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MATRICES AND QUADRATURE RULES FOR WAVELETS

W. C. Shann and C. C. Yen

Abstract. Using the scaling equations, quadratures involving polynomi-
als and scaling (or wavelet) functions can be evaluated by linear algebraic
equations (which are theoretically exact) instead of numerical approxi-
mations. We study two matrices which are derived from these kinds of
quadratures. These particular matrices are also seen in the literature of
wavelets for other purposes.

1. INTRODUCTION

In one way or another, matrices appear in almost every category of numer-
ical problem. Accordingly we have studied matrices in general or in various
particular patterns. It is not surprising that new kinds of matrices are de-
veloped when we need numerical results from the applications of wavelets or
scaling functions. In this case, the scaling equation

(1.1) ¢(x) =) cxd(2x — k)

plays a key role. A numerical problem is typically converted to linear systems
of equations involving the scaling coefficients ¢,. For instance, evaluation of
¢(x) at integers becomes an eigenproblem and Mallat’s pyramid algorithm
can be written as a sequence of matrix-vector multiplications. See the review
article of Strang [17].

Because of their similarities with Fourier bases and finite element bases,
wavelets are studied as a tool in scientific computation and numerical solution
of differential equations. See for instance [1,4,8,9,14,19]. In these applica-
tions, one of the fundamental computing steps is the numerical quadrature of
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the forms [ f(z)¢(z)dx or [ f(x)p(x)p(x — k)dx. The quadratures are as-
sumed to be on the whole real line R if we do not specify the limits. When
non-periodic boundary conditions are assumed, the foregoing quadratures may
be limited on a bounded interval; then we shall write fab instead of [. Since
the derivatives of ¢ also satisfy (other) scaling equations, the techniques de-
rived for the quadratures about ¢ can be carried to the quadratures about the
derivatives of ¢.

Since the scaling function ¢(x) and the associated wavelet 1)(x) have the
linear relation

(1.2) ble) = 3 (~1)fer 420 - k),
k
we usually only have to deal with the quadratures involving ¢(x).
We will introduce more properties of scaling coefficients and wavelets in
Section 2.
Numerical quadrature rules of the form

[ s@ote) e = 3@

are usually based on the fact that f(z) can be interpolated by polynomials;
the approximation error can be estimated if f is smooth enough. For in-
stance, see the “multi-point rules” derived by Beylkin, Coifman and Rokhlin
[2] and Sweldens and Piessens [18]. Therefore, it is fundamental to evaluate
the quadratures where f(z) is a polynomial.

Let us define

M}, , = /x’"(b(:c —k)dz.

Here p is the order of the wavelet. That is, polynomials ™ of degree m,
0 <m < p—1, can be spanned by ¢(z — k) in any closed interval. By the
change of variables and binomial expansion, we see that the core elements are
[2™p(x) dx. Tt is now well-known that they can be evaluated recursively by

(1.3) /:L”"gb(m) de = 2(2:_1) Xk:cké (?) k! /xm_lgb(m) dz.

This recursion relation starts from [ ¢(x)dx = 1.
In Section 3 we will demonstrate how the quadratures

(1.4) / " () da
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are related to linear systems of equations. We will also show that this family
of matrices has a uniform upper bound for their ¢?-norms. That is, the upper
bound of the norms do not change with the order of wavelets p.

Beylkin [3] showed that the values of [ ¢'(z)¢(z — k) dz consist of normal-
ized eigenvectors of a certain matrix. Dahmen and Micchelli [5] have general
theorems which guarantee that quadratures of the form

[ 6 @0 — k) 0 @~ k) do

always associate with eigenproblems and that there are unique solutions, pro-
vided appropriate assumptions. In Section 4 we will show that the quadratures

(1.5) /xm¢(x)¢(a: —k)dx

are also associated with linear systems of equations. The associated matrices
also have a uniform bound in their £2>-norms.

2. SCALING COEFFICIENTS AND WAVELETS

Wavelets in this article are those discovered by Daubechies [6], which have
compact supports and form an orthonormal basis of L?(R). In this case, the
wavelet ¢(z) is derived from a scaling function ¢(x) which satisfies the scaling
equation (1.1).

