}\left(y_{j}, x_{1}, \ldots, x_{t}\right)\right) f\left(x_{i}\right) \in C \tag{3}
\end{equation*}
$$

for all $x_{i}, y_{i} \in R$. Setting $y_{i}=0$ for all i in (3) we obtain that $f^{d}\left(x_{i}\right) f\left(x_{i}\right) \in C$ and so

$$
\begin{equation*}
\left(\sum_{j=1}^{t} g_{j}\left(y_{j}, x_{1}, \ldots, x_{t}\right)\right) f\left(x_{i}\right) \in C \tag{4}
\end{equation*}
$$

for all $x_{i}, y_{i} \in R$. Let $u \in R$ and set $y_{i}=\left[u, x_{i}\right]$ in (4). By (1) we have $\left[u, f\left(x_{i}\right)\right] f\left(x_{i}\right) \in C$. By [3, Theorem 2], $\left[U, f\left(x_{i}\right)\right] f\left(x_{i}\right) \subseteq C$ for all $x_{i} \in U$. It follows from Lemma 1 that $f\left(X_{i}\right)$ is central-valued on U in this case, a contradiction.

Therefore we may assume that d is Q-inner, that is, $d=\operatorname{ad}(b)$ for some $b \in Q$, the two-sided Martindale quotient ring of R. Note that $b \notin C$ since $d \neq 0$. Now $\left[\left[b, f\left(X_{i}\right)\right] f\left(X_{i}\right), Y\right]$ is a nontrivial GPI for R and hence for $U[3$, Theorem 2]. By Martindale's theorem [12], U is a strongly primitive ring since U is a centrally closed prime C-algebra. Let $M=\left\{r \in U \mid\left[r, f\left(x_{i}\right)\right] f\left(x_{i}\right) \in\right.$ C for all $\left.x_{i} \in U\right\}$. Note that $b \in M$ and so $M \nsubseteq C$. Clearly, M is a C-subspace of U such that $u M u^{-1} \subseteq M$ for all invertible elements $u \in U$. Applying Theorem 1 we have that $[\operatorname{soc}(U), \operatorname{soc}(U)] \subseteq M$. By $[3$, Theorem 2] again, we have that

$$
\begin{equation*}
\left[\left[[X, Y], f\left(X_{i}\right)\right] f\left(X_{i}\right), X_{0}\right] \tag{5}
\end{equation*}
$$

is a PI for U. In view of Lemma $1, f\left(X_{i}\right)$ is central-valued on U and hence on $R C$, a contradiction. This completes the proof.

From now on, we always make the following assumptions:
Let R be a prime ring with extended centroid C and $f\left(X_{1}, \ldots, X_{t}\right)$ a nonzero polynomial over C which is not central-valued on $R C$. Suppose that
d and δ are two nonzero derivations of R such that

$$
\begin{equation*}
d\left(f\left(x_{1}, \ldots, x_{t}\right)\right) f\left(x_{1}, \ldots, x_{t}\right)-f\left(x_{1}, \ldots, x_{t}\right) \delta\left(f\left(x_{1}, \ldots, x_{t}\right)\right) \in C \tag{6}
\end{equation*}
$$

for all x_{1}, \ldots, x_{t} in R. Moreover, either char $R \neq 2$ or $\operatorname{dim}_{C} R C>4$.
If $\delta=-d$, by (6) we have $d\left(f\left(x_{i}\right)^{2}\right) \in C$ for all $x_{i} \in R$ and hence $f\left(X_{i}\right)^{2}$ central-valued on $R C$ [11, Lemma 5]. Thus we may assume further that $\delta \neq$ $-d$. The next lemma is to reduce δ and d to be Q-inner.

