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CONTINUITY AND BOUNDEDNESS FOR
OPERATOR-VALUED MATRIX MAPPINGS

Wu Junde, Li Ronglu, and Charles Swartz

Abstract. Let E(X) and F (Y ) be vector-valued sequence spaces and
A be an operator-valued infinite matrix which maps E(X) into F (Y ).
In this paper, we establish the continuity and boundedness results for
matrix A which generalize the scalar results.

Let X,Y be Hausdorff topological vector spaces (TVS) and L(X,Y ) be
the space of all continuous linear operators from X into Y . Let S(X) be the
vector space of all X-valued sequences, where the operations of addition and
scalar multiplication are coordinatewise. Let E(X) be a topological vector
space which is a subspace of S(X). If x ∈ E(X), the kth coordinate of x will
be denoted by xk, i.e., x = (xk), and the coordinate function x 7→ xk will be
denoted by Qk. We call E(X) a K(X)-space if each Qk is continuous; if X is
the scalar field and the coordinate functionals are continuous, E(X) is called
a K-space.

If x ∈ X and ej is the scalar sequence with 1 in the jth coordinate and
0 elsewhere, we write ej ⊗ x for the X-valued sequence with x in the jth
coordinate and 0 elsewhere. Let c00(X) be the linear span of {ej ⊗ x : j ∈
N, x ∈ X} in S(X), i.e., c00(X) is the subspace of all X-valued sequences with
only a finite number of non-zero coordinates. For each n, let Pn be the section
map E(X) → E(X) which sends x = (x1, x2, . . .) to (x1, x2, . . . , xn, 0, . . .). If
X is the scalar field and E(X) is a K(X)-space, then it is easily seen that
each section map Pn is continuous.

Let E(X)βY be the space of all sequences T = (Tk) ⊆ L(X,Y ) such that

the series
∞∑
k=1

Tkxk converges in Y for all x = (xk) ∈ E(X). We write T · x =
∞∑
k=1

Tkxk when T ∈ E(X)βY , x ∈ E(X). If X and Y are the scalar fields, we
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write E(X) = E and E(X)βY = Eβ. If E ⊇ c00, E and Eβ are in duality
with respect to the bilinear pairing y · x, y ∈ Eβ, x ∈ E. We denote the
weak (strong) topology on E from this pairing by σ(E,Eβ)(β(E,Eβ)); similar
notation is used for the weak (strong) topology on Eβ.

Let A = [Aij] be an infinite matrix with Aij ∈ L(X,Y ). We say that the

matrix A maps E(X) into F (Y ) if
∞∑
j=1

Aijxj converges for each i ∈ N, x ∈

E(X), and Ax =
( ∞∑
j=1

Aijxj
)
∈ F (Y ). We write M(E(X), F (Y )) for the vec-

tor space of all matrices which map E(X) into F (Y ). If A ∈M(E(X), F (Y )),
then Ai = (Ai1, Ai2, . . . , Aij, . . .) ∈ E(X)βY .

The classical Hellinger-Toeplitz Theorem asserts that a matrix which maps
l2 into l2 is (norm) continuous. The result was extended to normal sequence
spaces by Köthe and Toeplitz ([3], 30.7. (7), [4]) and to FK-spaces by Zeller
[15]. Zeller’s result was extended to vector-valued FK-spaces where the se-
quences have values in a Frechet space by Baric [1]. Recently, Swartz [12]
established several continuity and boundedness results for matrix mappings
between real-valued sequence spaces which serve as a complement to the re-
sults of Köthe, Toeplitz and Zeller. In this note, we consider continuity and
boundedness conditions for operator-valued matrix mappings between vector-
valued sequence spaces. Our vector results give generalizations of scalar results
of Swartz [12].