The coefficients ¢, were computed by constructing a certain trigonometric

1

polynomial mg(§) = 5 Y- cpe**¢; see Daubechies’ “Ten Lectures” [7]. However,

Strang [17] pointed out that ¢, can also be solved by the following relations:

(2.1) =0 for k¢{0,1,...,2p—1},

(22) ch -2 = 0,

(2.3) S (1) k" =0 for0<m<p-1 (0":=1),
k
and
(24) Z CrCl—om — 260m =0.
k

We shall need the relations (2.2) and (2.4) later.
Here, p is a given positive integer. We shall call, respectively, such de-
fined ¢, ¢ and v the scaling coefficients, scaling functions, and wavelets of
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order p. This parameter p plays several roles in the theory of wavelets. What
we need to know here is that supp ¢ = [0,2p — 1], and if ¢(x) is a wavelet of
order p, then [2™¢ (z)dz =0 for 0 <m <p—1.

Note that, by (2.1), there are 2p unknowns of ¢,. They are to be determined
by the system of equations in (2.2)—(2.4). It is clear that (2.2) and (2.3)
contribute p + 1 equations. Actually, (2.4) contributes exactly p — 1 equations
to the system, namely, 1 < m < p — 1. It can be seen as in the following.
The situations for m > p and m < —p are consequences from (2.1); those for
1—p <m < —1 are dual to the cases of 1 < m < p—1; the case of m = 0 can
be derived from (2.2), the m = 0 case of (2.3), and the m # 0 part of (2.4).
Therefore, there are exactly 2p equations with 2p unknowns.

Numerical values of ¢, for 2 < p < 10 are listed in a table [7, p. 195] with
16 digits*. Those with slightly higher precision, in which 2 < p < 14, can be
found in [16].

In designing the algorithms for wavelet computation, it is a general strategy
to reduce the computation to the manipulation of ¢;. Thus the accuracy of ¢,
heavily determines the accuracy of these algorithms.

3. INTEGRALS ON HALF LINES

For one-dimensional boundary value problems, the domain of interest is
usually a bounded interval. In this situation, quadratures like fab q(z)p(27z —
k) dx will appear in order. In practice, one can rescale the problem and only
use those wavelets and scaling functions in such fine scales that in the support
of each ¢(27x —k) (or (272 —k)) there lies at most one boundary point. Since
the situations are analogous at either boundary, we now suppose x = 0 is the
left boundary point and consider the quadratures on [0, 00).

After changing variables, the core formulae for these kinds of quadratures
are

Ny o :/ 2" p(x — k) dx.
0

For the translation parameters k& < 1 — 2p, the quadratures are zero. For
k > 0, quadratures over [0, 00) is the same as over R. Thus N}, , = My, ,. We
now concentrate on the cases where 2 — 2p < k < —1.

We start from (1.1) with a change of variable:

(3.1) /ooo " p(x — k) dx = 2ml+1 > /ooo 2" p(x — (2k + 1)) da.

If 1 —p <k < —1, over half of the support of ¢(x — k) is still inside of [0, c0).
Then the supports of ¢(z — (2k+1)), for —2k <[ < 2p—1, actually lie entirely

* Th [7], equation (2.2) is replaced by >_ ¢, = v/2. Here we follow the notation in [17].



Matrices and Quadrature Rules for Wavelets 439

in [0, 00). Over all, we have

1
Ny = W[ Z N, op + Z CZMSL,QIC-H}'

I<—2k 1>—2k

Suppose the part of [ > —2k is known. Then we have a linear system in N, ,.

Given a p > 2 (p = 1 is trivial) and a fixed m > 0, we have unknowns N}, ,
for 2 —2p <k < —1. Now let

Lk = NTI:L,—kI’
o= k=1,2,...,2p—2.
bk = ot Z cle,lf2k7

=2k

Let b = (b,)!, and A = (ay) be the matrix of order 2p — 2 such that
ay = ¢ap_1- Then, ¥ = (x;)" is the solution of the system

1
(I— 2m+1A> x =0b.