Lemma 2. $d=\operatorname{ad}(p)$ and $\delta=\operatorname{ad}(q)$ for some $p, q \in Q$.
Proof. Expanding (6) we have

$$
\begin{align*}
& \left(f^{d}\left(x_{i}\right)+\sum_{j=1}^{t} g_{j}\left(d\left(x_{j}\right), x_{1}, \ldots, x_{t}\right)\right) f\left(x_{i}\right) \\
& -f\left(x_{i}\right)\left(f^{\delta}\left(x_{i}\right)+\sum_{j=1}^{t} g_{j}\left(\delta\left(x_{j}\right), x_{1}, \ldots, x_{t}\right)\right) \in C \tag{7}
\end{align*}
$$

for all $x_{i} \in R$. Suppose first that d and δ are C-independent modulo Q-inner derivations. Applying Kharchenko's theorem [6] to (7) we have

$$
\begin{align*}
& \left(f^{d}\left(x_{i}\right)+\sum_{j=1}^{t} g_{j}\left(y_{j}, x_{1}, \ldots, x_{t}\right)\right) f\left(x_{i}\right) \\
& -f\left(x_{i}\right)\left(f^{\delta}\left(x_{i}\right)+\sum_{j=1}^{t} g_{j}\left(z_{j}, x_{1}, \ldots, x_{t}\right)\right) \in C \tag{8}
\end{align*}
$$

for all $x_{i}, y_{i}, z_{i} \in R$. Setting $y_{i}=0=z_{i}$ for all i in (8) we obtain $f^{d}\left(x_{i}\right) f\left(x_{i}\right)-$ $f\left(x_{i}\right) f^{\delta}\left(x_{i}\right) \in C$ and hence

$$
\begin{equation*}
\left(\sum_{j=1}^{t} g_{j}\left(y_{j}, x_{1}, \ldots, x_{t}\right)\right) f\left(x_{i}\right)-f\left(x_{i}\right)\left(\sum_{j=1}^{t} g_{j}\left(z_{j}, x_{1}, \ldots, x_{t}\right)\right) \in C \tag{9}
\end{equation*}
$$

for all $x_{i}, y_{i}, z_{i} \in R$. Let $u \in R$ and replacing y_{i}, z_{i} with $\left[u, x_{i}\right], 0$ respectively and then applying (1) we obtain $\left[u, f\left(x_{i}\right)\right] f\left(x_{i}\right) \in C$ for all $x_{i} \in R$ and hence for all $x_{i} \in U\left[3\right.$, Theorem 2]. It follows from Theorem 2 that $f\left(X_{i}\right)$ is centralvalued on $R C$, a contradiction.

Suppose next that d and δ are C-dependent modulo Q-inner derivations. By symmetry we may assume that $\delta=\beta d+\operatorname{ad}(b)$ for some $\beta \in C$ and $b \in Q$.

If d is Q-inner, then so is δ and hence we are done in this case. Therefore we assume d to be outer. In view of (7) we have

$$
\begin{align*}
& \left(f^{d}\left(x_{i}\right)+\sum_{j=1}^{t} g_{j}\left(d\left(x_{j}\right), x_{1}, \ldots, x_{t}\right)\right) f\left(x_{i}\right) \tag{10}\\
& -f\left(x_{i}\right)\left(\beta f^{d}\left(x_{i}\right)+\sum_{j=1}^{t} g_{j}\left(\beta d\left(x_{j}\right)+\left[b, x_{j}\right], x_{1}, \ldots, x_{t}\right)\right) \in C
\end{align*}
$$

for all $x_{i} \in R$. Applying Kharchenko's theorem [6] to (10) yields

$$
\begin{align*}
& \left(f^{d}\left(x_{i}\right)+\sum_{j=1}^{t} g_{j}\left(y_{j}, x_{1}, \ldots, x_{t}\right)\right) f\left(x_{i}\right) \tag{11}\\
& -f\left(x_{i}\right)\left(\beta f^{d}\left(x_{i}\right)+\sum_{j=1}^{t} g_{j}\left(\beta y_{j}+\left[b, x_{j}\right], x_{1}, \ldots, x_{t}\right)\right) \in C
\end{align*}
$$