If i, j ∈ N with i ≤ j, let [i, j] = {k ∈ N : i ≤ k ≤ j} be the interval
in N induced by i and j. If {Ij} is a sequence of intervals in N with max
Ij < min Ij+1 for all j, we call {Ij} an increasing sequence of intervals. If
∆ ⊆ N, let C∆ be the characteristic function of ∆, and if x ∈ E(X), let C∆x
be the pointwise product of C∆ and x. Following ([5-6, 12]), E(X) is said to
have the zero Gliding Hump Property (0-GHP) if whenever xk → 0 in E(X)
and {Ik} is an increasing sequence of intervals, there exists a subsequence {pk}
such that z =

∞∑
k=1

CIpk x
pk ∈ E(X), where the sum of the series is understood

to be pointwise. There are many sequence spaces with 0-GHP. For example,
lp(0 < p ≤ ∞), s, c and c0 have 0-GHP. Likewise, any FK-AB space has
0-GHP. Klis’s example of a dense subspace of l2 furnishes an example of a
sequence space with 0-GHP which is not complete. (l1, σ(l1, l∞)) furnishes an
example of a non-barrelled space with 0-GHP ([12-13]).

The example below shows that there are xk → 0 in E(X) and an increasing
sequence of intervals {Ik} such that {CIkxk} is not bounded in E(X).

Example 1. Let E = c00 with the topology defined by the semi-norms as
follows:
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pi(x) = |xi|(i = 1, 2, . . .) and q(x) =
∞∑
i=1

|x2i − x2i−1|.

Pick xk = (1, 1, 2, 2, . . . , k, k, 0, 0, . . .) and Ik = {2k}. Then
xk√
k
→ 0 in E, but

q
(
CIk

xk√
k

)
=
√
k →∞. So

{
CIk

xk√
k

}
is not bounded in E(X).

It follows from Example 1 that the strong Gliding Hump Property (SGHP)
in Theorem 1 and its Corollaries in [11] should be replaced by 0-GHP for the
vector version. In fact, we can establish a much stronger result for spaces with
0-GHP.

Theorem 2. Let T ∈ E(X)βY and assume that E(X) has 0-GHP. If

xi → 0 in E(X), then
∞∑
k=1

Tkx
i
k converges uniformly with respect to i ∈ N.

Proof. If not, there are a neighbourhood U of 0 in Y and two integer
sequences n1 ≤ m1 < n2 ≤ m2 < n3 ≤ m3 < · · · and i1 < i2 < · · · such that

ml∑
k=nl

Tkx
il
k 6∈ U, l = 1, 2, . . . .(1)

Let Il = {k|k ∈ N : nl ≤ k ≤ ml}. Then T · CIlxil 6∈ U, l = 1, 2, . . . . Since

E(X) has 0-GHP, there exists a subsequence {lk} such that
∞∑
k=1

CIlkx
ilk ∈

E(X). Thus we have T · CIlkx
ilk → 0. This contradicts (1).

Let E(X) = S(X) and S(X) take the product topology XN = X × X ×
X · · · . Then S(X) has 0-GHP. From Theorem 2 it follows that for each T ∈
S(X)βY and xi → 0 in S(X), the series

∞∑
k=1

Tkx
i
k converges uniformly with

respect to i ∈ N. In fact, we can show that
∞∑
k=1

Tkxk converges uniformly with

respect to all x = (xk) ∈ S(X) ([7], Th. 1).

Corollary 3. Let X and E be Hausdaff topological vector spaces and E
be a scalar sequence space which has 0-GHP, for example, E = lp(0 < p ≤
∞), c0, c. Let {yk} ⊆ X. If for each x = (xk) ∈ E, the series

∞∑
k=1

xkyk is

convergent, then for each xi → 0 in E, the series
∞∑
k=1

xikyk converges uniformly

with respect to i ∈ N.
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Rolewicz ([10], III. 8) called a series
∞∑
i=1

xi in a metric linear space Z a

C-series if the series
∞∑
i=1

tixi converges in Z for each {ti} ∈ c0. These series

have been studied in detail in the case of normed spaces and it is known that
a Banach space has the property that every C-series is (subseries) convergent
if and only if the space contains no subspace (topologically) isomorphic to
c0 ([2]). For sequentially complete locally convex spaces, Li Ronglu and Bu
Qingying proved that the conclusion is also true and, indeed, much more holds
([7], Th. 4).