Note that A is independent of m and it is a finite submatrix of the low
pass filter matrix L defined in [17], in which it is also shown that A has an
eigenvalue A = 1 with an associated eigenvector (¢(1),$(2),...,¢(2p — 2))".
In the following we claim another property for A.

Proposition 1. Let A = A(p) be the matriz defined above, and || - || be
the matriz norm induced by the Fuclidean norm. We have

IA] < V2.

Proof. Note that A = (;), where
C1 Co 0 Cop—1 Cap—2 tet C2
S = and T =
Cop—3 Cop—a -+ Cp 0 Cop—1 Cop—2

The dimensions of S and T are both (p—1)x (2p—2). By (2.4), ST* = TS* = 0.
Thus

AAt:(SSt 0 >

0 TT!

Also by (2.4), we have SS* + TT* = 2. Thus if X is an eigenvalue of SS*
with an associated eigenvector v, then A and 2 — \ are eigenvalues of AA* with
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associated eigenvectors (;) and (), respectively. Since AA* is symmetric and
positive semi-definite, we have 0 < \ < 2. Therefore
|AAY|| < 2. ]
Thus, for any m > 0 and p > 2, the Neumann series

32) S ()

n=0

yields an efficient method for computing the inverse of I — W%A. We have
prepared values Nf;yk for 2 < p <14 and 0 < m < 14. But it makes little
sense to print a table of these numbers here. They are available in electronic
forms, and can be obtained by contacting the authors.

As for the right boundary point, one can translate the problem to the
integral on (—oo,0]. Clearly

0
/ 2" ¢(x — k)dx = M}, , — N} ;.

— 00

4. CONVOLUTIONS

Now we consider the integrals of the form

L= [a" 6@t ~ k) do.

These are the fundamental ingredients for the numerical quadratures

[ at@)ot@ic - 062 — m) de.

Since Lf ;, = dor, we consider the cases for m > 1. The support of ¢(x) of
order p is [0, 2p—1], and hence we have unknowns L} , for 2—2p < k < 2p—2.
Then

Ly, = /:L’m chgb (22 —n) Zcm (22 — 2k — {)dx
n 14

(4.1) = ;;Cn@/ (x;n)mqﬁ(ww(w +n—2k—{)dx

1 m

m
— p TP
- 9m+1 ZC”CZLm,Qk—H—n + E :Cncl E : (T)n Lm—T,2k+l—n .
n,f n,l r=1




Matrices and Quadrature Rules for Wavelets 441

The above system of linear equations can be written as

) (1 h)e s

Let N =2p—2. Then x = (L}, _y,..., L}, y)", b= (b:) and A = (ay;) with

1 2p—1 lo m m .
by = om+1 Z:l Cn Zl: G Z:l - Ly okiions
where
l; = max{n — 2k — N, 0},
ly = min{n — 2k + N,2p — 1},
and

Aj = chcn—i-j—ka —N <j,k<N.
n

This matrix A was considered by Lawton [11] as a sufficient and necessary
condition on ¢; for the construction of an orthonormal wavelet basis. The
condition is concerned with the eigenvalue 2 of A. It is also summerized by
Daubechies [7] as one of three equivalent conditions.

Note that, by (1.1), the derivatives of ¢ (if they exist) also satisfy dilation
equations

(4.3) o) (z) = Z 2%, (22 — k).

k

Since ¢ € C™™® and 7(p) — oo as p — oo, we can apply (4.3) in [ ¢(x)e (x —
k) dx and repeat the steps in (4.1). We find that the matrices A = A(p) will
have eigenvalues 2, 1, %, i, ..., a8 P — 00.