for all $x_{i}, y_{i} \in R$. Setting $y_{i}=0$ in (11) and using (1) we have

$$
\begin{equation*}
f^{d}\left(x_{i}\right) f\left(x_{i}\right)-f\left(x_{i}\right)\left(\beta f^{d}\left(x_{i}\right)+\left[b, f\left(x_{i}\right)\right]\right) \in C \tag{12}
\end{equation*}
$$

for all $x_{i} \in R$. Since $g_{j}\left(Y_{j}, X_{1}, \ldots, X_{t}\right)$ is linear in Y_{j}, it follows from (11) and (12) that

$$
\begin{equation*}
\left(\sum_{j=1}^{t} g_{j}\left(y_{j}, x_{1}, \ldots, x_{t}\right)\right) f\left(x_{i}\right)-\beta f\left(x_{i}\right)\left(\sum_{j=1}^{t} g_{j}\left(y_{j}, x_{1}, \ldots, x_{t}\right)\right) \in C \tag{13}
\end{equation*}
$$

for all $x_{i}, y_{i} \in R$. Let $u \in R$ and replacing y_{j} with $\left[u, x_{j}\right]$ in (13) and using (1) we obtain

$$
\begin{equation*}
\left[u, f\left(x_{i}\right)\right] f\left(x_{i}\right)-\beta f\left(x_{i}\right)\left[u, f\left(x_{i}\right)\right] \in C \tag{14}
\end{equation*}
$$

for all $x_{i}, u \in R$. Thus R is a PI-ring and so $R C$ is a finite-dimensional central simple C-algebra by Posner's theorem for prime PI-rings. Suppose that $\operatorname{dim}_{C} R C=n^{2}$. Then $n \geq 2$. Note that $R C$ and $\mathrm{M}_{n}(C)$ satisfy the same PIs. Thus, in view of (14), $\left[Y, f\left(X_{i}\right)\right] f\left(X_{i}\right)-\beta f\left(X_{i}\right)\left[Y, f\left(X_{i}\right)\right]$ is central-valued on $\mathrm{M}_{n}(C)$. Let e be an arbitrary idempotent in $\mathrm{M}_{n}(C)$ and let $y, x_{i} \in \mathrm{M}_{n}(C)$. Then

$$
(1-e)\left(\left[e y(1-e), f\left(x_{i}\right)\right] f\left(x_{i}\right)-\beta f\left(x_{i}\right)\left[e y(1-e), f\left(x_{i}\right)\right]\right) e=0 .
$$

That is, $(\beta+1)(1-e) f\left(x_{i}\right) e y(1-e) f\left(x_{i}\right) e=0$. Suppose for the moment that $\beta \neq-1$. The primeness of R implies that $f\left(x_{i}\right) e=e f\left(x_{i}\right) e$. Analogously,
$e f\left(x_{i}\right)=e f\left(x_{i}\right) e$ and so $\left[f\left(x_{i}\right), e\right]=0$. However, $\mathrm{M}_{n}(C)$ is spanned by idempotents over C. Thus $f\left(x_{i}\right) \in C$. That is, $f\left(X_{i}\right)$ is central-valued on $\mathrm{M}_{n}(C)$ and hence on $R C$, a contradiction. So $\beta=-1$ follows. By (14) we have $\left[R, f\left(x_{i}\right)^{2}\right] \subseteq C$ for all $x_{i} \in R$, implying that $f\left(X_{i}\right)^{2}$ is central-valued on $R C$. Replacing δ with $-d+\operatorname{ad}(b)$ in (6), we see that $d\left(f\left(x_{i}\right)^{2}\right)-f\left(x_{i}\right)\left[b, f\left(x_{i}\right)\right] \in C$ and hence $f\left(x_{i}\right)\left[b, f\left(x_{i}\right)\right] \in C$ for all $x_{i} \in R$. In view of Theorem $2, b \in C$ follows and so $\delta=-d$, a contradiction. Thus δ and d are Q-inner. This completes the proof.