Corollary 4. Let T ∈ E(X)βY and assume that E(X) is a K(X)-space
with 0-GHP. If xi → 0 in E(X), then T · xi → 0 in Y , i.e., T is sequentially
continuous.

Proof. For each neighbourhood U of 0 in Y , there exists a neighbourhood
V of 0 in Y such that V + V ⊆ U . By Theorem 2, there exists n0 ∈ N

such that
∞∑

k=n0+1
Tkx

i
k ∈ V holds for all i ∈ N. Since E(X) is a K(X)-space

and Tk ∈ L(X,Y ), so there exists i0 ∈ N such that whenever i ≥ i0 we

have
n0∑
k=1

Tkx
i
k ∈ V . It follows that whenever i ≥ i0 we have

∞∑
k=1

Tkx
i
k =

n0∑
k=1

Tkx
i
k +

∞∑
k=n0+1

Tkx
i
k ∈ V + V ⊆ U, i.e., T is sequentially continuous.

Now, we study the continuity and boundedness for operator-valued matrix
mappings. Our proofs need a theorem on infinite matrices due to Antosik and
Mikusinski. We state this result for the convenience of the reader.

Theorem 5. Let G be a Hausdorff topological vector space and xij ∈ G
for i, j ∈ N. If
( I ) limi xij = xj exists for each j and

(II) every increasing sequence of positive integers {mj} has a subsequence

{nj} such that the sequence
{ ∞∑
j=1

xinj

}
i

converges,

then limi xij = xj uniformly for j ∈ N. In particular, limi xii = 0.

Theorem 5 has a great number of applications in functional analysis and
measure theory ([9], [13-14]). For its proof, see ([8]). A matrix satisfying
conditions (I) and (II) is called a K-matrix.

Let X,Y ∈ TV S. We will say that the pair (X,Y ) has the weak Banach-
Steinhaus Property if {Tk} ⊆ L(X,Y ) and limk Tkx = Tx for each x ∈ X
imply that T ∈ L(X,Y ). For example, if X is an F-space or if X is a barrelled
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locally convex space and Y is a locally convex space, then (X,Y ) has the weak
Banach-Steinhaus Property ([13]).

We say that the pair (X,Y ) has the Uniform Boundedness (UB) if each
pointwise bounded family Γ of L(X,Y ) is uniformly bounded on any bounded
subset of X. For example, if X is an A-space or X is barrelled and Y is a
locally convex space, then (X,Y ) has the UB ([13]).

Theorem 6. Let E(X) ⊇ c00(X) be a K(X)-space with 0-GHP and (X,Y )
have the weak Banach-Steinhaus Property. If A = [Aij] ∈ M(E(X), F (Y )),
then for each xk → 0 in E(X) and each T ∈ F (Y )βY , we have

T ·Axk → 0 in Y.

Proof. If not, there exist a neighbourhood U of 0 in Y , xk → 0 in E(X)
and T ∈ F (Y )βY such that

T ·Axk 6∈ U for each k ∈ N.(2)

Take a neighbourhood V of 0 in Y such that V +V ⊆ U . Let k1 = 1. We pick
m1 and n1 such that

m1∑
i=1

Ti

n1∑
j=1

Aijx
k1
j 6∈ U.

Since E(X) ⊇ c00(X), so for each j and x, ej⊗x ∈ E(X) and hence, (Aijx)i ∈
F (Y ). Note that T = (T1, T2, . . . , Ti, . . .) ∈ F (Y )βY . It follows that the series
∞∑
i=1

TiAijx is convergent. Since TiAij ∈ L(X,Y ) and (X,Y ) has the weak

Banach-Steinhaus Property, it follows that
∞∑
i=1

TiAij ∈ L(X,Y ) for each j ∈ N.