Actually A has a simple pattern. On the even-numbered columns, by (2.4),

all entries are 0 except ajor = 2. On the odd-numbered columns, all entries
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are 0 except for [222] < k < |£22], which is the 2p-element vector

Jo(@)p(x — 252) da

>k ChChot(2p—1)
>k ChChts [o(x)p(x — 2)dx
- > ok CkCht1 B [ éd(x)p(x — %) dx
| Xk | Se@e@— L) de
>k CkCht3 [o(x)p(x — 2)dx
Zk CkCh+(2p—1) 2p—1

[ o(x)p(x — =) da

Proposition 2. Let A = A(p) be the matriz defined in this section, and
Il - || be the matriz norm induced by the Fuclidean norm. We have

4] < 2v2.
Proof. Define matrices
C G s Copa
B Cop €1 - Cop—2 Cop_1
o ! T C2-1 ) ong1yxe(N+p)

and
Cop—2 Cop—1

Ch C1 Cy C3
0 €1/ oNt1)x2(N+p)

That iS, B’L] =Cj—; and ‘DU = C(2p—1)+j—2i- Observe that
A=DB"
We split D into three parts:

E p—1
D=| F 2p—1.
G p—1
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Precisely, they are
Eij = Capiy+j-15

Fij = Cj—2(i—1)—1,

Gij = Ca(p—i)—1-2(N+p)+5-
Let us consider the normal matrix DD!. On the diagonal, there are sym-

metric matrices EE!, GG* and FF'. For these symmetric matrices, we con-
sider the entries on the upper triangle, that is, ¢ < j. Now

2(N+p)
(EEY); = Z E.E;
2%

= E Co(p—i)+k—1C2(p—j)+k—1
k=1
2p—1

= Z CrCr—2(j—1i)

k=2(p—1)
and

2(N+p)

(GGY), Z GG

2(N+p)

= Z C2(p—i)—1-2(N+p)+kC2(p—j)—1-2(N+p)+k
k=2(N+p)—2(p—j)+1

2(p—i)—1

= Z CrCl—2(5—1i)-

k=2(j—i)
Hence
2p—1

(EE");; + (GGY); = Z CrmCm—2(j—i) = Zcmcme(jfi)-

m=2(j—1) m
By (2.4), we have EE' + GG' = 21, ;.
Next, we have

2(N+p)

(FFY)ij= Z Fy.F)

2(i—1)+2p

= E Ck—2(i—1)—1Ck—2(j—-1)-1
k=2j—1

= o) ChCh—a(i—i)-
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This means FF' = 215, ;.
Then we consider the off-diagonal submatrices of DD*. For instance

2(N+p)

(EF"); X:Ek

For 25 — 1 > 24, it is trivial to see that (EF");; = 0. For 2j —1 < 2i <
2(j — 1) + 2p — 2, we have

21

(EFt)z‘j: Z Co(p—i)+k—1Ck—2(j—1)—1
k=2j-1
2p—1

= E CmCm—2(p—itj—1)
=2(p—i+j—1)

=0.

Hence EF' = 0. Similarly, one can show that GF' = 0. It is easy to derive
EG" = 0 by comparing the nonzero elements of the matrices F and G.
In conclusion, we have

EE!
DD' = 21
GG'

By the similar argument used in the proof of Proposition 3.1, if A > 0 is an
eigenvalue of DD?, then either A = 2 or 2— X > 0 is also an eigenvalue. Hence
1D = V2.

Now we turn to the norm of B. Let x be a vector of length 2(N + p).
Extend x to & = (#;) € ¢? such that

N {xkﬁ1<k<ﬂN+m

T = .
0  otherwise.
Then

2N+1

2 __

I1Bal?= (E:cj )

2N+1

= E E Cj—iCl— ijxk
=1 4,k
2N+1

= E E CiCrTjyiThyi
i=1 jk

2N+1 2N+1

= § :ck § : xk+z+§ :CJC/C E : Zj+iZhti-

j#k i=1
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We have >20 7 32, < ||2||? and, by Cauchy-Schwarz inequality, S50 &4 %41 <
||z||?. Therefore

|B2|< Y @l + Y cienl@l
k j#k
2 2
= (X a) =l
k

=4 |z|*

Hence || B|| < 2 and [|A] < |D|||B] < 2v2. "
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