To continue our proof we define the following three sets, which are essential in the proof of the Main Theorem. Let

$$
\begin{gathered}
H=\left\{(a, b) \in U \times U \mid\left[a, f\left(x_{i}\right)\right] f\left(x_{i}\right)-f\left(x_{i}\right)\left[b, f\left(x_{i}\right)\right] \in C \text { for all } x_{i} \in U\right\}, \\
A=\{a \in U \mid(a, b) \in H \text { for some } b \in U\}
\end{gathered}
$$

and

$$
E=\{a+b \mid(a, b) \in H\} .
$$

By [3, Theorem 2], we may assume henceforth that $R=U$. In particular, R is a centrally closed prime C-algebra. Since $(p, q) \in H, p \notin C$ and $q \notin C, R$ satisfies the nontrivial GPI $\left[\left[p, f\left(X_{i}\right)\right] f\left(X_{i}\right)-f\left(X_{i}\right)\left[q, f\left(X_{i}\right)\right], Y\right]$. It follows from Martindale's theorem [12] that R is a strongly primitive ring.

Lemma 3. The Main Theorem holds if C is an infinite field.
Proof. Recall that $R=U$. In this case, R is a strongly primitive ring. Denote by D its associated division C-algebra and let $\operatorname{dim}_{C} D=m^{2}$ for some $m \geq 1$. Then $\operatorname{soc}(R)$ is a simple ring with nonzero minimal right ideals. By Litoff's theorem [4], each element $x \in \operatorname{soc}(R)$ is contained in some $e R e$ for some idempotent $e \in \operatorname{soc}(R)$. Note that $e R e \cong \mathrm{M}_{\ell}(D)$ where ℓ is the rank of e. Therefore x is algebraic over C.

Note that H is a C-subspace of $R \times R$. Let $(a, b) \in H, x \in \operatorname{soc}(R)$ and k the degree of the minimal polynomial of x over C. Since C is infinite, we can choose k distinct $\mu_{i}^{\prime} s \in C$ such that $\left(x+\mu_{i}\right)^{-1}$ exists for each i. Then the C-subspace generated by these $\left(x+\mu_{i}\right)^{-1}$'s coincides with the C-subalgebra of R generated by x and 1 . Now we have

$$
\begin{aligned}
& \left(\left(x+\mu_{i}\right) a\left(x+\mu_{i}\right)^{-1},\left(x+\mu_{i}\right) b\left(x+\mu_{i}\right)^{-1}\right)-(a, b) \\
= & \left([x, a]\left(x+\mu_{i}\right)^{-1},[x, b]\left(x+\mu_{i}\right)^{-1}\right) \in H .
\end{aligned}
$$

Choose $\lambda_{i} \in C, 1 \leq i \leq k$, such that $1=\sum_{i=1}^{k} \lambda_{i}\left(x+\mu_{i}\right)^{-1}$. Then

$$
([x, a],[x, b])=\sum_{i=1}^{k} \lambda_{i}\left([x, a]\left(x+\mu_{i}\right)^{-1},[x, b]\left(x+\mu_{i}\right)^{-1}\right) \in H .
$$

That is, $([a, x],[b, x]) \in H$ for all $x \in \operatorname{soc}(R)$. Let $x, y \in \operatorname{soc}(R)$. Then $([a, x],[b, x]) \in H$ and so

$$
\begin{equation*}
([[a, x], y],[[b, x], y]) \in H \tag{15}
\end{equation*}
$$

Note that $[a, x] \in \operatorname{soc}(R)$. Replacing y with $[a, x]$ in (15) yields that $(0,[[b, x],[a$, $x]]) \in H$. In view of Theorem 2 we see that $[[b, x],[a, x]] \in C$. In particular, $[[q, x],[p, x]] \in C$ for all $x \in \operatorname{soc}(R)$. By [8, Theorem 4], $q=\lambda p+\beta$ for some $\lambda, \beta \in C$, since either char $R \neq 2$ or $\operatorname{dim}_{C} R C>4$.