So we have
∞∑
i=1

Ti
n1∑
j=1

Aijx
k
j =

n1∑
j=1

( ∞∑
i=1

TiAij
)
xkj → 0. Therefore, there exists

k2 > k1 such that

T ·APn1x
k2 ∈ V.(3)

From (2) and (3), T · A(xk2 − Pn1x
k2) 6∈ V . Pick m2 > m1 and n2 > n1 such

that
m2∑
i=1

Ti

n2∑
j=n1+1

Aijx
k2
j 6∈ V.

Continuing this construction produces increasing sequences {kp}, {mp} and
{np} such that

mp∑
i=1

Ti

np∑
j=np−1+1

Aijx
kp
j 6∈ V.
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Let Ip = {j ∈ N : np−1 < j ≤ np}. Then {Ip} is an increasing sequence of
intervals such that

mp∑
i=1

Ti
∑
j∈Ip

Aijx
kp
j 6∈ V.(4)

Consider the matrix M = [mpq] =
[mp∑
i=1

Ti
∑
j∈Iq

Aijx
kq
j

]
. Since ACIqx

kq =( ∑
j∈Iq

Aijx
kq
j

)
i
∈ F (Y ), so

mp∑
i=1

Ti
∑
j∈Iq

Aijx
kq
j → T · ACIqxkq(p→∞). Given any

increasing sequence {rq}, by 0-GHP, there exists a subsequence {sq} of {rq}

such that x̃ =
∞∑
q=1

CIsqx
ksq ∈ E(X). Therefore, limp

mp∑
i=1

Ti
∞∑
q=1

∑
j∈Isq

Aijx
ksq
j =

limp

mp∑
i=1

TiPmpAx̃ = T ·Ax̃. Hence, M is a K-matrix, by Theorem 5, limpmpp =

limp

mp∑
i=1

Ti
∑
j∈Ip

Aijx
kp
j = 0. This contradicts (4).

Corollary 7 ([12], Th. 4). Let E,F be scalar sequence spaces and
(E, τ) ⊇ c00 be a K-space with 0-GHP. If A ∈M(E,F ), then A is τ−σ(F, F β)
sequentially continuous.

Recall that E(X) is said to be an AK space, if for each x ∈ E(X) we have
Pnx→ x in E(X).

Corollary 8. If E(X) ⊇ c00(X) is an AK space with 0-GHP, (X,Y ) has
the weak Banach-Steinhaus Property and A = [Aij] ∈ M(E(X), F (Y )), then

for each T = (Ti) ∈ F (Y )βY and x = (xj) ∈ E(X), we have
( ∞∑
i=1

TiAij
)
∈

E(X)βY and
∞∑
i=1

∞∑
j=1

TiAijxj =
∞∑
j=1

∞∑
i=1

TiAijxj.

Proof. From the weak Banach-Steinhaus Property and E(X) ⊇ c00(X),
we infer that for each j ∈ N, there exists Cj ∈ L(X,Y ) such that for each

x0 ∈ X we have
∞∑
i=1

TiAij x0 = Cjx0. Now, we show that (Cj) ∈ E(X)βY and

∞∑
i=1

∞∑
j=1

TiAijxj =
∞∑
j=1

∞∑
i=1

TiAijxj =
∞∑
j=1

Cjxj.
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In fact, since E(X) is an AK space, so Pnx→ x in E(X). Note that

limn

n∑
j=1

Cjxj = lim
n

n∑
j=1

∞∑
i=1

TiAijxj

= limn

∞∑
i=1

n∑
j=1

TiAijxj = lim
n

∞∑
i=1

Ti

n∑
j=1

Aijxj

= limn T ·APnx = T ·Ax

(Theorem 6). So (Cj) ∈ E(X)βY and

∞∑
i=1

∞∑
j=1

TiAijxj =
∞∑
j=1

∞∑
i=1

TiAijxj =
∞∑
j=1

Cjxj.