Replacing q with $\lambda p+\beta$ in (6) we see that

$$
\left[p, f\left(x_{i}\right)\right] f\left(x_{i}\right)-\lambda f\left(x_{i}\right)\left[p, f\left(x_{i}\right)\right] \in C
$$

for all $x_{i} \in R$. Consider the C-subspace of R :

$$
L=\left\{r \in R \mid\left[r, f\left(x_{i}\right)\right] f\left(x_{i}\right)-\lambda f\left(x_{i}\right)\left[r, f\left(x_{i}\right)\right] \in C \text { for all } x_{i} \in R\right\} .
$$

Since $p \in L \backslash C$ and $u L u^{-1} \subseteq L$ for all invertible elements $u \in R$, it follows from Theorem 1 that $[\operatorname{soc}(R), \operatorname{soc}(R)] \subseteq L$. An application of [3, Theorem 2] yields that

$$
\begin{equation*}
\left[\left[[X, Y], f\left(X_{i}\right)\right] f\left(X_{i}\right)-\lambda f\left(X_{i}\right)\left[[X, Y], f\left(X_{i}\right)\right], X_{0}\right] \tag{16}
\end{equation*}
$$

is a PI for R. By Posner's theorem for prime PI-rings, R is a finite-dimensional central simple C-algebra. Suppose that $\operatorname{dim}_{C} R=s^{2}$, where $s \geq 2$. Since R and $\mathrm{M}_{s}(C)$ satisfy the same PIs, it follows that (16) is also a PI for $\mathrm{M}_{s}(C)$. Let $x, x_{i} \in \mathrm{M}_{s}(C)$ and $e^{2}=e \in \mathrm{M}_{s}(C)$. Note that $e x(1-e)=[e, e x(1-e)]$. By (16), $0=(1-e)\left(\left[e x(1-e), f\left(x_{i}\right)\right] f\left(x_{i}\right)-\lambda f\left(x_{i}\right)\left[e x(1-e), f\left(x_{i}\right)\right]\right) e$ and hence $(1+\lambda)(1-e) f\left(x_{i}\right) e x(1-e) f\left(x_{i}\right) e=0$. If $\lambda=-1$, then $\delta=-d$, a contradiction. Thus $\lambda \neq-1$ and so $(1-e) f\left(x_{i}\right) e=0$ follows from the primeness of R. Analogously, $e f\left(x_{i}\right)(1-e)=0$. Therefore $\left[f\left(x_{i}\right), e\right]=0$, which implies that $f\left(X_{i}\right)$ is central-valued on $\mathrm{M}_{s}(C)$ and hence on R, a contradiction. This completes the proof.

Proof of the Main Theorem. By Lemma 3 we assume that C is a finite field. Since R is a noncommutative strongly primitive ring, R is not a division ring. Recall that we may assume $R=U$. Therefore R contains nontrivial idempotents. We claim that $C=\mathrm{GF}(2)$, the Galois field of two elements. Suppose on the contrary that C has more than two elements. Let $w \in R$ with $w^{2}=0,(a, b) \in H$ and let $\beta \in C \backslash\{0,1\}$. Then $((1+w) a(1-w),(1+w) b(1-$ $w))-(a, b) \in H$ and $((1+\beta w) a(1-\beta w),(1+\beta w) b(1-\beta w))-(a, b) \in H$. That is, $([a, w],[b, w])+(w a w, w b w) \in H$ and $([a, w],[b, w])+\beta(w a w, w b w) \in H$. These imply that $(w a w, w b w) \in H$. Recalling the definition of H we see that

$$
\left[w a w, f\left(x_{i}\right)\right] f\left(x_{i}\right)-f\left(x_{i}\right)\left[w b w, f\left(x_{i}\right)\right] \in C
$$

for all $x_{i} \in R$. Using $w^{2}=0$ to expand $w\left(\left[w a w, f\left(x_{i}\right)\right] f\left(x_{i}\right)-f\left(x_{i}\right)\left[w b w, f\left(x_{i}\right)\right]\right)$ w, we have $w f\left(x_{i}\right) w(a+b) w f\left(x_{i}\right) w=0$. That is, $w f\left(x_{i}\right) w E w f\left(x_{i}\right) w=0$. But E is a C-subspace of R invariant under inner automorphisms, it follows from Theorem 1 that either $E \subseteq C$ or $[\operatorname{soc}(R), \operatorname{soc}(R)] \subseteq E$. If the first case occurs, then $p+q \in C$ and so $\delta=-d$, a contradiction. Thus $[\operatorname{soc}(R), \operatorname{soc}(R)] \subseteq E$ and so $w f\left(x_{i}\right) w[\operatorname{soc}(R), \operatorname{soc}(R)] w f\left(x_{i}\right) w=0$, implying $w f\left(x_{i}\right) w=0$. In particular, let $w=e y(1-e)$ with $y \in R, 1 \neq e=e^{2} \in R$. Then $e y(1-e) f\left(x_{i}\right) e y(1-e)=0$, implying $(1-e) f\left(x_{i}\right) e=0$ [13, Lemma 2]. Similarly, ef $\left(x_{i}\right)(1-e)=0$. Thus $\left[f\left(x_{i}\right), e\right]=0$ and so $\left[f\left(x_{i}\right), W\right]=0$, where W denotes the additive subgroup of R generated by the idempotents of R. Note that W is a noncentral Lie ideal of R. Since either char $R \neq 2$ or $\operatorname{dim}_{C} R C>4$, in view of [7, Lemma 8] we have $f\left(x_{i}\right) \in Z$. This proves that $f\left(X_{i}\right)$ is central-valued on R, a contradiction. Now we have shown that $C=\operatorname{GF}(2)$.

The next is to show that $R \cong \mathrm{M}_{n}(C)$ for some $n \geq 3$. By the fact that C is finite, it is enough to prove that R is a PI-ring. Suppose on the contrary that R is not a PI-ring. Let m be the degree of $f\left(X_{i}\right)$. Then there exists an idempotent e in $\operatorname{soc}(R)$ with $\operatorname{rank}(e)>m$. Note that $[\operatorname{soc}(R), \operatorname{soc}(R)] \subseteq A$. Let $x, x_{i} \in R$. Then there exists $y \in R$, depending only on ($1-e$) xe $\in A$, such that $\left[(1-e) x e, f\left(e x_{i} e\right)\right] f\left(e x_{i} e\right)-f\left(e x_{i} e\right)\left[y, f\left(e x_{i} e\right)\right] \in C$ and so

$$
(1-e)\left(\left[(1-e) x e, f\left(e x_{i} e\right)\right] f\left(e x_{i} e\right)-f\left(e x_{i} e\right)\left[y, f\left(e x_{i} e\right)\right]\right) e=0
$$

That is, $(1-e) x f\left(e x_{i} e\right)^{2}=0$. It follows from the primeness of R and $e \neq 1$ that $f\left(e x_{i} e\right)^{2}=0$. Thus $f\left(X_{i}\right)^{2}$ is a PI for the simple Artinian C-algebra e Re and so $\operatorname{dim}_{C} e R e \leq m^{2}$ by the Kaplansky theorem for primitive PI-algebras. This is absurd as $\operatorname{dim}_{C} e R e=\operatorname{rank}(e)^{2}>m^{2}$. Up to now we have proved that $R \cong \mathrm{M}_{n}(\mathrm{GF}(2)), n \geq 3$.

We claim that $f\left(X_{1}, \ldots, X_{t}\right)^{2}$ is central-valued on R. Since $p \in A \backslash C$, it follows from Theorem 1 that $[R, R] \subseteq A$. In particular, $e_{12} \in A$. Thus $\left(e_{12}, b\right) \in H$ for some $b \in R$. Note that $b \notin C$ by Theorem 2. Let $C_{R}\left(e_{12}\right)$ denote the centralizer of e_{12} in R, namely $C_{R}\left(e_{12}\right)=\left\{x \in R \mid\left[x, e_{12}\right]=0\right\}$. Let $u \in C_{R}\left(e_{12}\right)$ be such that $1+u$ is invertible in R and $\operatorname{rank}(u)=1$. Then $\left((1+u) e_{12}(1+u)^{-1},(1+u) b(1+u)^{-1}\right) \in H$, that is, $\left(e_{12},(1+u) b(1+u)^{-1}\right) \in H$ and hence

$$
\left(0,[b, u](1+u)^{-1}\right)=\left(e_{12}, b\right)+\left(e_{12},(1+u) b(1+u)^{-1}\right) \in H .
$$