We say that the subset D of F (Y )βY is σ(F (Y )βY , F (Y )) bounded if for

each y = (yj) ∈ F (Y ),
{ ∞∑
j=1

Tjyj|(Tj) ∈ D
}

is a bounded subset of Y .

Theorem 9. Let E(X) ⊇ c00(X) be a K(X)-space with 0-GHP and
suppose that the section projections Pn : F (Y )βY → F (Y )βY are uniformly
bounded on σ(F (Y )βY , F (Y )) bounded sets with respect to σ(F (Y )βY , F (Y )).
If (X,Y ) has the weak Banach -Steinhaus Property and the Uniform Bound-
edness and A = [Aij] ∈ M(E(X), F (Y )), then for each bounded subset C of
E(X) and each bounded subset B of (F (Y )βY , σ(F (Y )βY , F (Y ))), {T · Ax :
x ∈ C, T ∈ B} is a bounded subset of Y .

Proof. If not, there exist a neighbourhood U of 0 in Y , a bounded subset
C of E(X) and {xk} ⊆ C, xk → 0, {T k} ⊆ B and tk > 0, tk → 0 such that

tkT
k ·Axk 6∈ U for all k ∈ N.(5)

Take a neighbourhood V of 0 in Y such that V + V ⊆ U . Set k1 = 1 and pick

m1, n1 such that tk1

m1∑
i=1

T k1
i

n1∑
j=1

Aijx
k1
j 6∈ U . Since (X,Y ) has the weak Banach-

Steinhaus Property and Uniform Boundedness and {T k} is σ(F (Y )βY , F (Y ))

bounded, so
{ ∞∑
i=1

T ki
n1∑
j=1

Aijx
k
j

}
=
{ n1∑
j=1

∞∑
i=1

T ki Aijx
k
j

}
is a bounded subset of Y .

Therefore, limk tk
∞∑
i=1

T ki
n1∑
j=1

Aijx
k
j = 0. It follows that there exists k2 > k1

such that tk2T
k2 · APn1x

k2 ∈ V . Hence, tk2T
k2 · A(xk2 − Pn1x

k2) 6∈ V . Pick
m2 > m1, n2 > n1 such that

tk2

m2∑
i=1

T k2
i

n2∑
j=n1+1

Aijx
k2
j 6∈ V.
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Continuing this construction produces increasing sequences {kp}, {mp} and
{np} such that

tkp

mp∑
i=1

T
kp
i

np∑
j=np−1+1

Aijx
kp
j 6∈ V for all p ∈ N.(6)

Let Ip = {j ∈ N|np−1 < j ≤ np}. Then {Ip} is an increasing sequence of
intervals such that

tkp

mp∑
i=1

T
kp
i

∑
j∈Ip

Aijx
kp
j 6∈ V.

Denote M1 = [mpq] =
[
tkp

mp∑
i=1

T
kp
i

∑
j∈Iq

Aijx
kq
j

]
. From the fact that the section

projections Pn : F (Y )βY → F (Y )βY , uniformly bounded on σ(F (Y )βY , F (Y ))
bounded sets with respect to σ(F (Y )βY , F (Y )), Uniform Boundedness and
E(X) with 0-GHP, it is not difficult to know that M1 is a K-matrix. From

Theorem 5 it follows that limpmpp = limp tkp
mp∑
i=1

T
kp
i

∑
j∈Ip

Aijx
kp
j = 0. This

contradicts (6).

Corollary 10 ([12], Th. 10). Let (E, τ) ⊇ c00 and F be scalar sequence
spaces and E with the 0-GHP. Suppose that the section projections Pn : F β →
F β are uniformly bounded on σ(F β, F ) bounded sets with respect to σ(F β, F ).
Then A ∈M(E,F ) is τ -β(F, F β) bounded.
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