By Theorem 2, this implies that $[b, u](1+u)^{-1} \in C$ and so $[b, u]=0$ since $\operatorname{rank}\left([b, u](1+u)^{-1}\right) \leq 2$.

Taking $u=e_{1 j}$ with $j \geq 2$ or $u=e_{k 2}$ with $k \geq 3$, we see that b commutes with these $e_{1 j}$ and $e_{k 2}$. By a direct computation we see that $b \in C+C e_{12}$ and hence $b=e_{12}+\mu$ for some $\mu \in C$, since $b \notin C$ and $C=\mathrm{GF}(2)$. Thus
$\left(e_{12}, e_{12}\right) \in H$. By Theorem L, this proves that $f\left(X_{1}, \ldots, X_{t}\right)^{2}$ is centralvalued on R.

Now $f\left(X_{1}, \ldots, X_{t}\right)^{2}$ is central-valued on R, so $\left[p, f\left(x_{1}, \ldots, x_{t}\right)\right] f\left(x_{1}, \ldots, x_{t}\right)$ $+f\left(x_{1}, \ldots, x_{t}\right)\left[p, f\left(x_{1}, \ldots, x_{t}\right)\right]=\left[p, f\left(x_{1}, \ldots, x_{t}\right)^{2}\right]=0$ for all $x_{i} \in R$. Thus $(p, p) \in H$. On the other hand, $(p, q) \in H$, so $(0, p-q) \in H$. By Theorem 2, we have $p+q=p-q \in C$, that is, $\delta=-d$, a contradiction. This completes the proof of the Main Theorem.

Acknowledgement

The authors are grateful to Professor P.-H. Lee for pointing out some errors and for useful comments to simplify the proof of the Main Theorem.

References

1. S. Asano, On invariant subspaces of division algebras, Kodai Math. J. 18 (1966), 322-334.
2. C. L. Chuang, On invariant additive subgroups, Israel J. Math. 57 (1987), 116-128.
3. C. L. Chuang, GPIs having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc. 103 (1988), 723-728.
4. C. Faith and Y. Utumi, On a new proof of Litoff's theorem, Acta Math. Acad. Sci. Hungar. 14 (1963), 369-371.
5. W. F. Ke, On derivations of prime rings of characteristic 2, Chinese J. Math. 13 (1985), 273-290.
6. V. K. Kharchenko, Differential identities of semiprime rings, Algebra and Logic 18 (1979), 86-119.
7. C. Lanski and S. Montgomery, Lie structure of prime rings of characteristic 2, Pacific J. Math. 42 (1972), 117-136.
8. C. Lanski, Differential identities of prime rings, Kharchenko's theorem, and applications, Contemp. Math. 124 (1992), 111-128.
9. P.-H. Lee and T. K. Lee, Lie ideals of prime rings with derivations, Bull. Inst. Math. Acad. Sinica 11 (1983), 75-80.
10. T. K. Lee, Semiprime rings with differential identities, Bull. Inst. Math. Acad. Sinica 20 (1992), 27-38.
11. T. K. Lee, Derivations with Engel conditins on polynomials, Algebra Colloq. 5 (1998), to appear.
12. W. S. Martindale, III, Prime rings satisfying a generalized polynomial identity, J. Algebra 12 (1969), 576-584.
13. E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093-1100.
14. T. L. Wong, Derivations cocentralizing multilinear polynomials, Taiwanese J. Math. 1 (1997), 31-37.

Department of Mathematics, National Taiwan University
Taipei 107, Taiwan
E-mail: tklee@math.ntu.edu.tw
E-mail: wkxue@math.ntu.edu.tw

